Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T13:04:55.789Z Has data issue: false hasContentIssue false

Integrated Weed Management–A Component of Integrated Pest Management: A Critical Review

Published online by Cambridge University Press:  12 June 2017

Donald C. Thill
Affiliation:
Dep. Plant, Soil, Entomol. Sci., Univ. Idaho, Moscow, ID 83843
Joan M. Lish
Affiliation:
Dep. Plant, Soil, Entomol. Sci., Univ. Idaho, Moscow, ID 83843
Robert H. Callihan
Affiliation:
Dep. Plant, Soil, Entomol. Sci., Univ. Idaho, Moscow, ID 83843
Edward J. Bechinski
Affiliation:
Dep. Plant, Soil, Entomol. Sci., Univ. Idaho, Moscow, ID 83843

Abstract

Integrated weed management (IWM) is a component of integrated pest management (IPM), which is an interdisciplinary practice involving disciplines such as entomology, nematology, plant pathology, weed science, horticulture, agronomy, ecology, economics, and systems science. Most descriptions of IPM mention three elements: a) multiple tactics (for example, competitive varieties, cultural practices, herbicide usage) used in a compatible manner; b) pest populations maintained below levels that cause economic damage, and c) conservation of environmental quality. Integrated weed management was discussed in 1981 during a Weed Science Society of America (WSSA) Symposium entitled Integrated Weed Management Systems Technology for Crop Production and Protection. Topics presented included modeling weed biology, crop manipulation, biological control, herbicide technology, research needs, teaching approaches, and extension implementation. Our paper was presented as part of a symposium on IWM at the 1990 WSSA meeting. This paper describes some of the research that weed scientists have conducted during the past 40 yr. Topics examined include an introductory review of IPM, trends in several categories of weed research, goals and suggestions stated during the 1981 WSSA Symposium on IWM, IWM accomplishments since about 1981, and the future of IWM as a component of IPM.

Type
Symposium
Copyright
Copyright © 1991 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Altieri, M. A., and Liebman, M. 1988. Weed Management in Agroecosystems: Ecological Approaches. CRC Press, Boca Raton, FL. 354 p.Google Scholar
2. Auld, B. A., Menz, K. M., and Tisdell, C. A. 1987. Weed Control Economics. Academic Press Inc., London. 177 p.Google Scholar
3. Blair, B. D., and Parochetti, J. V. 1982. Extension implementation of integrated pest management systems. Weed Sci. (Suppl.) 30:4853.Google Scholar
4. Bohmont, B. L. 1989. Cancellations of pesticides for non-payment of 1989 registration maintenance fees. Pesticide Pipeline. 22:3. Coop. Ext. Colo. St. Univ., Fort Collins, CO.Google Scholar
5. Bozsa, R. C., Oliver, L. R., and Driver, T. L. 1989. Intraspecific and interspecific sicklepod (Cassia obtusifolia) interference. Weed Sci. 37: 670673.Google Scholar
6. Bridges, D. C., and Chandler, J. M. 1989. A population level temperature-dependent model of seedling johnsongrass (Sorghum halepense) flowering. Weed Sci. 37:471477.Google Scholar
7. Bridges, D. C., Wu, H., Sharpe, P.J.H., and Chandler, J. M. 1989. Modeling distributions of crop and weed seed germination time. Weed Sci. 37:724729.Google Scholar
8. Buchanan, G. A. 1976. Management of the weed pests of cotton (Gossypium hirsutum). p. 168184 in Proc. U.S.-U.S.S.R. Symposium: The integrated control of the arthropod, disease and weed pests of cotton, grain sorghum and deciduous fruit, Lubbock, TX.Google Scholar
9. Buchanan, G. A. 1976. Weeds and weed management in cotton. Proc. Beltwide Cotton Prod. Res. Conf., p. 166168.Google Scholar
10. Burn, A. J., Coaker, T. H., and Jepson, P. C. 1987. Integrated Pest Management. Academic Press, San Diego, CA. 474 p.Google Scholar
11. Carson, R. 1962. Silent Spring. Fawcett Publ. 304 p.Google Scholar
12. Cudney, D. W., Jordan, L. S., Corbett, C. J., and Bendixen, W. E. 1989. Developmental rates of wild oats (Avena fatua) and wheat (Triticum aestivum). Weed Sci. 37:512524.Google Scholar
13. Flint, M. L., and van den Bosch, R. 1983. Introduction to Integrated Pest Management. Plenum Press, New York and London. 240 p.Google Scholar
14. Goldstein, J. 1978. The Least is Best Pesticide Strategy. The JG Press, Emmaus, PA. 205 p.Google Scholar
15. Harrison, S. K., and Beuerlein, J. E. 1989. Effect of herbicide mixtures and seeding rate on soft red winter wheat (Triticum aestivum) yield. Weed Technol. 3:505508.Google Scholar
16. Integrated Pest Management: A National Plan for Future Direction. 1988. Prepared by the National IPM Coordinating Committee, p. 12.Google Scholar
17. Integrated Pest Management for Cotton in the Western Region of the United States. 1984. Univ. Calif., Div. Agric. and Nat. Res., Publ. 3305, p. 144.Google Scholar
18. Integrated Pest Management for Cole Crops and Lettuce. 1985. Univ. Calif., Div. Agric. and Nat. Res. Publ. 3307, p. 112.Google Scholar
19. Integrated Pest Management for Tomatoes. 1985. Univ. Calif., Div. Agric. and Nat. Res. Publ. 3274, p. 103.Google Scholar
20. Khodayari, K., Smith, R. J. Jr., Walker, J. T., and TeBeest, D. O. 1987. Applicators for a weed pathogen plus acifluorfen in soybean. Weed Technol. 1:3740.Google Scholar
21. King, R. P., Lybecker, D. W., Schweizer, E. E., and Zimdahl, R. L. 1986. Bioeconomic modeling to simulate weed control strategies for continuous corn (Zea mays). Weed Sci. 34:972979.Google Scholar
22. Kremer, R. J., and Schulte, L. K. 1989. Influence of chemical treatment and Fusarium oxysporum on velvetleaf (Abutilon theophrasti). Weed Technol. 3:369374.Google Scholar
23. Larson, L. L., and McInnis, M. L. 1989. Response of yellow starthistle (Centaurea solstitialis) and grass biomass to grass, picloram, and fertilizer combinations. Weed Technol. 3:497500.Google Scholar
24. Lotz, L.A.P., Kropff, M. J., and Groeneveld, R.M.W. 1990. Modelling weed competition and yield losses to study the effect of omission of herbicides in winter wheat. Neth. J. Agric. Sci. 38:711718.Google Scholar
25. Lybecker, D. W., King, R. P., Schweizer, E. E., and Zimdahl, R. L. 1984. Economic analysis of two weed management systems for two cropping rotations. Weed Sci. 32:9095.Google Scholar
26. Lybecker, D. W., Schweizer, E. E., and King, R. P. 1988. Economic analysis of four weed management systems. Weed Sci. 36:846–349.Google Scholar
27. Moomaw, R. S., and Martin, A. R. 1984. Cultural practices affecting season-long weed control in irrigated corn (Zea mays). Weed Sci. 32: 460467.Google Scholar
28. Palti, J., and Ausher, R. 1986. Advisory Work in Crop Pest and Disease Management. Springer-Verlag, Berlin and Heidelburg. 284 p.Google Scholar
29. Perkins, J. H. 1982. Insects, Experts, and the Insecticide Crisis. Plenum Press, New York. 304 p.Google Scholar
30. Rejmanek, M., Robinson, G. R., and Rejmankova, E. 1989. Weed-crop competition: Experimental designs and models for data analysis. Weed Sci. 37:276284.Google Scholar
31. Reyes, C. C., and Zimdahl, R. L. 1989. Mathematical description of trifluralin degradation in soil. Weed Sci. 37:604608.Google Scholar
32. Roush, M. L., Radosevich, S. R., and Maxwell, B. D. 1990. Future outlook for herbicide resistance research. Weed Technol. 4:206214.Google Scholar
33. Roush, M. L., Radosevich, S. R., Wagner, R. G., Maxwell, B. D., and Peterson, T. D. 1989. A comparison of methods for measuring effects of density and proportion in plant competition experiments. Weed Sci. 37: 268275.Google Scholar
34. Schreiber, M. M. 1982. Modeling the biology of weeds for integrated pest management. Weed Sci. (Suppl.) 30:1316.Google Scholar
35. Schreiber, M. M., Abrey, T. S., and Foster, J. E. 1987. Integrated pest management systems. A research approach. Agric. Exp. Stn. Res. Bull. 985, Purdue Univ., West Lafayette, IN. 31 p.Google Scholar
36. Schweizer, E. E., Lybecker, D. W., and Zimdahl, R. L. 1988. Systems approach to weed management in irrigated crops. Weed Sci. 36: 840–345.Google Scholar
37. Schweizer, E. E., and Zimdahl, R. L. 1984. Weed seed decline in irrigated soil after rotation of crops and herbicides. Weed Sci. 32: 8489.Google Scholar
38. Schweizer, E. E., and Zimdahl, R. L. 1984. Weed seed decline in irrigated soil after six years of continuous corn (Zea mays) and herbicides. Weed Sci. 32:7683.Google Scholar
39. Schweizer, E. E., Zimdahl, R. L., and Mickelson, R. H. 1989. Weed control in corn (Zea mays) as affected by till-plant systems and herbicides. Weed Technol. 3:162165.Google Scholar
40. Scifres, C. J. 1987. Economic assessment of tebuthiuron-fire systems for brush management. Weed Technol. 1:2228.Google Scholar
41. Shaw, W. C. 1982. Integrated weed management systems technology for pest management. Weed Sci. (Suppl.)30:212.Google Scholar
42. Smith, R. J. Jr. 1989. Cropping and herbicide systems for red ric (Oryza sativa) control. Weed Technol. 3:414419.Google Scholar
43. Snipes, C. E., Walker, R. H., Whitwell, T., Buchanan, G. A., McGuire, J. A., and Martin, N. R. 1984. Efficacy and economics of weed control methods in cotton (Gossypium hirsutum). Weed Sci. 32:95100.Google Scholar
44. Walker, R. H., and Buchanan, G. A. 1982. Crop manipulation in integrated weed management systems. Weed Sci. (Suppl.)30:1724.Google Scholar
45. Warnes, D. D., and Andersen, R. N. 1984. Decline of wild mustar (Brassica kaber) seeds in soil under various cultural and chemical practices. Weed Sci. 32:214217.Google Scholar
46. Wheat Pest Management. A Guide to Profitable and Environmentally Sound Production. U.S. Dep. Agric. Ext. Serv., The Wheat Industry Resource Comm., and The Natl. Assoc. of Wheat Growers Foundation, p. 59.Google Scholar
47. Young, A. L. 1987. Minimizing the risk associated with pesticide use: An overview. p. 111 in Ragsdale, N. N. and Kuhr, R. J., eds. ACS Symp. Ser. 336. Pesticides Minimizing the Risks. Am. Chem. Soc., Washington, DC.Google Scholar