Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T14:13:37.541Z Has data issue: false hasContentIssue false

Sprayer Setup Affects Dislodgeable 2,4-D Foliar Residue in Hybrid Bermudagrass Athletic Fields

Published online by Cambridge University Press:  15 March 2017

Matthew D. Jeffries*
Affiliation:
Graduate Research Technician and Assistant Professor, Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695;
Travis W. Gannon
Affiliation:
Graduate Research Technician and Assistant Professor, Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695;
James T. Brosnan
Affiliation:
Associate Professor and Extension Specialist, Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996
Gregory K. Breeden
Affiliation:
Associate Professor and Extension Specialist, Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996
*
*Corresponding author’s E-mail: mdjeffri@ncsu.edu

Abstract

2,4-dimethylamine salt (2,4-D) is a selective broadleaf herbicide commonly applied to turfgrass systems, including athletic fields, which can dislodge from treated vegetation. Building on previous research confirming 2,4-D dislodgeability is affected by management inputs, field research was initiated in 2014 and 2015 in North Carolina and Tennessee to quantify the effects of sprayer setup on dislodgeable 2,4-D foliar residue from hybrid bermudagrass, which is the most common athletic field playing surface in subtropical and tropical climates. More specifically, research evaluated dislodgeable 2,4-D foliar residue following spray applications (2.1 kg ae ha−1) at varying carrier volumes (187, 374, or 748 L ha−1) and nozzles delivering varying droplet sizes (fine=extended range [XR], coarse=drift guard, or extra coarse=air induction extended range [AIXR]). Overall, data suggest minimal 2,4-D dislodge occurs via soccer ball roll (3.6 m) outside the day of application; however, increasing carrier volume and droplet size can further decrease dislodgeable 2,4-D foliar residue. At 2 d after treatment (DAT), 3.87% of applied 2,4-D dislodged when applied at 187 L ha−1 compared to 2.05% at 748 L ha−1. Pooled over data from 1 to 6 DAT, 1.59% of applied 2,4-D dislodged following XR nozzle application compared to 1.13% with AIXR nozzle. While these are small numerical differences, dislodgeable residue was measured via one soccer ball roll, which is a repeated process within the sport and the additive effect of sprayer setup treatments can be employed by turfgrass managers to reduce potential human 2,4-D human exposure.

Sal 2,4-dimethylamine (2,4-D) es un herbicida selectivo para el control de malezas de hoja ancha que es comúnmente aplicado en sistemas de céspedes, incluyendo campos deportivos, y que puede desprenderse de la vegetación tratada. Con base en investigaciones anteriores que confirmaron que la capacidad de desprendimiento del 2,4-D es afectada por los insumos para el manejo, se realizó una investigación en 2014 y 2015 en North Carolina y Tennessee para cuantificar los efectos de las condiciones de aplicación sobre los residuos foliares de 2,4-D que se pueden desprender del césped bermuda híbrido, el cual es la superficie más común en campos deportivos en climas tropicales y subtropicales. Más específicamente, la investigación evaluó los residuos foliares desprendibles de 2,4-D después de aplicaciones (2.1 kg ae ha−1) con volúmenes variables de aplicación (187, 374, ó 748 L ha−1) y boquillas de aspersión con tamaño de gota variable (fino=rango extendido [XR], grande=anti-deriva, o extra grande=rango extendido inducido con aire [AIXR]). En general, los datos sugieren que un desprendimiento mínimo de 2,4-D ocurre al rodar un balón de fútbol (3.6 m) después del día de aplicación. Sin embargo, al incrementar el volumen de aplicación y el tamaño de gota se pueden disminuir los residuos desprendibles de 2,4-D aún más. A 2 d después del tratamiento (DAT), 3.87% del 2,4-D aplicado se desprendió cuando se aplicaron 187 L ha−1 al compararse con 2.05% con 748 L ha−1. Al promediar todos los datos de 1 a 6 DAT, 1.59% del 2,4-D aplicado se desprendió después de la aplicación con la boquilla XR al compararse con 1.13% con la boquilla AIXR. Aunque estas son diferencias numéricas pequeñas, los residuos desprendibles fueron medidos al rodar una balón de fútbol, el cual es un proceso repetitivo en este deporte y el efecto aditivo de los tratamientos de aplicación pueden ser empleados por profesionales responsables del manejo de céspedes para reducir el potencial de exposición humana a 2,4-D.

Type
Weed Management-Other Crops/Areas
Copyright
© Weed Science Society of America, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Ramon G. Leon, University of Florida

References

Literature Cited

Anonymous (2014) Amine 400 2,4-D Weed KillerTM herbicide product label. PBI-Gordon Publication No. AP050514. Kansas City, MO: PBI-Gordon Corp. 5 pGoogle Scholar
Bus, JS, Hammond, LE (2007) Regulatory progress, toxicology, and public concerns with 2,4-D: where do we stand after two decades? Crop Prot 26:266269 Google Scholar
Carmer, SG, Nyquist, WE, Walker, WM (1989) Least significant differences for combined analysis of experiments with two or three factor treatment designs. Agron J 81:665672 Google Scholar
Decagon Devices (2016) Dielectric Leaf Wetness Sensor Operator’s Manual. http://manuals.decagon.com/Manuals/10386_Leaf%20Wetness%20Sensor_Web.pdf. Accessed June 3, 2016Google Scholar
[DHHS] Department of Health and Human Service, Centers for Disease Control & Prevention (2005) Third National Report on Human Exposure to Environmental Chemicals. Atlanta, GA: National Center for Environmental Health Pub. No. 050570 Google Scholar
[EC] European Commission, Health and Consumer Protection Directorate (2001) Review Report for the Active Substance 2,4-D. http://ec.europa.eu/food/plant/protection/evaluation/existactive/list1_2-4-d_en.pdf. Accessed July 27, 2016Google Scholar
Ferguson, JC, Chechetto, RG, Hewitt, AJ, Chauhan, BS, Adkins, SW, Kruker, GR, O’Donnell, CC (2016) Assessing the deposition and canopy penetration of nozzles with different spray qualities in an oat (Avena sativa L.) canopy. Crop Prot 81:1419 Google Scholar
Garabrant, DH, Philbert, MA (2002) Review of 2,4-dichlorophenoxyacetic acid (2,4-D) epidemiology and toxicology. Crit Rev Toxicol 32:233257 Google Scholar
Harris, SA, Solomon, KR (1992) Human exposure to 2,4-D following controlled activities on recently sprayed turf. J Environ Sci Health B 27:922 Google Scholar
Hubal, EAC, Sheldon, LS, Burke, JM, McCurdy, TR, Berry, MR, Rigas, ML, Zartarian, VG, Freeman, NCG (2000) Children’s exposure assessment: a review of factor’s influencing children’s exposure, and the data available to characterize and assess that exposure. Environ Health Persp 108:475486 Google Scholar
Jeffries, MD, Gannon, TW, Brosnan, JT, Ahmed, KA, Breeden, GK (2016) Factors influencing dislodgeable 2,4-D plant residue from hybrid bermudagrass (Cynodon dactylon L.xC. transvaalensis) athletic fields. PLoS One 10.1371/journal.pone.0148992 Google Scholar
Junge, A, Dvorak, J, Graf-Baumann, T (2004) Football injuries during the World Cup 2002. Am J Sports Med 32:2327 Google Scholar
Kennelly, MM, Wolf, RE (2009) Effect of nozzle type and water volume on dollar spot control in greens-height creeping bentgrass. App Turf Sci 10.1094/ATS-2009-0921-01-RS Google Scholar
Knoche, M (1994) Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Prot 13:163178 Google Scholar
Knoche, M, Bukovac, MJ (1999) Spray application factors and plant growth regulator performance: II. Foliar uptake of gibberelic acid and 2,4-D. Pestic Sci 55:166174 Google Scholar
Kruit, RJW, Jacobs, AFG, Holstag, AAM (2008) Measurements and estimates of leaf wetness over agricultural grassland for dry deposition modeling of trace gases. Atmos Environ 42:53045316 CrossRefGoogle Scholar
Lawrence, MG (2005) The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications. Bull Amer Meteor Soc 86:225233 Google Scholar
Lutgens, FK, Tarbuck, EJ, Tasa, D (2007) The Atmosphere: An Introduction to Meteorology (10th edn, Upper Saddle, NJ: Pearson Prentice Hall. Pp. 110126 Google Scholar
Morgan, MK, Sheldon, LS, Thomas, KW, Egeghy, PP, Crogan, CW, Jones, PA, Chuang, JC, Wilson, NK (2008) Adult and children’s exposure to 2,4-D from multiple sources and pathways. J Expos Sci Environ Epidemiol 18:486494 Google Scholar
[NTEP] National Turfgrass Evaluation Program (2003) The National Turfgrass Research Initiative. http://www.turfresearch.org/pdf/turfinitiative.pdf. Accessed July 27, 2016Google Scholar
Nishioka, M, Lewis, R, Brinkman, M, Burkholder, H, Hines, C, Menkedick, J (2001) Distribution of 2,4-D in air and on surfaces inside residences after lawn applications: comparing exposure estimates from various media for young children. Environ Health Perspect 109:11851191 Google Scholar
Patton, A, Weisenberger, D (2012) Do granular herbicide applications effectively control broadleaf weeds in turf? Pages 22–25 in 2011 Annual Report - Purdue University Turfgrass Science Program. West Lafayette, IN: Purdue UniversityGoogle Scholar
Peterson, MA, McMaster, SA, Riechers, DE, Skelton, J, Stahlman, PW (2016) 2,4-D past, present, and future. Weed Technol 30:303345 Google Scholar
Puhalla, J, Krans, J, Goatley, M, eds (1999) Sports Fields: A Manual for Design, Construction, and Maintenance. Hoboken, NJ: John Wiley and Sons. Pp. 119188 Google Scholar
Shaner, DL, ed (2014) Herbicide Handbook. 10th ed. Lawrence, KS: Weed Science Society of America. Pp. 1619 Google Scholar
[SCONC] State Climate Office of North Carolina (2013) Summer Projects: Leaf Wetness and Its Effects. http://climate.ncsu.edu/climateblog?id=45. Accessed June 3, 2016Google Scholar
Steel, RD, Torrie, JH, Dickey, DA, eds (1997) Principles and Procedures of Statistics: A Biometrical Approach. 3rd edn. New York: WCB McGraw-Hill. Pp. 352384 Google Scholar
Steffen, K, Anderson, TE, Bahr, R (2007) Risk injury on artificial turf and natural grass in young female football players. Br J Sports Med 41:3337 Google Scholar
TeeJet (2014) TeeJet Technologies Catalog 51A: Technical Information. Wheaton, IL: Spraying Systems. 162 pGoogle Scholar
Thompson, DG, Stephenson, GR, Sears, MK (1984) Persistence, distribution and dislodgeable residue of 2,4-D following its application to turfgrass. Pestic Sci 15:353360 Google Scholar
Turgeon, AJ, ed (2008) Turfgrass Management. 8th edn. Upper Saddle River, NJ: Pearson Education, Inc. Pp. 179210 and 356 Google Scholar
[USEPA] US Environmental Protection Agency (2005) Reregistration Eligibility Decision for 2,4-D. EPA 738-R-05-002. http://www.epa.gov/pesticides/reregistration/24d/. Accessed July 27, 2016Google Scholar
[USEPA] US Environmental Protection Agency (2007) 2,4-D Chemical Summary. http://www.epa.gov/teach/chem_summ/24D_summary.pdf. Accessed July 27, 2016Google Scholar
US Youth Soccer (2013) Recommended Goal/field/ball Sizes and Match Format/duration. http://www.usyouthsoccer.org/assets/1/15/2012_Recommended_Sizes_of_Play.pdf. Accessed July 27, 2016Google Scholar
Walters, J (2004) Environmental Fate of 2,4-Dichlorophenoxyacetic Acid. California Department of Pesticide Regulation - Environmental Monitoring and Pest Management. http://www.cdpr.ca.gov/docs/emon/pubs/fatememo/24-d.pdf. Accessed July 27, 2016Google Scholar
Wolf, TM, Caldwell, BC, McIntyre, GI, Hsiao, AI (1992) Effect of droplet size and herbicide concentration on absorption and translocation of 14C-2,4-D in oriental mustard (Sisymbrium orientale). Weed Sci 40:568575 Google Scholar
Zhu, H, Dorner, JW, Rowland, DL, Derksen, RC, Ozkan, HE (2004) Spray penetration into peanut canopies with hydraulic nozzle tips. Biosyst Eng 87:275283 Google Scholar