Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T14:50:23.107Z Has data issue: false hasContentIssue false

Weed Management and Cotton Yield under Two Row Spacings in Conventional and Conservation Tillage Systems Utilizing Conventional, Glufosinate-, and Glyphosate-based Weed Management Systems

Published online by Cambridge University Press:  20 January 2017

J. S. Aulakh
Affiliation:
Department of Agronomy and Soils, Auburn University, 201 Funchess Hall, Auburn University, AL 36830
A. J. Price*
Affiliation:
United States Department of Agriculture, Agricultural Research Service, National Soil Dynamics Laboratory, 411 South Donahue Drive, Auburn, AL 36832
K. S. Balkcom
Affiliation:
United States Department of Agriculture, Agricultural Research Service, National Soil Dynamics Laboratory, 411 South Donahue Drive, Auburn, AL 36832
*
Corresponding author's E-mail: Andrew.Price@ars.usda.gov

Abstract

A field experiment was conducted during three cropping seasons to compare weed control and cotton yield provided by conventional (CV), glufosinate-resistant (LL), and glyphosate-resistant (RR) weed management systems under standard (102 cm) and narrow (38 cm) row spacing grown in conventional and conservation tillage systems. The conventional tillage and/or CV cotton received a PRE application of pendimethalin. The CV, LL, and RR cotton varieties received two POST applications of pyrithiobac, glufosinate, and glyphosate, respectively, at two- and four-leaf cotton growth stages. A final (LAYBY) application of trifloxysulfuron was applied to 38-cm row cotton while a LAYBY POST-directed spray of prometryn plus MSMA was used in 102-cm row cotton. The LL and RR weed management systems controlled at least 97% of large crabgrass, Palmer amaranth, sicklepod, and smallflower morningglory, while the CV system controlled 89, 73, and 87 to 98% of large crabgrass, smallflower morningglory, and Palmer amaranth, respectively. Sicklepod control increased from 85% in 102-cm rows to 95% in 38-cm rows in the CV herbicide system. Yellow nutsedge and pitted morningglory control exceeded 98% and was not affected by tillage, row spacing, or weed management system. Cotton yield was not affected by row spacing any year, by tillage in 2005, or by weed management system in 2004 and 2005. In 2006, yield in the RR weed management system was 27 and 24% higher than LL and CV weed management systems, respectively. In 2004, yield of conventional tillage cotton was 18% higher than conservation tillage cotton, but in 2006 the yield in conservation tillage was 12% higher than conventional tillage.

Un experimento de campo se llevó al cabo durante tres estaciones de cosecha para comparar el control de malezas y el rendimiento del algodón proporcionado por sistemas de manejo convencionales (CV), resistentes al glufosinato (LL) y resistentes al glifosato (RR), con espacios estándares entre surcos (102 cm) y angosto (38 cm), utilizando sistemas de labranza convencional y de conservación. El algodón en el sistema de labranza convencional y/o el algodón (CV) recibieron una aplicación preemergente de pendimetalina. Las variedades de algodón CV, LL y RR recibieron dos aplicaciones posemergentes de pyrithiobac, glufosinato, y glifosato, respectivamente, en las etapas de dos y cuatro hojas de crecimiento. Una aplicación final de trifloxysulfuron se aplicó al algodón entre los surcos de 38 cm, mientras que una aplicación posemergente dirigida de prometrina más MSMA se usó entre los surcos de 102 cm. Los sistemas de manejo de malezas LL y RR controlaron al menos 97% de Digitaria sanguinalis, Amaranthus palmeri, Senna obtusifolia y Jacquemontia tamnifolia, mientras que el sistema CV controló 89, 73 y de 87 a 98% de Digitaria, de Jacquemontia y de Amaranthus. El control de Senna se incrementó de 85% en los surcos de 102 cm, a 95% en los surcos de 38 cm utilizando el sistema convencional (CV). El control de Cyperus esculentus e Ipomoea lacunosa excedió 98% y no se vio afectado por la labranza, el espacio entre surcos o el sistema de manejo de malezas. El rendimiento de algodón no se vio afectado por el espacio entre surcos en ningún año, por la labranza en 2005, ni por el sistema de manejo de malezas en 2004 y 2005. En 2006, el rendimiento obtenido con el sistema de manejo RR fue 27 y 24% más alto que con los sistemas LL y CV, respectivamente. En 2004, el rendimiento del algodón con labranza convencional fue 18% mayor que con labranza de conservación, pero en 2006 el rendimiento con labranza de conservación fue 12% mayor que con labranza convencional.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bauer, P. J., Reeves, D. W., Johnson, R. M., and Bradow, J. M. 2003. Cover crop, tillage and N rate effect on cotton growth in ultra-narrow rows. Crop Management. DOI:10.1094/CM-2003-1006-01-RS. http://www.plantmanagementnetwork.org/pub/cm/research/2003/ultranarrow/.Google Scholar
Beyers, J. T., Smeda, R. J., and Johnson, W. G. 2002. Weed management programs in glufosinate-resistant soybean (Glycine max). Weed Technol. 16:267273.Google Scholar
Bond, J. A., Eubank, T. W., Bond, R. C., and Nandula, V. 2011. Timing of fall residual herbicides for control of glyphosate-resistant Italian ryegrass. Proceedings International 7 & 8 Beltwide Cotton Conference. Cordova, TN National Cotton Council of America. 1548 p.Google Scholar
Boquet, D. J. 2005. Cotton in ultra-narrow row spacing: plant density and nitrogen fertilizer rates. Agron. J. 97:279287.Google Scholar
Buchanan, G. A. and Burns, E. R. 1970. Influence of weed competition on cotton. Weed Sci. 18:149154.Google Scholar
Clewis, S. B., Askew, S. D., Wilcut, J. W., and Thomas, W. E. 2004. Weed management in strip- and conventional-tillage non-transgenic and transgenic cotton. Pages 284295 in Jordan, D. L., and Caldwell, D. F., eds. 26th Southern Conservation Tillage Systems Conference. Raleigh, NC North Carolina Agricultural Research Service.Google Scholar
Coetzer, E., Al-Khatib, K., and Peterson, D. E. 2002. Glufosinate efficacy on Amaranthus species in glufosinate-resistant soybean (Glycine max). Weed Technol. 16:326331.Google Scholar
Corbett, J. L., Askew, S. D., Thomas, W. E., and Wilcut, J. W. 2004. Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol. 18:443453.Google Scholar
[CTIC] Conservation Technology Information Center. 2002. National Crop Residue Management Survey. Available at http://ctic.org/CRM/. Accessed: June 20, 2011.Google Scholar
Culpepper, A. S. 2006. Glyphosate-induced weed shifts. Weed Technol. 20:277281.Google Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus Palmeri) confirmed in Georgia. Weed Sci. 54:620626.Google Scholar
Culpepper, A. S. and York, A. C. 1999. Weed management and net returns with transgenic, herbicide-resistant and non-transgenic cotton (Gossypium hirsutum). Weed Technol. 13:411420.Google Scholar
Culpepper, A. S., York, A. C., Roberts, P., and Whitaker, J. R. 2009. Weed control and crop response to glufosinate applied to ‘PHY 485 WRF’ cotton. Weed Technol. 23:356362.Google Scholar
Daniel, J. B., Abaye, A. O., Alley, M. M., Adcock, C. W., and Maitland, J. C. 1999. Winter annual cover crops in a Virginia no-till cotton production system: II. Cover crop and tillage effects on soil moisture, cotton yield, and cotton quality. J. Cotton Sci. 3:8491.Google Scholar
Dill, G. M. 2005. Glyphosate resistant crops: history, status and future. Pest. Manag. Sci. 61:219224.Google Scholar
Dill, G. M., Jacob, C. A., and Padgette, S. R. 2008. Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag. Sci. 64:326331.Google Scholar
Fernandez-Cornejo, J. and Caswell, M. 2006. The first decade of genetically engineered crops in the United States. Washington, DC USDA-ERS Economic Information Bulletin Number 11.Google Scholar
Frans, R. E. and Chandler, J. M. 1989. Integrated Pest Management Systems and Cotton Production. Pages 327360 in Frisbie, R. E., El-Zik, K. M., and Wilson, L. T., eds, New York John Wiley and Sons.Google Scholar
Frans, R. E., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 2946 in Camper, N. D., ed. Research Methods in Weed Science. Champaign, IL Southern Weed Science Society.Google Scholar
Gardner, A. P., York, A. C., Jordan, D. L., and Monks, D. W. 2006. Management of annual grasses and Amaranthus spp. in glufosinate-resistant cotton. J. Cotton Sci. 10:328338.Google Scholar
Gianessi, L. 2005. Economic and herbicide use impacts of glyphosate resistant crops. Pest. Manag. Sci. 61:241245.Google Scholar
Jost, P. H. and Cothren, J. T. 2000. Growth and yield comparisons of cotton planted in conventional and ultra-narrow row spacings. Crop Sci. 40:430435.Google Scholar
Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and Schabenberger, O. 2006. SAS for Mixed Models. 2nd ed. Cary, NC SAS Institute.Google Scholar
Nichols, R. L., Bond, J., Culpepper, A. S., Dodds, D., Nandula, V., Main, C. L., Marshall, M. W., Mueller, T. C., Norsworthy, J. K., Price, A., Patterson, M., Scott, R. C., Smith, K. L., Steckel, L. E., Stephenson, D., Wright, D., and York, A. C. 2009. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) spreads in the southern United States (U.S.). Resistant Pest Management Newsletter 18:810.Google Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 22:108113.Google Scholar
Norsworthy, J. K., McClelland, M., Griffith, G., Bangarwa, S. K., and Still, J. 2011. Evaluation of cereal and Brassicaceae cover crops in conservation-tillage, enhanced, glyphosate resistant cotton. Weed Technol. 25:613.Google Scholar
Owen, M. D. K. and Zelaya, I. A. 2005. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61:301311.Google Scholar
Price, A. J., Balkcom, K. S., and Arriaga, F. J. 2005. Rye biomass amount affects weed suppression levels in conversation-tillage cotton. Pages 29212923 in Proceedings of the Beltwide Cotton Conference. New Orleans, LA National Cotton Council.Google Scholar
Price, A. J., Balkcom, K. S., Arriaga, F. J., Raper, R. L., Bergtold, J. S., and Kornecki, T. S. 2008a. Tillage system and cereal rye residue affects pigweed establishment and competitiveness in cotton. Pages 07031710 in Proceedings of the Beltwide Cotton Conference. Nashville, TN National Cotton Council.Google Scholar
Price, A. J., Koger, C. H., Miller, J. D., Wilcut, J. W., and van Santen, E. 2008b. Efficacy of residual and non-residual herbicides used in cotton (Gossypium hirsutum) production systems when applied with glyphosate, glufosinate, or MSMA. Weed Technol. 22:459466.Google Scholar
Price, A. J., Reeves, D. W., and Lamm, D. A. 2009. Glyphosate resistant Palmer amaranth—a threat to conservation tillage. Pages 13351336 in Proceedings of the Beltwide Cotton Conference. San Antonio, TX National Cotton Council.Google Scholar
Price, A. J., Reeves, D. W., and Patterson, M. G. 2006. Evaluation of weed control provided by three winter cereals in conservation-tillage soybean. Renewable Agriculture and Food Systems 21:159164.Google Scholar
Reddy, K. N., Burke, I. C., Boykin, J. C., and Williford, J. R. 2009. Narrow-row production under irrigated and non-irrigated environment: plant population and lint yield. J. Cotton Sci. 13:4855.Google Scholar
Reeves, D. W., Price, A. J., and Patterson, M. G. 2005. Evaluation of three winter cereals for weed control in conservation-tillage non-transgenic cotton. Weed Technol. 19:731736.Google Scholar
Reiter, M. S., Reeves, D. W., Burmester, C. H., and Torbert, H. A. 2008. Cotton nitrogen management in a high-residue conservation system: cover crop fertilization. J. Soil Sci. Soc. Am. J. 72:13211329.Google Scholar
Tharp, B. E. and Kells, J. J. 2002. Residual herbicides used in combination with glyphosate and glufosinate in corn (Zea mays). Weed Technol. 16:274281.Google Scholar
Unger, P. W. and Vigil, M. F. 1998. Cover crops effects on soil water relationships. J. Soil Water Cons. 53:241244.Google Scholar
[USDA-AMS] U.S. Department of Agriculture-Agricultural Marketing Service-Cotton Program. 2010. Cotton Varieties Planted 2010 Crop. http://www.ams.usda.gov/mnreports/cnavar.pdf Accessed: June 20, 2011.Google Scholar
Vencill, W. K. 2002. Glufosinate. Pages 229230 in Herbicide Handbook. 8th ed. Lawrence, KS Weed Science Society of America.Google Scholar
Webster, T. M. 2005. Weed survey—southern states. Proc. South. Weed Sci. Soc. 58:291306.Google Scholar
Wesley, J. E., Burke, I. C., Allen, J. R., Collins, J., and Wilcut, J. W. 2007. Weed control and yield with glufosinate-resistant cotton weed management systems. Weed Technol. 21:695701.Google Scholar
Wiesbrook, M. L., Johnson, W. G., Hart, S. E., Bradley, P. R., and Wax, L. M. 2001. Comparison of weed management systems in narrow-row, glyphosate- and glufosinate-resistant soybean (Glycine max). Weed Technol. 15:122128.Google Scholar