Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-19T10:16:04.435Z Has data issue: false hasContentIssue false

Weed Management in Transplanted Lettuce with Pendimethalin and S-Metolachlor

Published online by Cambridge University Press:  20 January 2017

Ran N. Lati*
Affiliation:
University of California, Davis, Department of Plant Sciences, 1636 East Alisal, Salinas, CA 93905
Beiquan Mou
Affiliation:
U.S. Department of Agriculture, Agricultural Research Service, 1636 East Alisal Street, Salinas, CA 93905
John S. Rachuy
Affiliation:
University of California, Davis, Department of Plant Sciences, 1636 East Alisal, Salinas, CA 93905
Richard F. Smith
Affiliation:
University of California Cooperative Extension, Monterey County, 1432 Abbott Street, Salinas, CA 93901
Surendra K. Dara
Affiliation:
University of California Cooperative Extension, San Luis Obispo County, 2156 Sierra Way, San Luis Obispo, CA 93401
Oleg Daugovish
Affiliation:
University of California Cooperative Extension, Ventura County, 669 County Square Drive, #100, Ventura, CA 93003
Steven A. Fennimore
Affiliation:
University of California, Davis, Department of Plant Sciences, 1636 East Alisal, Salinas, CA 93905
*
Corresponding author's E-mail: ranlati@ucdavis.edu.

Abstract

Few herbicides are available for use in lettuce and hand weeding is required for commercially acceptable weed control. More effective herbicides are needed. Here field evaluations of pendimethalin and S-metolachlor for weed control in transplanted lettuce are reported. Pendimethalin was evaluated PRE at rates between 0.6 and 6.7 kg ai ha−1, and POST at 1.1 and 2.2 kg ha−1. Both pendimethalin PRE and POST applications were safe to transplanted lettuce and provided similar weed control. Pendimethalin PRE at rates of 1.1 kg ha−1 and higher provided better weed control than the industry standard, pronamide at 1.3 kg ha−1. S-Metolachlor PRE was evaluated at rates between 0.6 and 5.6 kg ha−1. S-Metolachlor at rates up to 2.8 kg ha−1 caused little or no crop injury or yield reduction in transplanted lettuce, and S-metolachlor at rates of 1.4 kg ha−1 and higher improved weed control compared with pronamide at 1.3 kg ha−1. Pendimethalin and S-metolachlor are not labeled for transplanted lettuce, but we suggest that labeling be pursued at rates of 1.1 and 0.7 kg ha−1, respectively. Pendimethalin at 1.1 kg ha−1 applied PRE or POST improved weed control by 57 and 42%, respectively compared with pronamide. S-Metolachlor PRE at 0.7 kg ha−1 was less effective on weeds than pendimethalin, but maintained weed control level similar to pronamide. Pendimethalin and S-metolachlor have potential for use in transplanted lettuce production and provide alternatives to current transplanted lettuce herbicides.

Hay pocos herbicidas disponibles para uso en lechuga y esto hace que la deshierba manual sea requerida para un control aceptable de malezas a nivel comercial. Se necesitan herbicidas más efectivos. Aquí se reportan evaluaciones de campo de pendimethalin y S-metolachlor para el control de malezas en lechuga trasplantada. Se evaluó pendimethalin PRE en dosis entre 0.6 y 6.7 kg ai ha−1, y POST a 1.1 y 2.2 kg ha−1. Ambas aplicaciones, PRE and POST, fueron seguras en la lechuga trasplantada y brindaron un control de malezas similar. Pendimethalin PRE a dosis de 1.1. kg ha−1 o mayores brindaron mejor control de malezas que el estándar de la industria, pronamide a 1.3 kg ha−1. S-metolachlor PRE fue evaluado a dosis entre 0.6 y 5.6 kg ha−1. S-metolachlor a dosis de hasta 2.8 kg ha−1 causó poco o nada de daño y no redujo el rendimiento de la lechuga trasplantada, y S-metolachlor a dosis de 1.4 kg ha−1 o mayores mejoraron el control de malezas al compararse con pronamide a 1.3 kg ha−1. Pendimethalin y S-metolachlor no están registrados para lechuga trasplantada, pero nosotros sugerimos que se debe tratar de registrarlos a dosis de 1.1. y 0.7 kg ha−1, respectivamente. Pendimethalin a 1.1 kg ha−1 aplicado PRE o POST mejoró el control de malezas en 57 y 42%, respectivamente al compararse con pronamide. S-metolachlor PRE a 0.7 kg ha−1 fue menos efectivo para el control de malezas que pendimethalin, pero mantuvo el control de malezas a un nivel similar a pronamide. Pendimethalin y S-metolachlor tienen el potencial para ser usados en la producción de lechuga con trasplante y así brindar alternativas a los herbicidas actualmente disponibles en este cultivo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Wiley Carroll Johnson III, USDA-ARS.

References

Literature Cited

Anonymous (2014) Dual II Magnum Label. http://www.agrian.com/pdfs/Dual_II_Magnum_Label4b.pdf. Accessed September 9, 2014Google Scholar
Chauhan, BS, Johnson, DE (2009) Seed germination ecology of Portulaca oleracea: an important weed of rice and upland crops. Ann Appl Biol 155:6169 Google Scholar
Chauhan, BS, Johnson, DE (2011) Phenotypic plasticity of Chinese sprangletop (Leptochloa chinensis) in competition with seeded rice. Weed Technol 25:652658 Google Scholar
DiTomaso, JM, Healy, EA (2007) Weeds of California and Other Western States. University of California Agricultural and Natural Resources. Publication 3488Google Scholar
Fennimore, SA, Doohan, DJ (2008) The challenges of specialty crop weed control, future directions. Weed Technol 22:364372 Google Scholar
Fennimore, SA, Smith, RF, McGiffen, ME (2001) Weed management in fresh market spinach (Spinaca oleracea) with S-metolachlor. Weed Technol 15:511516 Google Scholar
Fennimore, SA, Smith, RF, Tourte, L, LeStrange, M, Rachuy, JS (2014) Evaluation and economics of a rotating cultivator in bok choy, celery, lettuce, and radicchio. Weed Technol 28:176188 Google Scholar
Fennimore, SA, Tourte, LJ, Rachuy, JS, Smith, RF, George, CA (2010) Evaluation and economics of a machine-vision guided cultivation program in broccoli and lettuce. Weed Technol 24:3338 Google Scholar
Fennimore, SA, Umeda, K (2003) Time of glyphosate application in glyphosate-tolerant lettuce. Weed Technol 17:738746 Google Scholar
Gast, R (2008) Industry view of minor crop weed control. Weed Technol 22:385388 Google Scholar
Goodhue, RE, Martin, P (2014) Labor, water and California agriculture in 2014. ARE Update. University of California, Davis. 17:58 http://giannini.ucop.edu/media/are-update/files/issues/V17N4_1.pdf Google Scholar
Gorski, S, Reiners, S, Hassell, R (1988) Chloramben for weed control on muck-grown lettuce, Lactuca sativa, and endive, Chichorium endivia . Weed Technol 2:262264 Google Scholar
Haar, MJ, Fennimore, SA (2003) Evaluation of integrated practices for common purslane management in lettuce. Weed Technol 17:229233 Google Scholar
Haar, MJ, Fennimore, SA, Lambert, CL (2001) Economics of pronamide and pendimethalin use in weed management during artichoke stand establishment. HortScience 36:650653 Google Scholar
Henderson, CWL, Webber, MJ (1993) Phytotoxicity to transplanted lettuce (Lactuca sativa) of three pre-emergence herbicides: metolachlor, pendimethalin, and propachlor. Aust J Exp Agric 33:373380 Google Scholar
Lanini, WT, Le Strange, M (1991) Low-input management of weeds in vegetable fields. Calif Agric 45:1113 Google Scholar
O'Connell, PJ, Harris, CT, Allen, JRF (1998) Metolachlor, S-metolachlor and their role within sustainable weed management. Crop Prot 17:207212 Google Scholar
Odero, DC, Wright, AL (2013) Phosphorus application influences the critical period of weed control in lettuce. Weed Sci 61:410414 Google Scholar
Roberts, HA, Hewson, RT, Ricketts, ME (1977) Weed competition in drilled summer lettuce. Hortic Res 17:3945 Google Scholar
Samtani, JB, Rachuy, JS, Mou, B, Fennimore, SA (2014) Evaluation of tribenuron-methyl on sulfonylurea-resistant lettuce germplasm. Weed Technol 18:510517 Google Scholar
Santos, BM, Dusky, JA, Stall, WM, Bewick, TA, Shilling, DG (2004) Phosphorus absorption in lettuce, smooth pigweed (Amaranthus hybridus), and common purslane (Portulaca oleracea) mixtures. Weed Sci 52:389394 Google Scholar
Shem-Tov, S, Fennimore, SA, Lanini, WT (2006) Weed management in lettuce (Lactuca sativa) with pre-plant irrigation. Weed Technol 20:10581065 Google Scholar
Slaughter, DC, Giles, DK, Fennimore, SA, Smith, RF (2008) Multispectral machine vision identification of lettuce and weed seedlings for automated weed control. Weed Technol 22:378384 Google Scholar
Smith, R, Cahn, M, Daugovish, O, Koike, S, Natwick, E, Smith, H, Subbarao, K, Takele, E, Turini, T (2011) Leaf lettuce production in California. Available online: http://anrcatalog.ucdavis.edu/pdf/7216.pdf. Accessed April 14, 2014Google Scholar
Taylor, JE, Charlton, D, Y'unez-Naude, A (2012) The end of farm labor abundance. Appl Econ Perspect Policy 34:587598 Google Scholar
[USDA] United States Department of Agriculture. (2014) Vegetables: 2012 Summary. Available online: http://usda.mannlib.cornell.edu.80/usda/. Accessed April 14, 2014Google Scholar