Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T05:19:09.988Z Has data issue: false hasContentIssue false

Influence of Glyphosate or Glufosinate Combinations with Growth Regulator Herbicides and Other Agrochemicals in Controlling Glyphosate-Resistant Weeds

Published online by Cambridge University Press:  20 January 2017

Gurinderbir S. Chahal*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
William G. Johnson
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
*
Corresponding author's E-mail: gschahal@purdue.edu

Abstract

With the forthcoming release of the 2,4-D- and dicamba-resistance traits stacked with either glyphosate or glufosinate resistance, the use of 2,4-D or dicamba alone or in tank mix with glyphosate or glufosinate likely will increase the control of glyphosate-resistant weeds in soybean. There also is an increasing trend among soybean growers to apply POST herbicides in combination with fungicides, insecticides, and fertilizers to reduce trips over the field. Greenhouse experiments were conducted during 2011 and 2012 to evaluate glyphosate or glufosinate applications with growth regulator herbicides and other agrochemicals for the control of glyphosate-resistant horseweed and glyphosate-resistant common lambsquarters. In most cases, glyphosate or glufosinate application with 2,4-D or dicamba provided 80% or more control of glyphosate-resistant horseweed and glyphosate-resistant common lambsquarters. These studies demonstrate that performance of glufosinate alone and with agrochemicals was poor on glyphosate-resistant common lambsquarters. However, no differences in glyphosate-resistant common lambsquarters biomass were noted among treatments including glufosinate alone, glufosinate plus growth regulator herbicides, and glufosinate plus growth regulator herbicides plus agrochemicals. The agrochemicals lambda-cyhalothrin, manganese, and pyraclostrobin did not affect weed control by glyphosate or glufosinate combinations with growth regulator herbicides. Visible soybean injury was noted at 1 wk after treatment (WAT) only when glufosinate was applied with lambda-cyhalothrin or pyraclostrobin but no differences in visible injury were seen with these combinations at 3 WAT.

Con la próxima liberación de cultivos con resistencia a 2,4-D y dicamba en combinación con resistencia a glyphosate o glufosinate, es probable que el uso de 2,4-D o dicamba solos o en mezclas en tanque con glyphosate o glufosinate incrementará el control de malezas resistentes a glyphosate en soya. También, hay un tendencia creciente de que los productores apliquen herbicidas POST en combinación con fungicidas, insecticidas y fertilizantes para reducir el número de pases de aplicación en campo. Se realizaron experimentos de invernadero durante 2011 y 2012 para evaluar aplicaciones de glyphosate o glufosinate con herbicidas reguladores de crecimiento y otros agroquímicos, para el control de Conyza canadensis y Chenopodium album resistentes a glyphosate. En la mayoría de los casos, las aplicaciones de glyphosate o glufosinate con 2,4-D o dicamba brindaron 80% de control o más de C. canadensis y C. album resistentes a glyphosate. Estos estudios demostraron que el desempeño de glufosinate solo y con agroquímicos fue pobre sobre C. album resistente a glyphosate. Sin embargo, no se notaron diferencias en la biomasa de C. album resistente a glyphosate entre tratamientos incluyendo a glufosinate solo, glufosinate más herbicidas reguladores de crecimiento y glufosinate más herbicidas reguladores de crecimiento más agroquímicos. Los agroquímicos lambda-cyhalothrin, manganese y pyroclostrobin no afectaron el control de malezas al combinar glyphosate o glufosinate con herbicidas reguladores de crecimiento. El daño visible en la soya se notó a 1 semana después del tratamiento (WAT) solamente cuando glufosinate fue aplicado con lambda-cyhalothrin o pyraclostrobin, pero no se observaron diferencias en daño con estas combinaciones a 3 WAT.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bailey, W. A., Poston, D. H., Wilson, H. P., and Hines, T. E. 2002. Glyphosate interactions with manganese. Weed Technol. 16 :792799.CrossRefGoogle Scholar
Bernards, M. L., Thelen, K. D., and Penner, D. 2005. Glyphosate efficacy is antagonized by manganese. Weed Technol. 19 :2734.Google Scholar
Bradley, K. and Sweets, L. E. 2008. Influence of glyphosate and fungicide coapplications on weed control, spray retention, soybean response, and yield in glyphosate-resistant soybean. Agron. J. 100 :13601365.Google Scholar
Bruce, J. A. and Kells, J. J. 1990. Horseweed (Conyza canadensis) control in no-till soybean (Glycine max) with preplant and preemergence herbicides. Weed Technol. 4 :642647.Google Scholar
Campbell, J. R. and Penner, D. 1982. Enhanced phytotoxicity of bentazon with organophosphate and carbamate insecticides. Weed Sci. 30 :324326.Google Scholar
Chahal, G. S., Jordan, D. L., Burton, J. D., Danehower, D., York, A. C., Eure, P. M., and Clewis, B. 2012a. Influence of water quality and coapplied agrochemicals on efficacy of glyphosate. Weed Technol. 26 :167176.Google Scholar
Chahal, G. S., Jordan, D. L., Shew, B. B., Brandenburg, R. L., York, A. C., Burton, J. D., and Danehower, D. 2012b. Interactions of agrochemicals applied to peanut; part 1: Effects on herbicides. Crop Prot. In press.Google Scholar
Conley, S. P., Stoltenberg, D. E., Boerboom, C. M., and Binning, L. K. 2003. Predicting soybean yield loss in giant foxtail (Setaria faberi) and common lambsquarters (Chenopodium album) communities. Weed Sci. 51 :402407.Google Scholar
Davis, V. M., Gibson, K. D., and Johnson, W. G. 2008. A field survey to determine distribution and frequency of glyphosate-resistant horseweed (Conyza canadensis) in Indiana. Weed Technol. 22 :331338.Google Scholar
Frans, R. E., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages. 2946 in: Camper, N. D., ed. Research Methods in Weed Science. Champaign, IL : Southern Weed Science Society.Google Scholar
Gettier, S. W., Martens, D. C., and Brumback, T. B. 1985. Timing of foliar manganese application for correction of manganese deficiency in soybean. Agron. J. 77 :627630.CrossRefGoogle Scholar
Green, J. M. 2009. Evolution of glyphosate-resistant crop technology. Weed Sci. 57 :108117.Google Scholar
Green, J. M., Hazel, C. B., Forney, D. R., and Pugh, L. M. 2008. New multiple herbicide crop resistance and formulation technology to augment the utility of glyphosate. Pest Manag. Sci. 64 :332339.Google Scholar
Green, J. M. 1989. Herbicide antagonism at the whole plant level. Weed Technol. 3 :217226.CrossRefGoogle Scholar
Grichar, W. J. and Prostko, E. P. 2009. Effect of glyphosate and fungicide combinations on weed control in soybeans. Crop Prot. 28 :619622.Google Scholar
Harder, D. B., Sprague, C. L., Difonzo, C. D., Renner, K. A., Ott, E. J., and Johnson, W. G. 2007. Influence of stem-boring insects on common lambsquarters (Chenopodium album) control in soybean with glyphosate. Weed Technol. 21 :241248.Google Scholar
Harrison, S. K. 1990. Interference and seed production by common lambsquarters (Chenopodium album) in soybeans (Glycine max). Weed Sci. 38 :113118.Google Scholar
Hatzios, K. K. and Penner, D. 1985. Interaction of herbicides with other agricultural chemicals in higher plants. Rev. Weed Sci. 1 :164.Google Scholar
Heap, I. 2012. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/in.asp. Accessed: February 10, 2012.Google Scholar
Hocombe, S. D. 1961. Simple Experiments on the Greenhouse Germination of Some East African Weed Species. Miscellaneous Report No. 285. Arusha, Tanzania : Colonial Pesticides Research Unit. Pp. 149154.Google Scholar
Jordan, D. L., Lancaster, S. H., Lanier, J. E., Johnson, P. D., Beam, J. B., York, A. C., Brandenburg, R. L., Walls, F. R., Casteel, S., and Hudak, C. 2006. Influence of application variables on efficacy of boron-containing micronutrients applied to peanut (Arachis hypogaea L.). Peanut Sci. 33 :104111.Google Scholar
Kniss, A. R., Miller, S. D., Westra, P. H., and Wilson, R. G. 2007. Glyphosate susceptibility in common lambsquarters (Chenopodium album) is influenced by parental exposure. Weed Sci. 55 :572577.Google Scholar
Kruger, G. R., Davis, V. M., Weller, S. C., and Johnson, W. G. 2010. Control of horseweed (Conyza canadensis) with growth regulator herbicides. Weed Technol. 24 :425429.Google Scholar
Lancaster, S. H., Jordan, D. L., York, A. C., Wilcut, J. W., Monks, D. W., and Brandenburg, R. L. 2005. Interactions of clethodim and sethoxydim with selected agrichemicals applied to peanut. Weed Technol. 19 :456461. 634 p.Google Scholar
Loux, M. M., Stachler, J. M., Miller, B. A., and Taylor, J. B. 2005. Response of common lambsquarters to glyphosate in the greenhouse and growth chamber. Proc. N. Cent. Weed Sci. Soc. 60 :202.Google Scholar
McMullan, P. M. 2000. Utility adjuvants. Weed Technol. 14 :792797.Google Scholar
Pankey, J. H., Griffin, J. L., Leonard, B. R., Miller, D. K., Downer, R. G., and Costello, R. W. 2004. Glyphosate: insecticide combinations effects on weed and insect control in cotton. Weed Technol. 18 :698703.Google Scholar
Schuster, C. L., Shoup, D. E., and Al-Khatib, K. 2007. Response of common lambsquarters (Chenopodium album) to glyphosate as affected by growth stage. Weed Sci. 55 :147151.Google Scholar
Scroggs, D. M., Miller, D. K., Stewart, A. M., Leonard, B. R., Griffin, J. L., and Blovin, D. C. 2009. Weed response to foliar co-applications of glyphosate and zinc sulphate. Weed Technol. 23 :171174.Google Scholar
Soltani, N., Shropshire, C., and Sikkema, P. H. 2011. Short communication: influence of manganese on efficacy of glyphosate in glyphosate-resistant soybean. Can. J. Plant Sci. 91 :10611064.Google Scholar
Steckel, L. E., Craig, C. C., and Hayes, R. M. 2006. Glyphosate-resistant horseweed (Conyza canadensis) control with glufosinate prior to planting no-till cotton (Gossypium hirsutum). Weed Technol. 20 :10471051.Google Scholar
Thompson, M. A., Steckel, L. E., Ellis, A. T., and Mueller, T. C. 2007. Soybean tolerance to early preplant applications of 2,4-D ester, 2,4-D amine, and dicamba. Weed Technol. 21 :882885.Google Scholar
Tisdale, S. L., Nelson, W. L., Beaton, J. D., and Havlin, J. L. 1993. Soil Fertility and Fertilizers. 5th ed. New York : Macmillan. 634 p.Google Scholar
USDA. 2005. Indiana Agricultural Statistics: Chemical Use. Online. USDA-NASS, Washington, DC. Accessed: March 13, 2012. [USDA NASS]Google Scholar
U.S. Department of Agriculture. 2010. Agricultural Chemical Use Database. Washington, DC : USDA-National Agricultural Statistics Service. www.pestmanagement.info/nass. Accessed: December 2011.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49 :703705.Google Scholar
Waldrop, D. D. and Banks, P. A. 1983. Interactions of herbicides with insecticides in soybeans (Glycine max). Weed Sci. 31 :730734.Google Scholar
Westhoven, A. M., Kruger, G. R., Gerber, C. K., Stachler, J. M., Loux, M. M., and Johnson, W. G. 2008. Characterization of selected common lambsquarters (Chenopodium album) biotypes with tolerance to glyphosate. Weed Sci. 56 :685691.Google Scholar