Published online by Cambridge University Press: 20 January 2017
Microarray analysis was used to identify changes in gene expression in corn leaves collected from plants at the V11–14 growth stage that resulted from competition with velvetleaf. The plants were grown in field plots under adequate N (addition of 220 kg N ha−1) and irrigation to minimize N and water stress. Consequently, only differences resulting from competition for micronutrients, light, and perhaps allelopathic stress were anticipated. Genes involved in carbon and nitrogen utilization, photosynthesis, growth and development, oxidative stress, signal transduction, responses to auxin and ethylene, and zinc transport were repressed in corn growing in competition with velvetleaf. Very few genes were induced because of competition with velvetleaf, and those that were provided little indication of the physiological response of corn. No differences were observed in genes responsive to water stress or sequestering/transporting micronutrients other than zinc, indicating that these stresses were not a major component of velvetleaf competition with corn at the developmental stage tested.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.