Published online by Cambridge University Press: 25 March 2014
This paper addresses low-power, low-voltage electronic circuit requirements for wireless sensors with energy harvesting. The challenges of start-up for micro-controller unit (MCU)-based energy-harvesting platforms is discussed where a transient, low-voltage (20–1000 mV), low-power (<100 μW) source having a relatively high source impedance (possibly >500 Ω) is used. Efficient converter circuitry is required to transform the low-voltage output from the source to a level suitable for typical electronic devices, 1.8–5 V, and a prototype is demonstrated in the paper. Owing to the limited energy available to deliver to the storage element, the converter output voltage typically has a slow rising slew rate that can be a problem for MCUs. This necessitates a reset circuit to hold-off operation until a level high enough for reliable operation is achieved. Once operational, Maximum Power Point Tracking (MPPT) extracts peak power from the harvester while simultaneously tracking the transient nature of the source. In this low-power application, MCU programming needs to be efficient, while otherwise keeping the MCU in the lowest power standby mode possible to conserve energy. In a fully integrated design, a single MCU may be used for the sensor application, power management, power conversion, and MPPT functions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.