Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-21T19:41:25.090Z Has data issue: false hasContentIssue false

Understanding the Mode of Action of the Chloroacetamide and Thiocarbamate Herbicides

Published online by Cambridge University Press:  12 June 2017

E. Patrick Fuerst*
Affiliation:
Agron. Dep., and U.S.D.A. Metab. and Radiation Res. Lab., N.D. State Univ., Fargo, ND 58105

Abstract

Chloroacetamide and thiocarbamate herbicides have many properties in common: both herbicide classes are effective only as preemergence herbicides; they inhibit early seedling growth and cause similar injury symptoms in susceptible species; they are detoxified in plants by glutathione conjugation; they have a similar spectrum of selectivity; they can be applied safely in certain susceptible grass crops when applied with antidotes; and they can inhibit the synthesis of lipids, isoprenoids, and other metabolic processes requiring coenzyme A. It can be hypothesized that these similarities are due to the ability of the chloroacetamides and the sulfoxide of thiocarbamates to bind covalently to enzymes, coenzymes, or metabolic intermediates containing sulfhydryl (-SH) groups.

Type
Feature
Copyright
Copyright © 1987 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Armstrong, T. F., Meggitt, W. F., and Penner, D. 1973. Absorption, translocation, and metabolism of alachlor by yellow nutsedge. Weed Sci. 21:357360.CrossRefGoogle Scholar
2. Ashton, F. M., DeVilliers, O. T., Glenn, R. K., and Duke, W. B. 1977. Localization of metabolic sites of action of herbicides. Pestic. Biochem. Physiol. 7:122141.CrossRefGoogle Scholar
3. Banting, J. D. 1970. Effect of diallate and triallate on wild oat and wheat cells. Weed Sci. 18:8084.Google Scholar
4. Breaux, E. J. 1986. Identification of initial metabolites of acetochlor in corn and soybean seedlings. J. Agric. Food Chem. 34:884888.Google Scholar
5. Breaux, E. J. 1987. Initial metabolism of acetochlor in tolerant and susceptible seedlings. Weed Sci. 35:463468.Google Scholar
6. Breaux, E. J., Patanella, J. E., and Sanders, E. F. 1987. Chloroacetanilide herbicide selectivity: analysis of glutathione and homoglutathione in tolerant, susceptible, and safened seedlings. J. Agric. Food Chem. 35:474478.CrossRefGoogle Scholar
7. Caldwell, J. 1984. Xenobiotic acyl-coenzymes A: critical intermediates in the biochemical pharmacology and toxicology of carboxylic acids. Biochem. Soc. Trans. 12:911.Google Scholar
8. Carringer, R. D., Rieck, C. E., and Bush, L. P. 1978. Metabolism of EPTC in corn (Zea mays). Weed Sci. 26:157171.Google Scholar
9. Carringer, R. D., Rieck, C. E., and Bush, L. P. 1978. Effect of R-25788 on EPTC metabolism in corn (Zea mays). Weed Sci. 26:167171.Google Scholar
10. Casida, J. E., Gray, R. A., and Tiles, H. 1974. Thiocarbamate sulfoxides: potent, selective, and biodegradable herbicides. Science 184:573574.Google Scholar
11. Casida, J. E., Kimmel, E. C., Ohkawa, H. O., and Ohkawa, R. 1975. Sulfoxidation of thiocarbamate herbicides and metabolism of thiocarbamate sulfoxides in living mice and liver enzyme systems. Pestic. Biochem. Physiol. 5:111.Google Scholar
12. Casida, J. E., Kimmel, E. C., Lay, M. M., Ohkawa, H., Rodebush, J. E., Gray, R. A., Tseng, C. K., and Tilles, H. 1975. Thiocarbamate sulfoxide herbicides. Environ. Qual. Saf. Suppl. III:675679.Google Scholar
13. Chandler, J. M., Basler, E., and Santelmann, P. W. 1974. Uptake and translocation of alachlor in soybean and wheat. Weed Sci. 22:253258.Google Scholar
14. Chang, S. S., Ashton, F. M., and Bayer, D. E. 1985. Butachlor influence on selected metabolic processes of plant cells and tissues. J. Plant Growth Regul. 4:19.CrossRefGoogle Scholar
15. Chem, T. M., Seaman, D. E., and Ashton, F. M. 1968. Herbicidal action of molinate in barnyardgrass and rice. Weed Sci. 16:2831.Google Scholar
16. Dawson, J. H. 1963. Development of barnyardgrass seedlings and their response to EPTC. Weeds 11:6066.Google Scholar
17. Deal, L. M. and Hess, F. D. 1980. An analysis of the growth inhibitory characteristics of alachlor and metolachlor. Weed Sci. 28:168175.Google Scholar
18. Deal, L. M., Reeves, J. T., Larkins, B. A., and Hess, F. D. 1980. Use of an in vitro protein synthesizing system to test the mode of action of chloroacetamides. Weed Sci. 28:334340.Google Scholar
19. Dhillon, N. S., and Anderson, J. L. 1972. Morphological, anatomical and biochemical effects of propachlor on seedling growth. Weed Res. 12:182189.CrossRefGoogle Scholar
20. Dixon, G. A., and Stoller, E. W. 1982. Differential toxicity, absorption, translocation, and metabolism of metolachlor in corn (Zea mays) and yellow nutsedge (Cyperus esculentus). Weed Sci. 30:225230.Google Scholar
21. Donald, W. W., Fawcett, R. S., and Harvey, R. G. 1979. EPTC effects on corn (Zea mays) growth and endogenous gibberellins. Weed Sci. 27:122127.Google Scholar
22. Duke, W. B., Slife, F. W., Hanson, J. B., and Butler, H. S. 1975. An investigation on the mechanism of action of propachlor. Weed Sci. 23:142147.Google Scholar
23. Ebert, E. 1982. The role of waxes in the uptake of metolachlor into sorghum in relation to the protectant CGA-43089. Weed Res. 22:305311.Google Scholar
24. Ebert, E. 1980. Herbicidal effects of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2- methoxy-1-methylethyl)acetamide] at the cellular level in sorghum. Pestic. Biochem. Physiol. 13:227236.Google Scholar
25. Fuerst, E. P., and Gronwald, J. W. 1986. Induction of rapid metabolism of metolachlor in sorghum (Sorghum bicolor) shoots by CGA-92194 and other antidotes. Weed Sci. 34:354361.CrossRefGoogle Scholar
26. Gentner, W. A. 1966. The influence of EPTC on external foliage wax deposition. Weed Sci. 14:2730.Google Scholar
27. Gray, R. A., and Joo, G. K. 1978. Site of uptake and action of thiocarbamate herbicides and herbicide antidotes in corn seedlings. Pages 6784 in Pallos, F. M. and Casida, J. E., eds. Chemistry and Action of Herbicide Antidotes. Academic Press, New York.CrossRefGoogle Scholar
28. Gronwald, J. W., Fuerst, E. P., Eberlein, C. V., and Egli, M. A. 1987. Effect of herbicide antidotes on glutathione content and glutathione S-transferase activity of sorghum shoots. Pestic. Biochem. Physiol. 29:6676.CrossRefGoogle Scholar
29. Hamm, P. C. 1972. Some unique biological activity-structure relationships of the acylated anilides of the alachlor type. Pages 4164 in Tahori, A. C., ed. Herbicides, Fungicides, Formulation Chemistry, Proc. 2nd Int. Cong. Pestic. Chem. (IUPAC), Vol. V. Gordon and Breach, New York.Google Scholar
30. Hatzios, K. K. 1984. Herbicide antidotes: development, chemistry, and mode of action. Adv. Agroa 36:265316.Google Scholar
31. Hess, F. D. 1982. Determining causes and categorizing types of growth inhibition induced by herbicides. Pages 207230 in Moreland, D. E., St. John, J. B., and Hess, F. D., eds. Biochemical Responses Induced by Herbicides. Am. Chem. Soc., Washington, DC.Google Scholar
32. Hubbell, J. P., and Casida, J. E. 1977. Metabolic fate of the N,N-dialkylcarbamoyl moiety of thiocarbamate herbicides in rats and corn. J. Agric. Food Chem. 25:404413.Google Scholar
33. Jaworski, E. G. 1969. Analysis of the mode of action of herbicidal α-chloroacetamides. J. Agric. Food Chem. 17:165170.Google Scholar
34. Jaworski, E. G. 1956. Biochemical action of CDAA, a new herbicide. Science 123:847848.Google Scholar
35. Karunen, P., and Wilkinson, R. E. 1975. Influence of S-ethyl dipropylthiocarbamate (EPTC) on wheat root phospholipid fatty acid composition. Physiol. Plant 35:228231.Google Scholar
36. Ketchersid, M. L., Norton, K., and Merkle, M. G. 1981. Influence of soil moisture on the safening effect of CGA-43089 in grain sorghum (Sorghum bicolor). Weed Sci. 29:281287.Google Scholar
37. Knake, E. L., and Wax, L. M. 1968. The importance of the shoot of giant foxtail for uptake of preemergence herbicides. Weed Sci. 16:393395.CrossRefGoogle Scholar
38. Kolattukudy, P. E., and Brown, L. 1974. Inhibition of cuticular lipid biosynthesis in Pisum sativum by thiocarbamates. Plant Physiol. 53:903906.CrossRefGoogle ScholarPubMed
39. Lamoureux, G. L., and Frear, D. S. 1979. Pesticide metabolism in higher plants: In vitro enzyme studies. Pages 77128 in Paulson, G. D., Frear, D. S., and Marks, E. P., eds. Xenobiotic Metabolism: In Vitro Methods. Am. Chem. Soc. Symposium Series 97, Washington, DC.Google Scholar
40. Lamoureux, G. L., and Rusness, D. G. 1983. Malonylcysteine conjugates as end-products of glutathione metabolism in plants. Pages 295300 in Miyamoto, J. et al., ed. IUPAC Pesticide Chemistry: Human Welfare and the Environment. Pergamon Press, New York.Google Scholar
41. Lamoureux, G. L., and Rusness, D. G. 1987. EPTC metabolism in corn, cotton, and soybean: identification of a novel metabolite derived from the metabolism of a glutathione conjugate. J. Agric. Food Chem. 35:17.CrossRefGoogle Scholar
42. Lamoureux, G. L., Stafford, L. E., and Tanaka, F. S. 1971. Metabolism of 2-chloro-N-isopropylacetanilide (propachlor) in the leaves of corn, sorghum, sugarcane, and barley. J. Agric. Food Chem. 19:346350.Google Scholar
43. Lay, M. M., and Casida, J. E. 1976. Dichloroacetamide antidotes enhance thiocarbamate sulfoxide detoxification by elevating corn root glutathione content and glutathione S-transferase activity. Pestic. Biochem. Physiol. 6:442456.CrossRefGoogle Scholar
44. Lay, M. M., and Casida, J. E. 1978. Involvement of glutathione and glutathione S-transferases in the action of dichloroacetamide antidotes for thiocarbamate herbicides. Pages 151160 in Pallos, F. M. and Casida, J. E., eds. Chemistry and Action of Herbicide Antidotes. Academic Press, New York.Google Scholar
45. Lay, M. M., Hubbell, J. P., and Casida, J. E. 1975. Dichloroacetamide antidotes for thiocarbamate herbicides: mode of action. Science 189:287288.Google Scholar
46. Leavitt, J.R.C., and Penner, D. 1979. In vitro conjugation of glutathione and other thiols with acetanilide herbicides and EPTC sulfoxide and the action of the herbicide antidote R-25788. J. Agric. Food Chem. 27:533536.Google Scholar
47. Mann, J. D., and Pu, M. 1968. Inhibition of lipid synthesis by certain herbicides. Weed Sci. 16:197198.CrossRefGoogle Scholar
48. Mann, J. D., Jordan, L. S., and Day, B. E. 1965. A survey of herbicides for their effect upon protein synthesis. Plant Physiol. 40:840843.Google Scholar
49. Marsh, H. V., Bates, J., and Trudeau, P. 1975. Studies on the biochemical action of alachlor. Abstr. Weed Sci. Soc. Am. 15:67.Google Scholar
50. Molin, W. T., Anderson, E. J., and Porter, C. A. 1986. Effect of alachlor on anthocyanin and lignin synthesis in etiolated sorghum [Sorghum bicolor (L.) Moench.] mesocotyls. Pestic. Biochem. Physiol. 25:105111.Google Scholar
51. Molin, W. T., Naylor, K. M., Chupp, J. P., and Porter, C. A. 1987. Differential inhibition of anthocyanin synthesis in sorghum by alpha-haloacetanilides. Abstr. Weed Sci. Soc. Am. 27:6263.Google Scholar
52. Moreland, D. E., Malhotra, S. S., Gruenhagen, R. D., and Shokrah, E. H. 1969. Effects of herbicides on RNA and protein syntheses. Weed Sci. 17:556563.Google Scholar
53. Mozer, T. J., Tiemeier, D. C., and Jaworski, E. G. 1983. Purification and characterization of corn glutathione S-transferase. Biochemistry 22.10681072.CrossRefGoogle ScholarPubMed
54. Nalewaja, J. D. 1968. Uptake and translocation of diallate in wheat, barley, flax, and wild oat. Weed Sci. 16:309312.CrossRefGoogle Scholar
55. Nalewaja, J. D., Behrens, R., and Schmid, A. R. 1964. Uptake, translocation, and fate of EPTC-C14 in alfalfa. Weeds 12:269272.Google Scholar
56. Narasaiah, D. B., and Harvey, R. G. 1977. Alachlor placement in the soil as related to the phytotoxicity to maize (Zea mays L.) seedlings. Weed Res. 17:163168.CrossRefGoogle Scholar
57. Oliver, L. R. Prendeville, G. N., and Schreiber, M. M. 1968. Species differences in site of root uptake and tolerance to EPTC. Weed Sci. 16:534537.Google Scholar
58. Parker, C. 1963. Factors affecting the selectivity of 2,3-dichloroallyldiisopropylthiocarbamate (diallate) against Avena spp. in wheat and barley. Weed Res. 3:259276.CrossRefGoogle Scholar
59. Prendeville, G. N. 1968. Shoot zone uptake of soil-applied herbicides. Weed Res. 8:106114.Google Scholar
60. Shimabukuro, R. H. 1985. Detoxication of herbicides. Pages 215240 in Duke, S. O., ed. Weed Physiology, Vol. II, Herbicide Physiology. CRC Press Inc., Boca Raton, FL.Google Scholar
61. Stephenson, G. R., Bunce, N. J., Makowski, R. I., Bergsma, M. D., and Curry, J. C. 1979. Structure-activity relationships for antidotes to thiocarbamate herbicides in corn. J. Agric. Food Chem. 27:543547.Google Scholar
62. Stephenson, G. R., Bunce, N. J., Makowski, R. I., and Curry, J. C. 1978. Structure-activity relationships for S-ethyl N,N-dipropylthiocarbamate (EPTC) antidotes in corn. J. Agric. Food Chem. 26:137140.Google Scholar
63. Still, G. G., Davis, D. G., and Zander, G. L. 1970. Plant epicuticular lipids: alteration by herbicidal carbamates. Plant Physiol. 46:307314.CrossRefGoogle ScholarPubMed
64. Wilkinson, R. E. 1978. Physiological response of lipid components to thiocarbamates and antidotes. Pages 85108 in Pallos, F. M. and Casida, J. E., eds. Chemistry and Action of Herbicide Antidotes. Academic Press, New York.Google Scholar
65. Wilkinson, R. E. 1981. Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] inhibition of gibberellin precursor biosynthesis. Pestic. Biochem. Physiol. 16:199205.CrossRefGoogle Scholar
66. Wilkinson, R. E. 1982. Alachlor influence on sorghum growth and gibberellin biosynthesis. Pestic. Biochem. Physiol 17:177184.CrossRefGoogle Scholar
67. Wilkinson, R. E. 1983. Gibberellin precursor biosynthesis inhibition by EPTC and reversal by R-25788. Pestic. Biochem. Physiol. 19:321329.Google Scholar
68. Wilkinson, R. E. 1985. CDAA inhibition of kaurene oxidation in etiolated sorghum coleoptiles. Pestic. Biochem. Physiol. 23:1923.Google Scholar
69. Wilkinson, R. E. 1986. Diallate inhibition of gibberellin biosynthesis in sorghum coleoptiles. Pestic. Biochem. Physiol. 25:9397.Google Scholar
70. Wilkinson, R. E., and Ashley, D. 1979. EPTC induced modification of gibberellin biosynthesis. Weed Sci. 27:270274.Google Scholar
71. Wilkinson, R. E., and Oswald, T. H. 1987. S-ethyl dipropylthiocarbamate (EPTC) and 2,2-dichloro-N,N-di-2-propenylacetamide (dichlormid) inhibitions of synthesis of acetyl-coenzyme A derivatives. Pestic. Biochem. Physiol. 28:3843.Google Scholar
72. Wilkinson, R. E., and Smith, A. E. 1975. Reversal of EPTC induced fatty acid synthesis inhibition. Weed Sci. 23:9092.Google Scholar
73. Wilkinson, R. E., and Smith, A. E. 1975. Thiocarbamate inhibition of fatty acid biosynthesis in isolated spinach chloroplasts. Weed Sci. 23:100104.Google Scholar
74. Wilkinson, R. E., and Smith, A. E. 1976. Butylate, pebulate, and vernolate inhibition of plant fatty acid biosynthesis. Phytochem. 15:841842.Google Scholar