Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-18T01:55:27.389Z Has data issue: false hasContentIssue false

Molecular basis of resistance to bensulfuron-methyl and cross-resistance patterns to ALS-inhibiting herbicides in Ludwigia prostrata

Published online by Cambridge University Press:  21 June 2021

Wei Deng
Affiliation:
Leuturer, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
Mengting Yang
Affiliation:
Graduate Student, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
Zhiwen Duan
Affiliation:
Graduate Student, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
Cheng Peng
Affiliation:
Graduate Student, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
Zhiming Xia
Affiliation:
Graduate Student, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
Shuzhong Yuan*
Affiliation:
Professor, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
*
Author for correspondence: Shuzhong Yuan, College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou22509, China. (Email: yuansz10201@163.com)

Abstract

Ludwigia prostrata is a problematic weed in rice fields in China, where acetolactate synthase (ALS)-inhibiting herbicides (e.g., bensulfuron-methyl) are widely used for the management of broadleaf weeds. Recently, an L. prostrata biotype (JS-R) that failed to be controlled with ALS-inhibiting herbicides was found in Jiangsu Province, China. This study aims to determine the level and molecular mechanism of resistance to bensulfuron-methyl in this JS-R biotype and to evaluate its spectrum of cross-resistance to other ALS-inhibiting herbicides. The dose–response assays indicated that the JS-R L. prostrata biotype had evolved 21.2-fold resistance to bensulfuron-methyl compared with the susceptible biotype (JS-S). ALS gene sequencing revealed that a nucleotide mutation (CCA to TCA) at codon 197, resulting in a Pro-197-Ser mutation, was detected in the resistant plants. Moreover, while the JS-R biotype contained the Pro-197-Ser resistance mutation and showed cross-resistance to pyrazosulfuron-ethyl (12.0-fold), it was sensitive to penoxsulam, bispyribac-sodium, and imazethapyr, which may serve as alternative herbicides to control the resistant L. prostrata biotype. This is the first confirmation of an L. prostrata biotype resistant to bensulfuron-methyl due to a Pro-197-Ser resistance mutation in the ALS gene.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of the Weed Science Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: R. Joseph Wuerffel, Syngenta

References

Beckie, HJ (2006) Herbicide-resistant weeds: management tactics and practices. Weed Technol 20:793814 10.1614/WT-05-084R1.1CrossRefGoogle Scholar
Costa, LO, Cechin, J, Rizzardi, MA, Martin, SL, Sauder, CA, Adegas, FS, Grando, MF (2021) Target-site resistance and cross-resistance to ALS-inhibiting herbicides in radish and wild radish biotypes from Brazil. Agron J 113:236249 10.1002/agj2.20500CrossRefGoogle Scholar
Cui, HL, Li, XJ, Wang, GQ, Wang, JP, Wei, SH, Cao, HY (2012) Acetolactate synthase proline (197) mutations confer tribenuron-methyl resistance in Capsella bursa-pastoris populations from China. Pestic Biochem Physiol 102:229232 10.1016/j.pestbp.2012.01.007CrossRefGoogle Scholar
Cui, HL, Zhang, CX, Wei, SH, Zhang, HJ, Li, XJ, Zhang, YQ, Wang, GQ (2011) Acetolactate synthase gene proline (197) mutations confer tribenuronmethyl resistance in flixweed (Descurainia sophia) populations from China. Weed Sci 59:376379 10.1614/WS-D-10-00099.1CrossRefGoogle Scholar
Délye, C (2013) Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Manag Sci 69:176187 10.1002/ps.3318CrossRefGoogle Scholar
Délye, C, Jasieniuk, M, Le Corre, V (2013) Deciphering the evolution of herbicide resistance in weeds. Trends Genet 29:649658 10.1016/j.tig.2013.06.001CrossRefGoogle ScholarPubMed
Deng, W, Cao, Y, Yang, Q, Liu, M J, Mei, Y, Zheng, MQ (2014) Different cross-resistance patterns to AHAS herbicides of two tribenuron-methyl resistant flixweed (Descurainia sophia L.) biotypes in China. Pestic Biochem Physiol 112:2632 10.1016/j.pestbp.2014.05.003CrossRefGoogle Scholar
Deng, W, Di, YJ, Cai, JX, Chen, YY, Yuan, SZ (2019) Target-site resistance mechanisms to tribenuron-methyl and cross-resistance patterns to ALS-inhibiting herbicides of catchweed bedstraw (Galium aparine) with different ALS mutations. Weed Sci 67:183188 10.1017/wsc.2018.70CrossRefGoogle Scholar
Deng, W, Liu, MJ, Yang, Q, Mei, Y, Li, XF, Zheng, MQ (2015) Tribenuron-methyl resistance and mutation diversity of Pro197 in flixweed (Descurainia sophia L.) accessions from China. Pestic Biochem Physiol 117:6874 10.1016/j.pestbp.2014.10.012CrossRefGoogle Scholar
Deng, W, Yang, Q, Jiao, HT, Zhang, YZ, Li, XF, Zheng, MQ (2016) Cross-resistance pattern to four AHAS-inhibiting herbicides of tribenuron-methyl-resistant flixweed (Descurainia sophia) conferred by Asp-376-Glu mutation in AHAS. J Integr Agric 15:25632570 10.1016/S2095-3119(16)61432-6CrossRefGoogle Scholar
Duggleby, RG, Pang, SS (2020) Acetohydroxyacid synthase. J Biochem Mol Biol 33:136 Google Scholar
Gould, F, Brown, ZS, Kuzma, J (2018) Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? Science 360:728732 10.1126/science.aar3780CrossRefGoogle ScholarPubMed
Heap, IM (2021) The International Herbicide-Resistant Weed Database. http://www.weedscience.org. Accessed: February 20, 2021Google Scholar
Li, D, Li, XJ, Yu, HL, Wang, JJ, Cui, HL (2017) Cross-resistance of eclipta (Eclipta prostrata) in China to ALS inhibitors due to a Pro-197-Ser point mutation. Weed Sci 65:547556 10.1017/wsc.2017.16CrossRefGoogle Scholar
Liu, W, Bai, S, Zhao, N, Jia, S, Li, W, Zhang, L, Wang, J (2018) Non-target site-based resistance to tribenuron-methyl and essential involved genes in Myosoton aquaticum (L.). BMC Plant Biol 18:225238 10.1186/s12870-018-1451-xCrossRefGoogle Scholar
Liu, W, Bi, Y, Li, L, Yuan, G, Du, L, Wang, J (2013) Target-site basis for resistance to acetolactate synthase inhibitor in water chickweed (Myosoton aquaticum L.). Pestic Biochem Physiol 107:5054 10.1016/j.pestbp.2013.05.003CrossRefGoogle ScholarPubMed
Liu, W, Wu, C, Guo, W, Du, L, Yuan, G, Wang, J (2015) Resistance mechanisms to an acetolactate synthase (ALS) inhibitor in water starwort (Myosoton aquaticum) populations from China. Weed Sci 63:770780 10.1614/WS-D-14-00184.1CrossRefGoogle Scholar
Lu, Z, Zhang, C, Fu, J, Li, M, Li, G (2009) Molecular basis of resistance to bensulfuron-methyl in Monochoria korsakowii . Scientia Agricultura Sinica 42:35163521. ChineseGoogle Scholar
Mei, Y, Si, C, Liu, M, Qiu, L, Zheng, M (2017) Investigation of resistance levels and mechanisms to nicosulfuron conferred by non-target-site mechanisms in large crabgrass (Digitaria sanguinalis L.) from China. Pestic Biochem Physiol 141:8489 10.1016/j.pestbp.2016.12.002CrossRefGoogle ScholarPubMed
Pandian, BA, Friesen, A, Laforest, M, Peterson, DE, Prasad, PV, Jugulam, M (2020) Confirmation and characterization of the first case of acetolactate synthase (ALS)-inhibitor-resistant wild buckwheat (Polygonum convolvulus L.) in the United States. Agronomy 10:1496 10.3390/agronomy10101496CrossRefGoogle Scholar
Powles, SB, Yu, Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317347 10.1146/annurev-arplant-042809-112119CrossRefGoogle ScholarPubMed
Rey-Caballero, J, Menéndez, J, Osuna, MD, Salas, M, Torra, J (2017) Target-site and non-target-site resistance mechanisms to ALS inhibiting herbicides in Papaver rhoeas . Pestic Biochem Physiol 138:5765 10.1016/j.pestbp.2017.03.001CrossRefGoogle ScholarPubMed
Seefeldt, SS, Jensen, JE, Fuerst, EP (1995) Log-logistic analysis of herbicide dose response relationships. Weed Technol 9:218227 10.1017/S0890037X00023253CrossRefGoogle Scholar
Sen, MK, Hamouzová, K, Mikulka, J, Bharati, R, Košnarová, P, Hamouz, P, Royc, A, Soukupa, J (2021) Enhanced metabolism and target gene overexpression confer resistance against acetolactate synthase-inhibiting herbicides in Bromus sterilis . Pest Manag Sci, 77:21222128 10.1002/ps.6241CrossRefGoogle ScholarPubMed
Tian, Z, Yuan, G, Shen, G (2020) Biological activity of 11 rice field herbicides against Ludwigia prostrata . Plant Protect 46:248251. ChineseGoogle Scholar
Tranel, PJ, Wright, TR, Heap, IM (2021) Mutations in herbicide-resistant weeds to ALS inhibitors. http://www.weedscience.org. Accessed: February 20, 2021Google Scholar
Wang, JJ, Chen, JC, Li, XJ, Li, D, Li, Z, Cui, HL (2020) Pro-197-Ser mutation in ALS and high-level GST activities: multiple resistance to ALS and ACCase inhibitors in Beckmannia syzigachne . Front Plant Sci 11:572610 10.3389/fpls.2020.572610CrossRefGoogle ScholarPubMed
Wang, JJ, Li, XJ, Li, D, Han, YJ, Li, Z, Yu, HL, Cui, HL (2018) Non-target-site and target-site resistance to AHAS inhibitors in American sloughgrass (Beckmannia syzigachne). J Integr Agr 17:27142723 10.1016/S2095-3119(18)62021-0CrossRefGoogle Scholar
Wang, Q, Ge, L, Zhao, N, Zhang, L, You, L, Wang, D, Liu, W, Wang, J (2019) A Trp-574-Leu mutation in the acetolactate synthase (ALS) gene of Lithospermum arvense L. confers broad-spectrum resistance to ALS inhibitors. Pestic Biochem Physiol 158:1217 10.1016/j.pestbp.2019.04.001CrossRefGoogle ScholarPubMed
Wei, S, Li, P, Ji, M, Dong, Q, Wang, H (2015) Target-site resistance to bensulfuron-methyl in Sagittaria trifolia L. populations. Pestic Biochem Physiol 124:8185 10.1016/j.pestbp.2015.05.001CrossRefGoogle ScholarPubMed
Yang, Q, Deng, W, Li, X, Yu, Q, Bai, L, Zheng, M (2016) Target-site and non-target-site based resistance to the herbicide tribenuron-methyl in flixweed (Descurainia sophia L.). BMC Genomics 17:551563 10.1186/s12864-016-2915-8CrossRefGoogle Scholar
Yang, Q, Li, J, Shen, J, Xu, Y, Liu, H, Deng, W, Li, X, Zheng, M (2018) Metabolic resistance to acetolactate synthase inhibiting herbicide tribenuron-methyl in Descurainia sophia L. mediated by cytochrome P450 enzymes. J Agric Food Chem 66:43194327 10.1021/acs.jafc.7b05825CrossRefGoogle Scholar
Yu, JL, McCullough, PK, McElroy, JS, Jespersen, D, Shilling, DG (2020) Gene expression and target-site mutations are associated with resistance to ALS inhibitors in annual sedge (Cyperus compressus) biotypes from Georgia. Weed Sci 68:460466 10.1017/wsc.2020.59CrossRefGoogle Scholar
Yu, Q, Han, H, Vila-Aiub, MM, Powles, SB (2010) AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. Weed Sci 61:39253934 Google ScholarPubMed
Yu, Q, Powles, SB (2014) Resistance to AHAS inhibitor herbicides: current understanding. Pest Manag Sci 70:13401350 10.1002/ps.3710CrossRefGoogle ScholarPubMed
Yu, Q, Zhang, XQ, Hashem, A, Walsh Michael, J, Powles, SB (2003) ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum) populations. Weed Sci 51:831838 10.1614/02-166CrossRefGoogle Scholar
Yuan, JS, Tranel, PJ, Stewart, CN (2007) Non-target-site herbicide resistance: a family business. Trends Plant Sci 12:613 10.1016/j.tplants.2006.11.001CrossRefGoogle ScholarPubMed
Zhang, J, Liu, B, Cai, X, Zhou, W, Wang, H, Lu, Q, Zhou, G, Liu, Y, Liang, W, Wang, S, Zhu, J (2020) Resistance and its resistant molecular mechanism of Ammannia arenaria to ALS inhibiting herbicides. Chinese J Pestic Sci 22:6067. ChineseGoogle Scholar
Zhang, L, Guo, W, Li, Q, Wu, C, Zhao, N, Liu, W, Wang, J (2020) Tribenuron-methyl resistance and mutation diversity of the AHAS gene in shepherd’s purse (Capsella bursa-pastoris (L.) Medik.) in Henan Province, China. Pestic Biochem Physiol 143:239245 10.1016/j.pestbp.2017.05.007CrossRefGoogle Scholar
Zhao, B, Fu, D, Yu, Y, Huang, C, Yan, K, Li, P, Shafi, J, Zhu, H, Wei, S, Ji, M (2017) Non-target-site resistance to ALS-inhibiting herbicides in a Sagittaria trifolia L. population. Pestic Biochem Physiol 140:7984 10.1016/j.pestbp.2017.06.008CrossRefGoogle Scholar