Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T23:39:34.349Z Has data issue: false hasContentIssue false

Characterization of Waterhemp (Amaranthus tuberculatus) × Smooth Pigweed (A. hybridus) F1 Hybrids

Published online by Cambridge University Press:  20 January 2017

Federico Trucco
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Tatiana Tatum
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Kenneth R. Robertson
Affiliation:
Illinois Natural History Survey, Champaign, IL 61820
A. Lane Rayburn
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Patrick J. Tranel*
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
*
Corresponding author's E-mail: tranel@uiuc.edu

Abstract

In the state of Illinois, waterhemp and smooth pigweed are among the worst agricultural weeds. Previous research shows high potential for hybridization between these two species. However, the actual occurrence of hybrids in natural settings is still uncertain. Morphological similarity between hybrids and waterhemp makes field surveys of hybrids difficult to conduct. The main purpose of this study was to characterize the morphology of waterhemp × smooth pigweed F1 hybrids, emphasizing evaluation of characters that may allow for hybrid discrimination in field Amaranthus communities. Concurrently, the study characterized hybrid reproductive fitness, chromosome number, and DNA content. To accomplish this, hybrids were obtained from field crosses. A species-specific polymorphism in the ALS gene was used to verify hybrid identity. Significant differences (α = 0.05) between hybrids and individuals of the parental species were observed for five staminate and five carpellate characters. Of these, five characters differentiated hybrids from waterhemp. However, clustering analyses using these characters indicated that morphological differences were not reliable enough, by themselves, for unambiguous hybrid identification. Also, hybrid homoploidy (2n = 32) with respect to parental species excluded chromosome counts in hybridity determinations. However, DNA content analysis may be used for such purpose. Hybrids had an average of 1.21 pg of DNA per 2C nucleus, a value intermediate to that of parental species. Hybrids produced 3.3 or 0.7% the seed output of parental and sibling waterhemp individuals, respectively. Percent micropollen in hybrids was 95-times greater than in parental species. Hybrid sterility appears to be the most reliable feature for hybrid discrimination when conducting field surveys. However, molecular and cytogenetic analyses as employed in this study may be desired for ultimate identity corroboration.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, E. and Stebbins, G. L. 1954. Hybridization as an evolutionary stimulus. Evolution 8:378388.CrossRefGoogle Scholar
Arnold, M. L. 1992. Natural hybridization as an evolutionary process. Annu. Rev. Ecol. Syst. 23:237261.CrossRefGoogle Scholar
Barton, N. H. 2001. The role of hybridization in evolution. Mol. Ecol. 10:551568.CrossRefGoogle ScholarPubMed
Biradar, D. P. and Rayburn, A. L. 1993. Heterosis and nuclear DNA content in maize. Heredity 71:300304.CrossRefGoogle Scholar
Costea, M., Sanders, A., and Waines, G. 2001. Preliminary results toward a revision of the Amaranthus hybridus species complex (Amaranthaceae). Sida 19:931974.Google Scholar
Costea, M. and Tardif, F. J. 2003a. Conspectus and notes on the genus Amaranthus in Canada. Rhodora 105:260281.Google Scholar
Costea, M. and Tardif, F. J. 2003b. The bracteoles in Amaranthus (Amaranthaceae): their morphology, structure, function, and taxonomic significance. Sida 20:969985.Google Scholar
Covas, G. 1950. Un hibrido interespecifico natural en “Amaranthus.”. Rev. Argent. Agron. 17:257260.Google Scholar
Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus 12:1315.Google Scholar
Foes, M. J., Liu, L., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus tuberculatus) resistant to triazine and ALS herbicides. Weed Sci. 46:514520.CrossRefGoogle Scholar
Franssen, A. S., Skinner, D. Z., Al-Khatib, K., and Horak, M. J. 2001a. Pollen morphological differences in Amaranthus species and interspecific hybrids. Weed Sci. 49:732737.CrossRefGoogle Scholar
Franssen, A. S., Skinner, D. Z., Al-Khatib, K., Horak, M. J., and Kulakow, P. A. 2001b. Interspecific hybridization and gene flow of ALS resistance in Amaranthus species. Weed Sci. 49:598606.CrossRefGoogle Scholar
Grant, W. F. 1959. Cytogenetic studies in Amaranthus III. Chromosome numbers and phylogenetic aspects. Can. J. Genet. Cytol. 1:313328.CrossRefGoogle Scholar
Greizerstein, E. J., Naranjo, C. A., and Poggio, L. 1997. Karyological studies in five wild species of amaranths. Cytologia 62:115120.CrossRefGoogle Scholar
Greizerstein, E. J. and Poggio, L. 1992. Estudios citogeneticos de seis hibridos interespecificos de Amaranthus (Amaranthaceae). Darwiniana 31:159165.Google Scholar
Hager, A. G., Wax, L. M., Bollero, G. A., and Simmons, F. W. 2002. Common waterhemp (Amaranthus rudis Sauer) management with soil-applied herbicides in soybean (Glycine max (L.) Merr). Crop Prot. 21:277283.CrossRefGoogle Scholar
Hager, A. G., Wax, L. M., and Tranel, P. J. 1998. Identification of a smooth pigweed biotype in Illinois resistant to various ALS-inhibiting herbicides. Proc. N. Centr. Weed Sci. Soc. 53:81.Google Scholar
Heap, I. M. 2004. International Survey of Herbicide Resistant Weeds. Web page: http://www.weedscience.com. Accessed: December 4, 2004.Google Scholar
Jeschke, M. R., Tranel, P. J., and Rayburn, A. L. 2003. DNA content analysis of smooth pigweed (Amaranthus hybridus) and tall waterhemp (A. tuberculatus): implications for hybrid detection. Weed Sci. 51:13.CrossRefGoogle Scholar
Jones, G. N. 1957. The number of seeds produced by certain plants. Am. Biol. Teacher 19:21.CrossRefGoogle Scholar
Mosyakin, S. L. and Robertson, K. R. 2003. Amaranthus . in Flora of North America Editorial Committee ed. Flora of North America North of Mexico. New York: Oxford University Press. Pp. 410435.Google Scholar
Murray, M. J. 1938. Interspecific and intergeneric crosses in the family Amaranthaceae in relation to sex determination. Ph.D. dissertation. Cornell University, Ithaca, NY. 98 p.Google Scholar
Murray, M. J. 1940. The genetics of sex determination in the family Amaranthaceae. Genetics 25:409431.CrossRefGoogle ScholarPubMed
Pal, M. and Khoshoo, T. N. 1972. Evolution and improvement of cultivated amaranths IV. Variation in pollen mitosis in the F1 Amaranthus spinosus × A. dubius . Genetica 43:119129.CrossRefGoogle Scholar
Patzoldt, W. L., Tranel, P. J., and Hager, A. G. 2005. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci. 53:3036.CrossRefGoogle Scholar
Pratt, D. B. and Clark, L. G. 2001. Amaranthus rudis and A. tuberculatus— one species or two? J. Torrey Bot. Soc. 128:282296.CrossRefGoogle Scholar
Rayburn, A. L., Auger, J. A., and McMurphy, L. M. 1992. Estimated percentage constitutive heterochromatin by flow cytometry. Exp. Cell Res. 198:175178.CrossRefGoogle ScholarPubMed
Rieseberg, L. H., Raymond, O., and Rosenthal, D. M. et al. 2003. Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:12111216.CrossRefGoogle ScholarPubMed
Robertson, K. R. 1981. The genera of Amaranthaceae in the Southeastern United States. J. Arnold Arb. 62:267314.CrossRefGoogle Scholar
Rohlf, F. J. 1999. NTSYSpc: Numerical Taxonomy and Multivariate Analysis System. Setauket, NY: Exeter Software.Google Scholar
Sauer, J. D. 1955. Revision of the dioecious amaranths. Madroño 13:546.Google Scholar
Sauer, J. D. 1957. Recent migration and evolution of the dioecious amaranths. Evolution 11:1131.CrossRefGoogle Scholar
Sneath, P. H. and Sokal, R. R. 1973. Numerical taxonomy. San Francisco: Freeman. 573 p.Google Scholar
Srivastava, V., Pal, M., and Nair, P. K. 1977. A study of the pollen grains of Amaranthus spinosus Linne and A. dubius Mart Ex Thellung and their hybrids. Rev. Paleobot. Palynol. 23:287291.CrossRefGoogle Scholar
Steckel, L. E., Sprague, C. L., Hager, A. G., Simmons, F. W., and Bollero, G. A. 2003. Effects of shading on common waterhemp (Amaranthus rudis) growth and development. Weed Sci. 51:898903.CrossRefGoogle Scholar
Tatum, T., Skirvin, R., Tranel, P., Norton, M., and Rayburn, A. L. 2004. Procedure for obtaining roots for chromosome analysis in Amaranthus species. Proc. Assoc. Southeast. Biol. 51:201.Google Scholar
Tranel, P. J., Wassom, J. J., Jeschke, M. R., and Rayburn, A. L. 2002. Transmission of herbicide resistance from a monoecious to a dioecious weedy Amaranthus species. Theor. Appl. Genet. 105:674679.CrossRefGoogle ScholarPubMed
Trucco, F., Jeschke, M. R., Rayburn, A. L., and Tranel, P. J. 2005a. Frequency of Amaranthus hybridus hybridization by A. tuberculatus under field conditions. Heredity 94:6470.CrossRefGoogle ScholarPubMed
Trucco, F., Jeschke, M. R., Rayburn, A. L., and Tranel, P. J. 2005b. Promiscuity in weedy amaranths: high frequency of female tall waterhemp (Amaranthus tuberculatus) × smooth pigweed (A. hybridus) hybridization under field conditions. Weed Sci. 53:4654.CrossRefGoogle Scholar
Tucker, J. M. and Sauer, J. D. 1958. Aberrant Amaranthus populations of Sacramento–San Joaquin Delta, California. Madroño 14:252261.Google Scholar
Wetzel, D. K., Horak, M. J., Skinner, D. Z., and Kulakow, P. A. 1999. Transferral of herbicide resistance traits from Amaranthus palmeri to Amaranthus tuberculatus . Weed Sci. 47:538543.CrossRefGoogle Scholar
Wilkinson, M. J., Elliott, L. J., and Allainguillaume, J. et al. 2003. Hybridization between Brassica napus and B. rapa on a national scale in the United Kingdom. Science 302:457459.CrossRefGoogle Scholar