Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T23:03:00.173Z Has data issue: false hasContentIssue false

Evaluation of Bioherbicidal Control of Tropical Signalgrass, Crabgrass, Smutgrass, and Torpedograss

Published online by Cambridge University Press:  20 January 2017

Yasser M. Shabana*
Affiliation:
Plant Pathology Department, University of Florida, Gainesville, FL 32611
Carol M. Stiles
Affiliation:
Georgia Military College, Valdosta, GA 31605
R. Charudattan
Affiliation:
Plant Pathology Department, University of Florida, Gainesville, FL 32611
Ayman H. Abou Tabl
Affiliation:
Plant Pathology Department, University of Florida, Gainesville, FL 32611
*
Corresponding author's E-mail: yassershabana2@yahoo.com.

Abstract

Tropical signalgrass (TSG) causes serious problems for sod production and turf maintenance in Florida. Other grasses such as large crabgrass (CG), smutgrass (SG), thin paspalum (TP), and torpedograss (TG) can be problematic as well. Several emulsion formulations composed of mycelium or mycelium-free culture filtrate (or both) of the fungal pathogen Drechslera gigantea (DG) and Sunspray 6E oil were tested with or without ammonium sulfate or pelargonic acid (n-nonanoic acid; a natural product registered as a biorational herbicide) in greenhouse and field trials. A 30% Sunspray 6E oil formulation containing DG mycelium (10 g), DG culture filtrate (70 ml), and 4.5 g of ammonium sulfate caused 88 to 100% injury on TSG, CG, SG, and TG in greenhouse trials. The injury resulted from disease as well as phytotoxicity of the culture filtrate, oil, and ammonium sulfate. An emulsion formulation composed of 30% Sunspray 6E oil and 70% DG culture filtrate amended with 2% (v/v) pelargonic acid killed SG 2 wk after application. DG formulations containing ammonium sulfate or pelargonic acid produced lower levels of injury when treated grasses were exposed to a 24-h dew period compared with those treated and not exposed to dew. Formulations containing DG mycelium, DG culture filtrate, and ammonium sulfate or pelargonic acid are effective and promising for control of weedy grasses. Further evaluations of these formulations under field conditions are justified.

La tolerancia de los zacates Cynodon dactylon L. ‘Tifsport’ y de ‘tifdworf’, Zoysia japonica L. ‘Meyer’, y Paspalum virginatum Swartz ‘Salam’ a los herbicidas oxadiazon (2240 g/ha) o quinclorac (840 hg/ha) aplicados 1 semana antes del espigamiento (WBS), en el espigamiento (AS), 2 semanas después del espigamiento (2 WAS) y 4 semanas después del espigamiento (4 WAS) fueron investigados en el campo. El control de malezas fue también evaluado. Para ambos herbicidas solamente el tiempo de aplicación AS dañó el césped en más del 22%, mientras que el daño para otros períodos de aplicación fue de un 9 a un 19%, 5 semanas después de la siembra. Cuando se evaluó el daño en el césped 8 semanas después de la siembra, siguiendo el tiempo de aplicación (AS), éste permaneció en un 19% mientras que el daño pare cualquier otro intervalo de aplicación fue del 8% o menos. Los períodos de aplicación: 8 WAS y 1 WBS, AS, 2 WAS y 4 WAS alcanzaron 89, 79, 94 y 99% de cobertura respectivamente, cuando se promediaron con todas las otras especies de zacates, cultivares y herbicidas. Para las 13 WAS, todas las especies de cultivares alcanzaron al menos 90% de cobertura en la parcela. Las aplicaciones anteriores al espigamiento de oxadiazan proporcionaron de un 98 a un 100% en el control de la Eleusine indica L. y del Oldenlandia corymbosa L. La aplicación de quinclorac al momento de la siembra proporcionó más del 70% de control de estas malezas. Los resultados indican que oxadiazon y quinclorac aplicados al momento de la siembra causan daños inaceptables en el césped. Si el Eleusine indica L. y el Oldenlandia corymbosa L. son problemáticos, el oxadiazon es una opción factible para el control de estas malezas pero no así el quinclorac.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Professor and Assistant Professor, Plant Pathology Department, Faculty of Agriculture, Mansoura University, El-Mansoura, Egypt.

References

Literature Cited

Chandramohan, S. and Charudattan, R. 2001. Control of seven grasses with a mixture of three fungal pathogens with restricted host ranges. Biol. Cont 22:246255.Google Scholar
Chandramohan, S., Charudattan, R., Sonoda, R. M., and Singh, M. 2002a. Field evaluation of a fungal pathogen mixture for the control of seven weedy grasses. Weed Sci 50:204213.Google Scholar
Chandramohan, S., Charudattan, R., and Stiles, C. 2002b. Bioherbicidal efficacy of the grass pathogen mixture on tropical signal grass. Annual research report for Florida Sod Growers Co-operative.Google Scholar
Chandramohan, S., Charudattan, R., and Stiles, C. 2002c. Evaluation of non-target effects of grass bioherbicides on cultivated and weedy grasses. Annual: research report for Florida Sod Growers Co-operative.Google Scholar
Chandramohan, S., Stiles, C., and Charudattan, R. 2002d. A multiple-pathogen bioherbicide system with potential to manage signalgrass in turf and sod in Florida. Florida Turf Digest, Nov/Dec 2002. 1518.Google Scholar
Evidente, A., Andolfi, A., Cimmino, A., Vurro, M., Fracchiolla, M., and Charudattan, R. 2006a. Herbicidal potential of ophiobolins produced by Drechslera gigantea . J. Agric. Food Chem 54:17791783.Google Scholar
Evidente, A., Andolfi, A., Cimmino, A., Vurro, M., Fracchiolla, M., Charudattan, R., and Motta, A. 2006b. Ophiobolin E and 8-epi-ophiobolin J, phytotoxins produced by Drechslera gigantean, a potential mycoherbicides of weedy grasses. Phytochemistry 67:22812287.Google Scholar
Institute of Pacific Island Forestry 2002. Brachiaria subquadripara (Trin.) Hitchc., Invasive Plant Species:. Web page: http://www.hear.org/pier/brsub.htm. Accessed: October 17, 2002.Google Scholar
Jalal, M. A. F. and Read, D. J. 1983. The organic acid composition of Calluna heathland soil with special reference to phyto and fungitoxicity. I. Plant and Soil 70:257272.Google Scholar
SAS Institute 2003. SAS/STAT User's Guide Version 9.1. Cary, NC: SAS Institute.Google Scholar
Speedy, A. 2002. Brachiaria subquadripara (Tan.) Hitchc., Food and Agricultural Organizations of the United States:. Web page: http://www.fao.org/ag/agp/agpc/doc/gbase/data/pf000194.htm. Accessed: October 17, 2002.Google Scholar
Teuton, T., Brecke, B., Unruh, J. B., Chandramohan, S., Charudattan, R., Stiles, C., Miller, G., Weinbrecht, J., and Trenholm, L. 2003. Tropical signalgrass management in warm season turf: signal pathogens. Florida Turf Digest, March/April 2003. 1822.Google Scholar
Teuton, T., Unruh, J. B., Brecke, B., Macdonald, G. E., Miller, G. L., and Ducar, J. T. 2004. Tropical signalgrass (Urochloa subquadripara) control with preemergence- and postemergence-applied herbicides. Weed Technol 18:419425.Google Scholar
USDA 2002. Urochloa subquadripara, Natural Resources Conservation Service Plant Profile:. Web page: http://plants.usda.gov/cgipbin/topics.cgi. Accessed: October 17, 2002.Google Scholar