Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T18:45:08.505Z Has data issue: false hasContentIssue false

Weed Management in Conventional- and No-Till Soybean Using Flumioxazin/Pyroxasulfone

Published online by Cambridge University Press:  20 January 2017

Kris J. Mahoney*
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main Street East, Ridgetown, ON N0P 2C0, Canada
Christy Shropshire
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main Street East, Ridgetown, ON N0P 2C0, Canada
Peter H. Sikkema
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, 120 Main Street East, Ridgetown, ON N0P 2C0, Canada
*
Corresponding author's E-mail: kmahoney@uoguelph.ca.

Abstract

Eleven field experiments were conducted over a 3-yr period (2010, 2011, and 2012) in conventional- and no-till soybean with a flumioxazin and pyroxasulfone premix. PRE and preplant applications were evaluated for soybean injury, weed control, and yield compared to standard herbicides. Early-season soybean injury from flumioxazin/pyroxasulfone ranged from 1 to 19%; however, by harvest, soybean yields were similar across labeled rates (160 and 200 g ai ha−1), standard treatments, and the nontreated control. Flumioxazin/pyroxasulfone provided excellent control (99 to 100%) of velvetleaf, pigweed species (redroot pigweed and smooth pigweed), and common lambsquarters across almost all rates tested (80 to 480 g ai ha−1). Common ragweed, green foxtail, and giant foxtail control increased with flumioxazin/pyroxasulfone rate. The biologically effective rates varied between tillage systems. The flumioxazin/pyroxasulfone rate required to provide 80% control (R80) of pigweed was 3 and 273 g ai ha−1 under conventional- and no-till, respectively. For common ragweed, the R80 was 158 g ai ha−1 under conventional tillage; yet, under no-till, the rate was nonestimable. The results indicate that flumioxazin/pyroxasulfone can provide effective weed control as a setup for subsequent herbicide applications.

Durante un período de 3 años (2010, 2011, y 2012), se realizaron once experimentos de campo usando pre-mezclas de flumioxazin y pyroxasulfone en soya con labranza convencional y cero labranza. Se evaluó el efecto de aplicaciones PRE y pre-siembra en el daño de la soya, el control de malezas, y el rendimiento en comparación con herbicidas estándar. El daño de la soya, temprano durante la temporada de crecimiento, producto de flumioxazin/pyroxasulfone varió entre 1 y 19%. Sin embargo, al momento de la cosecha, los rendimientos de la soya fueron similares al compararse las dosis de etiqueta (160 y 200 g ai ha−1), los tratamientos estándar, y el testigo sin tratamiento. Flumioxazin/pyroxasulfone brindó excelente control (99 a 100%) de Abutilon theophrasti, Amaranthus retroflexus, Amaranthus hybridus, y Chenopodium album en casi todas las dosis evaluadas (80 a 480 g ai ha−1). El control de Ambrosia artemisiifolia, Setaria viridis, y Setaria faberi aumentó con la dosis de flumioxazin/pyroxasulfone. Las dosis biológicamente efectivas fueron diferentes según el sistema de labranza. La dosis de flumioxazin/pyroxasulfone requerida para brindar 80% de control (R80) de Amaranthus spp. fue 3 y 273 g ai ha−1 en labranza convencional y en labranza cero, respectivamente. Para A. artemisiifolia, la R80 fue 158 g ai ha−1 en labranza convencional, aunque en labranza cero, la dosis no fue estimable. Los resultados indican que flumioxazin/pyroxasulfone puede brindar un control inicial de malezas efectivo que sirva de base para aplicaciones subsecuentes de otros herbicidas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alister, C, Rojas, S, Gomez, P, Kogan, M (2008) Dissipation and movement of flumioxazin in soil at four field sites in Chile. Pest Manag Sci 64:579583 CrossRefGoogle ScholarPubMed
Anonymous (2012) Zidua® herbicide product label. NVA 2012-04-388-0031. Research Triangle Park, NC: BASF. 12 pGoogle Scholar
Anonymous (2013) Fierce® herbicide product label. Form 2013-FIE-0013. Walnut Creek, CA: Valent. 8 pGoogle Scholar
Beckie, HJ (2011) Herbicide-resistant weed management: focus on glyphosate. Pest Manag Sci 67:10371048 CrossRefGoogle ScholarPubMed
Bernards, ML, Dale, TM, Hartzler, BG, Owen, MD, Peterson, D, Shoup, DE, Gunsolus, J, Knezevic, SZ, Wilson, RG, Zollinger, R, Moechnig, MJ, Refsell, D, Pawlak, JA (2010) Residual activity of flumioxazin + pyroxasulfone in the western soybean belt. Abstract 108 in Proceedings of the North Central Weed Science Society. Lexington, KY: North Central Weed Science Society Google Scholar
Carbonari, CA, Gomes, CLGC, Velini, ED (2009) Effects of flumioxazin permanence period in soil and in corn and oat mulch on weed control efficacy. Rev Bras Herbic 8:8595 [In Portuguese with English abstract]Google Scholar
Carbonari, CA, Gomes, CLGC, Velini, ED (2010) Effects of different periods without rain occurrence in the efficacy of flumioxazin applied in soil and in sugarcane mulch. Rev Bras Herbic 9:8188 [In Portuguese with English abstract]Google Scholar
Corrigan, KA, Harvey, RG (2000) Glyphosate with and without residual herbicides in no-till glyphosate-resistant soybean (Glycine max). Weed Technol 14:569577 CrossRefGoogle Scholar
Dieleman, A, Hamill, AS, Fox, GC, Swanton, CJ (1996) Decision rules for postemergence control of pigweed (Amaranthus spp.) in soybean (Glycine max) Weed Sci 44:126132 CrossRefGoogle Scholar
Ellis, JM, Griffin, JL (2002) Benefits of soil-applied herbicides in glyphosate-resistant soybean (Glycine max). Weed Technol 16:541547 CrossRefGoogle Scholar
Ferrell, JA, Vencill, WK (2003) Flumioxazin soil persistence and mineralization in laboratory experiments. J Agric Food Chem 51:47194721 CrossRefGoogle ScholarPubMed
Ferrell, JA, Vencill, WK, Xia, K, Grey, TL (2005) Sorption and desorption of flumioxazin to soil clay minerals and ion-exchange resin. Pest Manag Sci 61:4046 CrossRefGoogle ScholarPubMed
Geier, PW, Stahlman, PW, Frihauf, JC (2006) KIH-485 and S-metolachlor efficacy comparisons in conventional and no-tillage corn. Weed Technol 20:622626 CrossRefGoogle Scholar
Gonzini, LC, Hart, SE, Wax, LM (1999) Herbicide combinations for weed management in glyphosate-resistant soybean (Glycine max). Weed Technol 13:354360 CrossRefGoogle Scholar
Health Canada (2003) PMRA (DIR2003-04) Regulatory Directive: Efficacy Guidelines for Plant Protection Products. http://www.hc-sc.gc.ca/cps-spc/pubs/pest/_pol-guide/dir2003-04/index-eng.php. Accessed on October 28, 2013Google Scholar
Heap, I (2013) The international survey of herbicide resistant weeds. http://www.weedscience.org. Accessed on August 2, 2013Google Scholar
James, C (2012) Global status of commercialized biotech/GM crops: 2012. http://www.isaaa.org/resources/publications/briefs/44/executivesummary/default.asp. Accessed October 24, 2013Google Scholar
Jaremtchuk, CC, Constantin, J, Oliveira, RS Jr. Alonso, DG, Arantes, JGZ, Biffe, DF, Roso, AC, Cavalieri, SD (2009) Residual effect of flumioxazin on weed emergence in soils of distinct textures. Planta Daninha 27:191196 [In Portuguese with English abstract]CrossRefGoogle Scholar
Johnson, G, Breitenbach, F, Behnken, L, Miller, R, Hoverstad, T, Gunsolus, J (2012) Comparison of herbicide tactics to minimize species shifts and selection pressure in glyphosate-resistant soybean. Weed Technol 26:189194 CrossRefGoogle Scholar
Johnson, WG, Davis, VM, Kruger, GR, Weller, SC (2009) Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. Eur J Agron 31:162172 CrossRefGoogle Scholar
Knezevic, SZ, Datta, A, Scott, J, Porpiglia, PJ (2009) Dose–response curves of KIH-485 for preemergence weed control in corn. Weed Technol 23:3439 CrossRefGoogle Scholar
Knezevic, SZ, Sikkema, PH, Tardif, F, Hamill, AS, Chandler, K, Swanton, CJ (1998) Biologically effective dose and selectivity of RPA 201772 for preemergence weed control in corn (Zea mays). Weed Technol 12:670676 CrossRefGoogle Scholar
Kwon, JW, Armbrust, KL, Grey, TL (2004) Hydrolysis and photolysis of flumioxazin in aqueous buffer solutions. Pest Manag Sci 60:939943 CrossRefGoogle ScholarPubMed
Legleiter, TR, Bradley, KW, Massey, RE (2009) Glyphosate resistant waterhemp (Amaranthus rudis) control and economic returns with herbicide programs in soybean. Weed Technol 23:5461 CrossRefGoogle Scholar
Locke, MA, Bryson, CT (1997) Herbicide-soil interactions in reduced tillage and plant residue management systems. Weed Sci 45:307320 CrossRefGoogle Scholar
Miller, RT, Soltani, N, Robinson, DE, Kraus, TE, Sikkema, PH (2012) Biologically effective rate of saflufenacil/dimethenamid-p in soybean (Glycine max). Can J Plant Sci 92:517531 CrossRefGoogle Scholar
Moran, M, Sikkema, PH, Swanton, CJ (2011) Efficacy of saflufenacil plus dimethenamid-p for weed control in corn. Weed Technol 25:330334 CrossRefGoogle Scholar
Niekamp, JW, Johnson, WG, Smeda, RJ (1999) Broadleaf weed control with sulfentrazone and flumioxazin in no-tillage soybean. Weed Technol 13:233238 CrossRefGoogle Scholar
[OMAFRA] Ontario Ministry of Agriculture, Food and Rural Affairs (2012) Guide to weed control. Publication 75. Toronto, Canada: OMAFRA. 400 pGoogle Scholar
Owen, MDK (2008) Weed species shifts in glyphosate resistant crops. Pest Manag Sci 64:377387 CrossRefGoogle ScholarPubMed
Refsell, DE, Ott, EJ, Dale, TM, Pawlak, JA (2009) V-10233 performance in midwest soybean fields. Abstract 82 in Proceedings of the North Central Weed Science Society. Champaign, IL: North Central Weed Science Society Google Scholar
Seefeldt, SS, Jensen, JE, Fuerst, EP (1995) Log-logistic analysis of dose–response relationships. Weed Technol 9:218227 CrossRefGoogle Scholar
Sikkema, PH, Knezevic, SZ, Hamill, AS, Tardif, FJ, Chandler, K, Swanton, CJ (1999) Biologically effective dose and selectivity of SAN 1269H (BAS 662H) for weed control in corn (Zea mays). Weed Technol 13:283289 CrossRefGoogle Scholar
Stachler, JM, Carlson, AL (2013) Herbicide programs for glufosinate and glyphosate-resistant soybean. Abstract 228 in Proceedings of the Weed Science Society of America/Northeastern Weed Science Society. Baltimore, MD: Weed Science Society of America/Northeastern Weed Science Society Google Scholar
Stachler, JM, Luecke, JL (2011) The utility of preemergence herbicides in glufosinate-resistant soybean in a sugarbeet rotation in Minnesota and North Dakota. Abstract 151 in Proceedings of the North Central Weed Science Society. Milwaukee, WI: North Central Weed Science Society Google Scholar
Stachler, JM, Luecke, JL, Fisher, JM (2010) Controlling glyphosate-resistant ragweed and waterhemp with preemergence soybean herbicides having safety to sugarbeet in rotation. Abstract 172 in Proceedings of the North Central Weed Science Society. Lexington, KY: North Central Weed Science Society Google Scholar
Szmigielski, AM, Schoenau, JJ, Johnson, EN (2013) Bioactivity and dissipation of pyroxasulfone herbicide in Saskatchewan soils. Abstract 60 in Proceedings of the Western Society of Weed Science. San Diego: Western Society of Weed Science Google Scholar
Tanetani, Y, Kaku, K, Kawai, K, Fujioka, T, Shimizu, T (2009) Action mechanism of a novel herbicide, pyroxasulfone. Pestic Biochem Physiol 95:4755 CrossRefGoogle Scholar
Taylor-Lovell, S, Wax, LM, Ballero, G (2002) Preemergence flumioxazin and pendimethalin and postemergence herbicide systems for soybean (Glycine max). Weed Technol 16:502511 CrossRefGoogle Scholar
Taylor-Lovell, S, Wax, LM, Nelson, R (2001) Phytotoxic response and yield of soybean (Glycine max) varieties treated with sulfentrazone or flumioxazin. Weed Technol 15:95102 CrossRefGoogle Scholar
[USDA-ERS] US Department of Agriculture–Economic Research Service (2013) Adoption of Genetically Engineered Crops in the U.S. http://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/recent-trends-in-ge-adoption. Accessed August 8, 2013Google Scholar
Young, BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol 20:301307 CrossRefGoogle Scholar
Young, BG, Bradley, KW, Bernards, ML, Hager, AG, Hartzler, BG, Johnson, WG, Loux, MM, Peterson, D, Sprague, CL, Slack, C, Ott, EJ, Refsell, D, Dale, TM, Cranmer, JR, Kirfman, GW, Pawlak, JA (2010) Length of residual weed control with V-10266 and other preemergence soybean herbicides. Abstract 153 in Proceedings of the North Central Weed Science Society. Lexington, KY: North Central Weed Science Society Google Scholar