Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T18:08:45.996Z Has data issue: false hasContentIssue false

Use of Tomato (Lycopersicon esculentum) Seedlings to Detect Bensulfuron and Quinclorac Residues in Water

Published online by Cambridge University Press:  12 June 2017

Diego Gomez De Barreda
Affiliation:
Dep. Ecol., Biometric Unit, Dep. Vegetable Crops. I.V.I.A. Generalitat Valenciana.- 46113 Moncada, Valencia, Spain
Elena Lorenzo
Affiliation:
Dep. Ecol., Biometric Unit, Dep. Vegetable Crops. I.V.I.A. Generalitat Valenciana.- 46113 Moncada, Valencia, Spain
Emilio A. Carbonell
Affiliation:
Dep. Ecol., Biometric Unit, Dep. Vegetable Crops. I.V.I.A. Generalitat Valenciana.- 46113 Moncada, Valencia, Spain
Baltasar Cases
Affiliation:
Dep. Ecol., Biometric Unit, Dep. Vegetable Crops. I.V.I.A. Generalitat Valenciana.- 46113 Moncada, Valencia, Spain
Niceto Muñoz
Affiliation:
Dep. Ecol., Biometric Unit, Dep. Vegetable Crops. I.V.I.A. Generalitat Valenciana.- 46113 Moncada, Valencia, Spain

Abstract

During 1990, injury to tomatoes grown on the narrow land between the Albufera Lake (Spain) and the Mediterranean Sea was attributed to use of irrigation water coming from adjacent rice fields containing bensulfuron and quinclorac. A tomato root bioassay was developed to detect the herbicides in 10 ml of water. The assay was more sensitive to bensulfuron (0.5 ng ml−1) than quinclorac (100 ng ml−1). Only 30 ml of the affected water are necessary to conduct the test. Albufera water, sampled at three sites during 1991 and one during 1992 in the irrigation network canals caused different tomato main root length responses.

Type
Research
Copyright
Copyright © 1993 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Aguilera, A. 1989. Nuevas tendencias en el control de las malas hierbas del arroz con formulaciones de bensulfuron metil. Proc. 4th Eur. Weed Res. Soc. Mediterranean Symp. 2:427438.Google Scholar
2. Beckie, H. J. and McKercher, R. B. 1990. Mobility of two sulfonylurea herbicides in soil. J. Agric. Food Chem. 38:310315.Google Scholar
3. Brewster, B. D. and Appleby, A. P. 1983. Response of wheat (Triticum aestivum) and rotation crops to chlorsulfuron. Weed Sci. 31:861865.CrossRefGoogle Scholar
4. Fredericson, D. R. and Shea, P. J. 1986. Effect of soil pH on degradation, movement, and plant uptake of chlorsulfuron. Weed Sci. 34:328332.CrossRefGoogle Scholar
5. Groves, K.E.M. and Foster, R. K. 1985. A corn (Zea mays L.) bioassay technique for measuring chlorsulfuron levels in three Saskatchewan soils. Weed Sci. 33:825828.Google Scholar
6. Hsiao, A. I. and Smith, A. E. 1983. A root bioassay procedure for the determination of chlorsulfuron, diclofop and sethoxydim residues in soil. Weed Res. 23:231236.Google Scholar
7. Joshi, M. M., Brown, M. M., and Romesser, J. A. 1984. Degradation of chlorsulfuron by soil microbes. Proc. West. Soc. Weed Control Conf. 37:63.Google Scholar
8. Kashibuchi, S., Rosebrock, H., and Beck, J. 1990. Behaviour of quinclorac in soils, results of bioassay. Proc. 11th Asian Pac. Weed Sci. Soc. Conf. No. 173–178.Google Scholar
9. Kotoula-Syka, E. and Eleftherohorinos, I. G. 1991. Orobanche ramosa L. (broomrape) control in tomato (Lycopersicon esculentum Mill.) with chlorsulfuron, glyphosate and imazaquin. Weed Res. 31:1927.Google Scholar
10. Mersie, W. and Foy, C. L. 1985. Phytotoxicity and adsorption of chlorsulfuron as affected by soil properties. Weed Sci. 33:564568.Google Scholar
11. Morishita, D. W., Thill, D. C., Flom, D. G., Chambrell, T. C., and Lee, G. A. 1985. Method for bioassaying chlorsulfuron in soil and water. Weed Sci. 33:420425.Google Scholar
12. Nicholls, P. H., Evans, A. A., and Walker, A. 1987. The behaviour of chlorsulfuron and metsulfuron methyl in soils in relation to incidents of damage to sugar beet. Proc. 1987 Br. Crop Prot.—Weeds 3:549556.Google Scholar
13. Walker, A., Cotterill, E. G., and Welch, S. J. 1989. Adsorption and degradation of chlorsulfuron and metsulfuron methyl in soils from different depths. Weed Res. 29:281287.Google Scholar
14. Yuyma, T., Ackerson, R. C., Takeda, S., and Watanabey, N. 1988. Soil and water relationships on the behaviour of bensulfuron methyl (DPXF 5384) under the paddy field condition. Weed Res. Japan 32:282291.Google Scholar