Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T23:53:32.916Z Has data issue: false hasContentIssue false

The Effect of Ultraviolet Radiation on the Fresh Weight of Some Weeds and Crops

Published online by Cambridge University Press:  12 June 2017

Christian Andreasen
Affiliation:
The Royal Veterinary and Agricultural University, Department of Agricultural Sciences, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
Leif Hansen
Affiliation:
The Royal Veterinary and Agricultural University, Department of Agricultural Sciences, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
Jens C. Streibig
Affiliation:
The Royal Veterinary and Agricultural University, Department of Agricultural Sciences, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark

Abstract

Under greenhouse conditions, annual bluegrass (Poa annua L.), common groundsel (Senecio vulgaris L.), shepherd's purse [Capsella bursa-pastoris (L.) Medicus], small nettle (Urtica urens L.), canola (Brassica napus L. ssp. napus), and pea (Pisum sativa L.) differed in sensitivity to ultraviolet (UV) radiation. Of the weed species, annual bluegrass was the least sensitive; whereas, among the crop species, canola was about sevenfold more sensitive than was pea. The sensitivity of a species to UV radiation was highly dependent upon its stage of development. The study indicates some potential for using UV radiation to control weeds, but the method needs further investigation to unravel the selectivity of the methods and potential health hazards.

Type
Research
Copyright
Copyright © 1999 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ascard, J. 1994. Dose–response models for flame weeding in relation to plant size and density. Weed Res. 34:377385.Google Scholar
Ascard, J. 1995a. Effects of flame weeding on weed species at different developmental stages. Weed Res. 35:397411.Google Scholar
Ascard, J. 1995b. Thermal Weed Control by Flaming: Biological and Technical Aspects. . Swedish University of Agricultural Sciences, Department of Agricultural Engineering, Alnarp, Sweden. Report 200. 61 p.Google Scholar
Barnes, P. W., Flint, S. D., and Caldwell, M. M. 1990. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation. Am. J. Bot. 77:13451360.Google Scholar
Box, G.E.P. and Cox, D. R. 1964. An analysis of transformations. J. Royal Stat. Soc. Ser. B 26:211246.Google Scholar
Brain, P. and Cousens, R. 1989. An equation to describe dose responses where there is stimulation of growth at low doses. Weed Res. 29:9396.Google Scholar
Caldwell, M. M. and Flint, D. S. 1994. Solar ultraviolet radiation and ozone layer change: implication for crop production. In Boote, K. J., Bennet, J. M., Sinclair, T. R., and Paulson, G. M., eds. Physiology and Determination of Crop Yield. Madison, WI: American Society of Agronomy. pp. 487507.Google Scholar
Carroll, R. J. and Ruppert, D. 1988. Transformation and Weighting in Regression. New York: Chapman and Hall. 321 p.Google Scholar
Cen, Y.-P. and Bornman, J. F. 1990. The response of bean plants to UV-B radiation under different irradiances of background visible light. J. Exp. Bot. 41:14891495.Google Scholar
Cen, Y.-P. and Bornman, J. F. 1993. The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica napus . Physiol. Plant. 87:249255.CrossRefGoogle Scholar
Day, X A., Martin, G., and Vogelmann, T. C. 1993. Penetration of UV-B radiation in foliage: evidence that the epidermis behaves as a non-uniform filter. Plant Cell Environ. 16:735741.CrossRefGoogle Scholar
Diprose, M. F. and Benzon, F. A. 1984. Electrical methods of killing plants. J. Agric. Eng. Res. 30:197209.Google Scholar
Gausman, H. W., Rodriguez, R. R., and Escobar, D. E. 1975. Ultraviolet radiation reflectance, transmittance and absorptance by plant leaf epidermises. Agron. J. 67:720724.Google Scholar
Hansson, D., Mattsson, B., and Schroeder, H. 1995. Vegetationbekämning på Banvallar—en förstudie om forebyggende åtgäder samt icke-kemiska metoder. Institutionen för lantbruksteknik. Alnarp, Sweden: Swedish Agricultural University Report 191. 55 p.Google Scholar
Jensen, B. and Wolkoff, P. 1996. VOCBASE, Version 2. Copenhagen, Denmark: National Institute of Occupational Health. 84 p.Google Scholar
Jensen, P. K. 1995. Effect of light environment during soil disturbance on germination and emergence pattern of weeds. Ann. Appl. Biol. 127:561571.CrossRefGoogle Scholar
Kaufman, K. R. and Schaffner, L. W. 1982. Energy and economics of electrical weed control. Trans. Am. Soc. Agric. Eng. 25:297300.Google Scholar
Koch, W. 1959. Untersuchungen zur Unkrautbekämpfung durch Saatpflege und Stoppelbearbeitungsmassnahmen. Doctoral dissertation. Arbeit aus dem Institut für Pflanzenschutz der Landwirtschaftlichen Hochschule. Universität Stuttgart-Hohenheim, Germany. 125 p.Google Scholar
Mathiassen, S. K., Kudsk, P., and Elbæk, P. E. 1997. Tolerance of different grass, seed species to sulfonylurea herbicides. 14th Danish Plant Protection Conference, Statens Planteavlsforsøg, Forskningscenter Foulum, Tjele, Denmark. SP rapport 7:111121.Google Scholar
Müller-Schärer, H. and Scheepens, P. C. 1997. Biological control of weeds in crops: a coordinated European research programme (COST 816). Integr. Pest Manag. Rev. 2:4550.CrossRefGoogle Scholar
Parish, S. 1989. Weed control—testing the effects of infrared radiation. Agric. Eng. 44:5355.Google Scholar
Rasmussen, J. and Ascard, J. 1996. Weed control in organic farming. In Glen, D. M., Greaves, M. P., and Andersen, H. M., eds. Ecology and Integrated Farming Systems. London: J. Wiley. pp. 4967.Google Scholar
Robberecht, R. and Caldwell, M. M. 1978. Leaf epidermal transmittance of ultraviolet radiation and its implications for plant sensitivity to ultraviolet radiation induced injury. Oecologia 32:277287.CrossRefGoogle Scholar
Robberecht, R., Caldwell, M. M., and Billings, W. D. 1980. Leaf ultraviolet optical properties along a latitudinal gradient in the arctic–alpine life zone. Ecology 61:612619.Google Scholar
Salisbury, F. B. and Ross, C. 1978. Plant Physiology. 2nd ed. Belmont, CA: Wadsworth. 422 p.Google Scholar
Seiden, P., Kappel, D., and Streibig, J. C. 1998. Response of Brassica napus in tissue culture to metsulfuron-methyl and chlorsulfuron. Weed Res. 38:221228.Google Scholar
Stáxen, I. 1994. Effects of Ultraviolet Radiation on Microtubule Organisation and Morphogenesis in Plants. . Department of Plant Physiology, Lund University, Sweden. 40 p.Google Scholar
Streibig, J. C., Rudemo, M., and Jensen, J. E. 1993. Dose–response curves and statistical models. In Streibig, J. C. and Kudsk, P., eds. Herbicide Bioassays. Boca Raton, FL: CRC Press. pp. 2955.Google Scholar
Teramura, A. H. 1983. Effects of ultraviolet radiation on the growth and yield of crop plants. Physiol. Plant. 58:415427.Google Scholar
[WHO] World Health Organization. 1987. Air Quality Guidelines for Europe. Copenhagen, Denmark: World Health Organization, WHO Regional Publications. European Series No. 23, Cap. 28. 43 p.Google Scholar