Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T05:53:22.418Z Has data issue: false hasContentIssue false

Flow cytometric sex sorting affects CD4 membrane distribution and binding of exogenous DNA on bovine sperm cells

Published online by Cambridge University Press:  13 July 2017

William Borges Domingues
Affiliation:
Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil.
Tony Leandro Rezende da Silveira
Affiliation:
Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil.
Eliza Rossi Komninou
Affiliation:
Laboratório de Biotecnologia do Cancer, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil.
Leonardo Garcia Monte
Affiliation:
Laboratório de Imunodiagnóstico, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil.
Mariana Härter Remião
Affiliation:
Laboratório de Biotecnologia do Cancer, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil.
Odir Antônio Dellagostin
Affiliation:
Laboratório de Vacinologia, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil.
Carine Dahl Corcini
Affiliation:
Reprodução Animal Comprada, Instituto de Ciências Biológicas, Universidade Federal de Rio Grande, RS, Brasil.
Antônio Sergio Varela Junior
Affiliation:
Reprodução Animal Comprada, Instituto de Ciências Biológicas, Universidade Federal de Rio Grande, RS, Brasil.
Fabiana Kömmling Seixas
Affiliation:
Laboratório de Biotecnologia do Cancer, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil.
Tiago Collares
Affiliation:
Laboratório de Biotecnologia do Cancer, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil.
Vinicius Farias Campos*
Affiliation:
Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico, Campus Universitário Capão do Leão s/n°, CEP 96160–000, Capão do Leão, RS, Brasil.
*
All correspondence to: Vinicius Farias Campos, Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico, Campus Universitário Capão do Leão s/n°, CEP 96160–000, Capão do Leão, RS, Brasil. Tel: +55 53 3275 7350. E-mail: fariascampos@gmail.com

Summary

Bovine sex-sorted sperm have been commercialized and successfully used for the production of transgenic embryos of the desired sex through the sperm-mediated gene transfer (SMGT) technique. However, sex-sorted sperm show a reduced ability to internalize exogenous DNA. The interaction between sperm cells and the exogenous DNA has been reported in other species to be a CD4-like molecule-dependent process. The flow cytometry-based sex-sorting process subjects the spermatozoa to different stresses causing changes in the cell membrane. The aim of this study was to elucidate the relationship between the redistribution of CD4-like molecules and binding of exogenous DNA to sex-sorted bovine sperm. In the first set of experiments, the membrane phospholipid disorder and the redistribution of the CD4 were evaluated. The second set of experiments was conducted to investigate the effect of CD4 redistribution on the mechanism of binding of exogenous DNA to sperm cells and the efficiency of lipofection in sex-sorted bovine sperm. Sex-sorting procedure increased the membrane phospholipid disorder and induced the redistribution of CD4-like molecules. Both X-sorted and Y-sorted sperm had decreased DNA bound to membrane in comparison with the unsorted sperm; however, the binding of the exogenous DNA was significantly increased with the addition of liposomes. Moreover, we demonstrated that the number of sperm-bound exogenous DNA was decreased when these cells were preincubated with anti-bovine CD4 monoclonal antibody, supporting our hypothesis that CD4-like molecules indeed play a crucial role in the process of exogenous DNA/bovine sperm cells interaction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, R.J. & Nixon, B. (2013). Sperm capacitation: a distant landscape glimpsed but unexplored. Mol. Hum. Reprod. 19, 785–93.CrossRefGoogle ScholarPubMed
Anifandis, G., Messini, C., Dafopoulos, K., Sotiriou, S. & Messinis, I. (2014). Molecular and cellular mechanisms of sperm-oocyte interactions opinions relative to in vitro fertilization (IVF). Int. J. Mol. Sci. 15, 12972–97.CrossRefGoogle ScholarPubMed
Anzar, M. & Buhr, M.M. (2006). Spontaneous uptake of exogenous DNA by bull spermatozoa. Theriogenology 65, 683–90.Google Scholar
Arias, M.E., Sanchez-Villalba, E., Delgado, A. & Felmer, R. (2017). Effect of transfection and co-incubation of bovine sperm with exogenous DNA on sperm quality and functional parameters for its use in sperm-mediated gene transfer. Zygote 25, 8597.CrossRefGoogle ScholarPubMed
Ashrafzadeh, A., Karsani, S.A. & Nathan, S. (2013). Mammalian sperm fertility related proteins. Int. J. Med. Sci. 10, 1649–57.Google Scholar
Balao da Silva, C.M., Ortega-Ferrusola, C., Morrell, J.M., Rodriguez Martinez, H. & Pena, F.J. (2016). Flow cytometric chromosomal sex sorting of stallion spermatozoa induces oxidative stress on mitochondria and genomic DNA. Reprod. Domest. Anim. [Zuchthygiene] 51, 1825.CrossRefGoogle ScholarPubMed
Balao da Silva, C.M., Ortega-Ferrusola, C., Morillo Rodriguez, A., Gallardo Bolanos, J.M., Plaza Davila, M., Morrell, J.M., Rodriguez Martinez, H., Tapia, J.A., Aparicio, I.M. & Pena, F.J. (2013). Sex sorting increases the permeability of the membrane of stallion spermatozoa. Anim. Reprod. Sci. 138, 241–51.Google Scholar
Ball, B.A., Sabeur, K. & Allen, W.R. (2008). Liposome-mediated uptake of exogenous DNA by equine spermatozoa and applications in sperm-mediated gene transfer. Equine Vet. J. 40, 7682.Google Scholar
Bucci, D., Galeati, G., Giaretta, E., Tamanini, C. & Spinaci, M. (2013). Sex-sorting of boar spermatozoa does not influence the localization of glucose transporters. Reprod. Biol. 13, 341–3.Google Scholar
Campos, V.F., de Leon, P.M., Komninou, E.R., Dellagostin, O.A., Deschamps, J.C., Seixas, F.K. & Collares, T. (2011a). NanoSMGT: transgene transmission into bovine embryos using halloysite clay nanotubes or nanopolymer to improve transfection efficiency. Theriogenology 76, 1552–60.Google Scholar
Campos, V.F., Komninou, E.R., Urtiaga, G., de Leon, P.M., Seixas, F.K., Dellagostin, O.A., Deschamps, J.C. & Collares, T. (2011b). NanoSMGT: transfection of exogenous DNA on sex-sorted bovine sperm using nanopolymer. Theriogenology 75, 1476–81.Google Scholar
Canovas, S., Gutierrez-Adan, A. & Gadea, J. (2010). Effect of exogenous DNA on bovine sperm functionality using the sperm mediated gene transfer (SMGT) technique. Mol. Reprod. Dev. 77, 687–98.Google Scholar
Chen, X., Zhu, H., Wu, C., Han, W., Hao, H., Zhao, X., Du, W., Qin, T., Liu, Y. & Wang, D. (2012). Identification of differentially expressed proteins between bull X and Y spermatozoa. J. Proteomics 77, 5967.Google Scholar
Cornelis, S., Vandenbranden, M., Ruysschaert, J.M. & Elouahabi, A. (2002). Role of intracellular cationic liposome-DNA complex dissociation in transfection mediated by cationic lipids. DNA Cell Biol. 21, 91–7.CrossRefGoogle ScholarPubMed
Dimitrova-Dikanarova, D.K., Marinova, T.T. & Fichorova, R.N. (1998). Heterogeneity in the presence of CD4-like molecules on human spermatozoa. Andrologia 30, 147–51.Google Scholar
Flesch, F.M., Brouwers, J.F., Nievelstein, P.F., Verkleij, A.J., van Golde, L.M., Colenbrander, B. & Gadella, B.M. (2001). Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane. J. Cell Sci. 114, 3543–55.CrossRefGoogle ScholarPubMed
Gadella, B.M., Tsai, P.S., Boerke, A. & Brewis, I.A. (2008). Sperm head membrane reorganisation during capacitation. Int. J. Dev. Biol. 52, 473–80.Google Scholar
Gangwar, D.K. & Atreja, S.K. (2015). Signalling events and associated pathways related to the mammalian sperm capacitation. Reprod. Domest. Anim. [Zuchthygiene] 50, 705–11.Google Scholar
Garner, D.L. (2006). Flow cytometric sexing of mammalian sperm. Theriogenology 65, 943–57.Google Scholar
Gobert, B., Amiel, C., Tang, J.Q., Barbarino, P., Bene, M.C. & Faure, G. (1990). CD4-like molecules in human sperm. FEBS Lett. 261, 339–42.Google Scholar
Hoelker, M., Mekchay, S., Schneider, H., Bracket, B.G., Tesfaye, D., Jennen, D., Tholen, E., Gilles, M., Rings, F., Griese, J. & Schellander, K. (2007). Quantification of DNA binding, uptake, transmission and expression in bovine sperm mediated gene transfer by RT-PCR: effect of transfection reagent and DNA architecture. Theriogenology 67, 1097–107.Google Scholar
Ibanescu, I., Leiding, C., Ciornei, S.G., Rosca, P., Sfartz, I. & Drugociu, D. (2016). Differences in CASA output according to the chamber type when analyzing frozen–thawed bull sperm. Anim. Reprod. Sci. 166, 72–9.Google Scholar
Lavitrano, M., Maione, B., Forte, E., Francolini, M., Sperandio, S., Testi, R. & Spadafora, C. (1997). The interaction of sperm cells with exogenous DNA: a role of CD4 and major histocompatibility complex class II molecules. Exp. Cell Res. 233, 5662.Google Scholar
Leahy, T. & Gadella, B.M. (2011). Sperm surface changes and physiological consequences induced by sperm handling and storage. Reproduction 142, 759–78.Google Scholar
Macias-Garcia, B., Gonzalez-Fernandez, L., Loux, S.C., Rocha, A.M., Guimaraes, T., Pena, F.J., Varner, D.D. & Hinrichs, K. (2015). Effect of calcium, bicarbonate, and albumin on capacitation-related events in equine sperm. Reproduction 149, 8799.Google Scholar
Magalhaes, S., Duarte, S., Monteiro, G.A. & Fernandes, F. (2014). Quantitative evaluation of DNA dissociation from liposome carriers and DNA escape from endosomes during lipid-mediated gene delivery. Hum. Gene Therap. Method 25, 303–13.Google Scholar
Mo, R.H., Zaro, J.L., Ou, J.H. & Shen, W.C. (2012). Effects of Lipofectamine 2000/siRNA complexes on autophagy in hepatoma cells. Mol. Biotechnol. 51, 18.Google Scholar
Parrish, J.J. (2014). Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin. Theriogenology 81, 6773.Google Scholar
Quan, G.B., Ma, Y., Li, J., Wu, G.Q., Li, D.J., Ni, Y.N., Lv, C.R., Zhu, L. & Hong, Q.H. (2015). Effects of Hoechst33342 staining on the viability and flow cytometric sex-sorting of frozen–thawed ram sperm. Cryobiology 70, 2331.Google Scholar
Rajaganapathy, B.R., Chancellor, M.B., Nirmal, J., Dang, L. & Tyagi, P. (2015). Bladder uptake of liposomes after intravesical administration occurs by endocytosis. PLoS One 10, e0122766.CrossRefGoogle ScholarPubMed
Rath, D., Barcikowski, S., de Graaf, S., Garrels, W., Grossfeld, R., Klein, S., Knabe, W., Knorr, C., Kues, W., Meyer, H., Michl, J., Moench-Tegeder, G., Rehbock, C., Taylor, U. & Washausen, S. (2013). Sex selection of sperm in farm animals: status report and developmental prospects. Reproduction 145, R15–30.Google Scholar
Sercombe, L., Veerati, T., Moheimani, F., Wu, S.Y., Sood, A.K. & Hua, S. (2015). Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286.Google Scholar
Sim, B.W., Cha, J.J., Song, B.S., Kim, J.S., Yoon, S.B., Choi, S.A., Jeong, K.J., Kim, Y.H., Huh, J.W., Lee, S.R., Kim, S.H., Lee, C.S., Kim, S.U. & Chang, K.T. (2013). Efficient production of transgenic mice by intracytoplasmic injection of streptolysin-O-treated spermatozoa. Mol. Reprod. Dev. 80, 233–41.Google Scholar
Smith, K. & Spadafora, C. (2005). Sperm-mediated gene transfer: applications and implications. BioEssays 27, 551–62.Google Scholar
Spinaci, M., Volpe, S., Bernardini, C., de Ambrogi, M., Tamanini, C., Seren, E. & Galeati, G. (2006). Sperm sorting procedure induces a redistribution of Hsp70 but not Hsp60 and Hsp90 in boar spermatozoa. J. Androl. 27, 899–907.CrossRefGoogle Scholar
Suh, T.K., Schenk, J.L. & Seidel, G.E. Jr. (2005). High pressure flow cytometric sorting damages sperm. Theriogenology 64, 1035–48.CrossRefGoogle ScholarPubMed
Trigal, B., Gomez, E., Caamano, J.N., Munoz, M., Moreno, J., Carrocera, S., Martin, D. & Diez, C. (2012). In vitro and in vivo quality of bovine embryos in vitro produced with sex-sorted sperm. Theriogenology 78, 1465–75.Google Scholar
Wang, L., Fan, J., Yu, M., Zheng, S. & Zhao, Y. (2011). Association of goat (Capra hircus) CD4 gene exon 6 polymorphisms with ability of sperm internalizing exogenous DNA. Mol. Biol. Rep. 38, 1621–8.Google Scholar
Xin, N., Liu, T., Zhao, H., Wang, Z., Liu, J., Zhang, Q. & Qi, J. (2014). The effect of exogenous DNA on the structure of sperm of olive flounder (Paralichthys olivaceus). Anim. Reprod. Sci. 149, 305–10.Google Scholar
Zaniboni, A., Spinaci, M., Zannoni, A., Bernardini, C., Forni, M. & Bacci, M.L. (2016). X and Y chromosome-bearing spermatozoa are equally able to uptake and internalize exogenous DNA by sperm-mediated gene transfer in swine. Res. Vet. Sci. 104, 13.CrossRefGoogle ScholarPubMed