Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T09:26:49.400Z Has data issue: false hasContentIssue false

The mechanisms that control the preantral to early antral follicle transition and the strategies to have efficient culture systems to promote their growth in vitro

Published online by Cambridge University Press:  24 May 2023

D. R. Nascimento
Affiliation:
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
E. C. Barbalho
Affiliation:
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
L. Gondim Barrozo
Affiliation:
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
E. I. T. de Assis
Affiliation:
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
F. C. Costa
Affiliation:
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
J. R. V. Silva*
Affiliation:
Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
*
Corresponding author: J. R. V. Silva. Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceará, Sobral, Ceará, Brazil, Av. Comandante Maurocélio Rocha Pontes, 100 – Derby, Sobral – CE, 62042-280, Brazil. Tel: +88 3611 8000. Email: jrvsilva@ufc.br

Summary

Preantral to early antral follicles transition is a complex process regulated by endocrine and paracrine factors, as well as by a precise interaction among oocyte, granulosa cells and theca cells. Understanding the mechanisms that regulate this step of folliculogenesis is important to improve in vitro culture systems, and opens new perspectives to use oocytes from preantral follicles for assisted reproductive technologies. Therefore, this review aims to discuss the endocrine and paracrine mechanisms that control granulosa cell proliferation and differentiation, formation of the antral cavity, estradiol production, atresia, and follicular fluid production during the transition from preantral to early antral follicles. The strategies that promote in vitro growth of preantral follicles are also discussed.

Type
Review Article
Copyright
© Federal University of Ceará, 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel Aziz, R. L., Abdel-Wahab, A., Ibrahim, M. A. and Kasimanickam, R. K. (2021). Transcript abundance of anti-Müllerian hormone and follicle-stimulating hormone receptor predicted superstimulatory response in embryo donor Holstein cows. Reproduction in Domestic Animals, 56(1), 153160. doi: 10.1111/rda.13859 CrossRefGoogle ScholarPubMed
Adashi, E. Y., Resnick, C. E., D’Ercole, A. J., Svoboda, M. E. and van Wyk, J. J. (1985). Insulin-like growth factors as intraovarian regulators of granulosa cell growth and function. Endocrine Reviews, 6(3), 400420. doi: 10.1210/edrv-6-3-400 CrossRefGoogle ScholarPubMed
Alam, M. H., Lee, J. and Miyano, T. (2018). GDF9 and BMP15 induce development of antrum-like structures by bovine granulosa cells without oocytes. Journal of Reproduction and Development, 64(5), 423431. doi: 10.1262/jrd.2018-078 CrossRefGoogle ScholarPubMed
Alam, M. H. and Miyano, T. (2020). Interaction between growing oocytes and granulosa cells in vitro . Reproductive Medicine and Biology, 19(1), 1323. doi: 10.1002/rmb2.12292 CrossRefGoogle ScholarPubMed
Ang, L., Xingping, G., Haixia, C., Zhulin, W. and Huaixiu, W. (2022). Assessment of cGMP level in medium during in vitro growth period of murine preantral follicles with and without supplementation of C-type natriuretic peptide. Zygote, 30(1), 98102. doi: 10.1017/S0967199421000393 CrossRefGoogle ScholarPubMed
Antonino, D. C., Soares, M. M., Júnior, J. M., de Alvarenga, P. B., Mohallem, R. F. F., Rocha, C. D., Vieira, L. A., de Souza, A. G., Beletti, M. E., Alves, B. G., Jacomini, J. O., Goulart, L. R. and Alves, K. A. (2019). Three-dimensional levitation culture improves in-vitro growth of secondary follicles in bovine model. Reproductive Biomedicine Online, 38(3), 300311. doi: 10.1016/j.rbmo.2018.11.013 CrossRefGoogle ScholarPubMed
Araújo, V. R., Lima-Verde, I. B., Name, K. P. O., Báo, S. N., Campello, C. C., Silva, J. R. V., Rodrigues, A. P. R. and Figueiredo, J. Rd. (2010). Bone morphogenetic protein-6 (BMP-6) induces atresia in goat primordial follicles cultured in vitro . Pesquisa Veterinária Brasileira, 30(9), 770781. doi: 10.1590/S0100-736X2010000900010 CrossRefGoogle Scholar
Araújo, V. R., Silva, G. M., Duarte, A. B., Magalhães, D. M., Almeida, A. P., Gonçalves, R. F., Bruno, J. B., Silva, T. F., Campello, C. C., Rodrigues, A. P. and Figueiredo, J. R. (2011). Vascular endothelial growth factor-A(165) (VEGF-A(165)) stimulates the in vitro development and oocyte competence of goat preantral follicles. Cell and Tissue Research, 346(2), 273281. doi: 10.1007/s00441-011-1251-1 CrossRefGoogle Scholar
Araújo, V. R., Gastal, M. O., Figueiredo, J. R. and Gastal, E. L. (2014). In vitro culture of bovine preantral follicles: A review. Reproductive Biology and Endocrinology: RB&E, 12, 78. doi: 10.1186/1477-7827-12-78 CrossRefGoogle ScholarPubMed
Arunakumari, G., Shanmugasundaram, N. and Rao, V. H. (2010). Development of morulae from the oocytes of cultured sheep preantral follicles. Theriogenology, 74(5), 884894. doi: 10.1016/j.theriogenology.2010.04.013 CrossRefGoogle ScholarPubMed
Asghari, R., Shokri-Asl, V., Rezaei, H., Tavallaie, M., Khafaei, M., Abdolmaleki, A. and Majdi Seghinsara, A. M. (2021). Alteration of TGFB1, GDF9, and BMPR2 gene expression in preantral follicles of an estradiol valerate-induced polycystic ovary mouse model can lead to anovulation, polycystic morphology, obesity, and absence of hyperandrogenism. Clinical and Experimental Reproductive Medicine, 48(3), 245254. doi: 10.5653/cerm.2020.04112 CrossRefGoogle ScholarPubMed
Assou, S., Al-Edani, T., Haouzi, D., Philippe, N., Lecellier, C. H., Piquemal, D., Commes, T., Aït-Ahmed, O., Dechaud, H. and Hamamah, S. (2013). MicroRNAs: New candidates for the regulation of the human cumulus–oocyte complex. Human Reproduction, 28(11), 30383049. doi: 10.1093/humrep/det321 CrossRefGoogle ScholarPubMed
Barros, V. R. P., Cavalcante, A. Y. P., Macedo, T. J. S., Barberino, R. S., Lins, T. L. B., Gouveia, B. B., Menezes, V. G., Queiroz, M. A. A., Araújo, V. R., Palheta, R. C. Jr, Leite, M. C. P. and Matos, M. H. T. (2013). Immunolocalization of melatonin and follicle-stimulating hormone receptors in caprine ovaries and their effects during in vitro development of isolated pre-antral follicles. Reproduction in Domestic Animals, 48(6), 10251033. doi: 10.1111/rda.12209 CrossRefGoogle ScholarPubMed
Barros, V. R. P., Monte, A. P. O., Santos, J. M. S., Lins, T. L. B. G., Cavalcante, A. Y. P., Gouveia, B. B., Müller, M. C., Oliveira, J. L., Donfack, N. J., Araújo, V. R. and Matos, M. H. T. (2020). Melatonin improves development, mitochondrial function and promotes the meiotic resumption of sheep oocytes from in vitro grown secondary follicles. Theriogenology, 144, 6773. doi: 10.1016/j.theriogenology.2019.12.006 CrossRefGoogle ScholarPubMed
Baumgarten, S. C. and Stocco, C. (2018). Granulosa cells. In: Skinner, M. K. (ed.) Encyclopedia of Reproduction 2nd edition, Academic Press, pp. 813. doi: 10.1016/B978-0-12-801238-3.64623-8 CrossRefGoogle Scholar
Belli, M., Vigone, G., Merico, V., Redi, C. A., Zuccotti, M. and Garagna, S. (2012). Towards a 3D culture of mouse ovarian follicles. International Journal of Developmental Biology, 56(10–12), 931937–9377. doi: 10.1387/ijdb.120175mz CrossRefGoogle ScholarPubMed
Bezerra, F. T. G., Lima, F. E. O., Paulino, L. R. F. M., Silva, B. R., Silva, A. W. B., Souza, A. L. P., van den Hurk, R. and Silva, J. R. V. (2019a). In vitro culture of secondary follicles and prematuration of cumulus–oocyte complexes from antral follicles increase the levels of maturation-related transcripts in bovine oocytes. Molecular Reproduction and Development, 86(12), 18741886. doi: 10.1002/mrd.23284 CrossRefGoogle ScholarPubMed
Bezerra, M. É. S., Monte, A. P. O., Barberino, R. S., Lins, T. L. B. G., Oliveira Junior, J. L. O., Santos, J. M. S., Bezerra, D. O., Neves, C. A., Silva, G. C., Carvalho, M. A. M. and Matos, M. H. T. (2019b). Conditioned medium of ovine Wharton’s jelly-derived mesenchymal stem cells improves growth and reduces ROS generation of isolated secondary follicles after short-term in vitro culture. Theriogenology, 125, 5663. doi: 10.1016/j.theriogenology.2018.10.012 CrossRefGoogle ScholarPubMed
Bishonga, C., Takahashi, Y., Katagiri, S., Nagano, M. and Ishikawa, A. (2001). In vitro growth of mouse ovarian preantral follicles and the capacity of their oocytes to develop to the blastocyst stage. Journal of Veterinary Medical Science, 63(6), 619624. doi: 10.1292/jvms.63.619 CrossRefGoogle Scholar
Braw-Tal, R. and Roth, Z. (2005). Gene expression for LH receptor, 17 alpha-hydroxylase and StAR in the theca interna of preantral and early antral follicles in the bovine ovary. Reproduction, 129(4), 453461. doi: 10.1530/rep.1.00464 CrossRefGoogle ScholarPubMed
Bulgarelli, D. L., Ting, A. Y., Gordon, B. J., de Sá Rosa-e-Silva, A. C. J. and Zelinski, M. B. (2018). Development of macaque secondary follicles exposed to neutral red prior to 3-dimensional culture. Journal of Assisted Reproduction and Genetics, 35(1), 7179. doi: 10.1007/s10815-017-1043-y CrossRefGoogle ScholarPubMed
Buratini, J. J., Pinto, M. G. L., Castilho, A. C., Amorim, R. L., Giometti, I. C., Portela, V. M., Nicola, E. S. and Price, C. A. (2007). Expression and function of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2b, in bovine follicles. Biology of Reproduction, 77(4), 743750. doi: 10.1095/biolreprod.107.062273 CrossRefGoogle ScholarPubMed
Cadenas, J., Leiva-Revilla, J., Vieira, L. A., Apolloni, L. B., Aguiar, F. L. N., Alves, B. G., Lobo, C. H., Rodrigues, A. P. R., Apgar, G. A., Smitz, J., Figueiredo, J. R. and Maside, C. (2017). Caprine ovarian follicle requirements differ between preantral and early antral stages after IVC in medium supplemented with GH and VEGF alone or in combination. Theriogenology, 87(321), 321332. doi: 10.1016/j.theriogenology.2016.09.008 CrossRefGoogle ScholarPubMed
Camp, T. A., Rahal, J. O. and Mayo, K. E. (1991). Cellular localization and hormonal regulation of follicle-stimulating hormone and luteinizing hormone receptor messenger RNAs in the rat ovary. Molecular Endocrinology, 5(10), 14051417. doi: 10.1210/mend-5-10-1405 CrossRefGoogle ScholarPubMed
Campbell, B. K., Clinton, M. and Webb, R. (2012). The role of anti-Müllerian hormone (AMH) during follicle development in a monovulatory species (sheep). Endocrinology, 153(9), 45334543. doi: 10.1210/en.2012-1158 CrossRefGoogle Scholar
Cao, L., Li, S., Huang, S., Shi, D. and Li, X. (2021). AQP8 participates in oestrogen-mediated buffalo follicular development by regulating apoptosis of granulosa cells. Reproduction in Domestic Animals, 56(5), 812820. doi: 10.1111/rda.13921 CrossRefGoogle ScholarPubMed
Carson, R. and Smith, J. (1986). Development and steroidogenic activity of preantral follicles in the neonatal rat ovary. Journal of Endocrinology, 110(1), 8792. doi: 10.1677/joe.0.1100087 CrossRefGoogle ScholarPubMed
Celestino, J. J. H., Lima-Verde, I. B., Bruno, J. B., Matos, M. H. T., Chaves, R. N., Saraiva, M. V. A., Silva, C. M. G., Faustino, L. R., Rossetto, R., Lopes, C. A. P., Donato, M. A. M., Peixoto, C. A., Campello, C. C., Silva, J. R. V. and Figueiredo, J. R. (2011). Steady-state level of bone morphogenetic protein-15 in goat ovaries and its influence on in vitro development and survival of preantral follicles. Molecular and Cellular Endocrinology, 338(1–2), 19. doi: 10.1016/j.mce.2011.02.007 CrossRefGoogle ScholarPubMed
Chansaenroj, A., Songsasen, N. and Chatdarong, K. (2019). Equine chorionic gonadotropin induces in vitro follicular growth from the multi-layered secondary developmental stage in cats. Theriogenology, 123, 116122. doi: 10.1016/j.theriogenology.2018.09.040 CrossRefGoogle ScholarPubMed
Chiti, M. C., Dolmans, M. M., Hobeika, M., Cernogoraz, A., Donnez, J. and Amorim, C. A. (2017). A modified and tailored human follicle isolation procedure improves follicle recovery and survival. Journal of Ovarian Research, 10(1), 71. doi: 10.1186/s13048-017-0366-8 CrossRefGoogle ScholarPubMed
Chu, Y. L., Xu, Y. R., Yang, W. X. and Sun, Y. (2018). The role of FSH and TGF-β superfamily in follicle atresia. Aging, 10(3), 305321. doi: 10.18632/aging.101391 CrossRefGoogle ScholarPubMed
Clarke, H. G., Hope, S. A., Byers, S. and Rodgers, R. J. (2006). Formation of ovarian follicular fluid may be due to the osmotic potential of large glycosaminoglycans and proteoglycans. Reproduction, 132(1), 119131. doi: 10.1530/rep.1.00960 CrossRefGoogle Scholar
da Cunha, E. V., Melo, L. R. F., Sousa, G. B., Araújo, V. R., Vasconcelos, G. L., Silva, A. W. B. and Silva, J. R. V. (2018). Effect of bone morphogenetic proteins 2 and 4 on survival and development of bovine secondary follicles cultured in vitro . Theriogenology, 110, 4451. doi: 10.1016/j.theriogenology.2017.12.032 CrossRefGoogle ScholarPubMed
da Silva, G. M., Rossetto, R., Chaves, R. N., Duarte, A. B. G., Araújo, V. R., Feltrin, C., Bernuci, M. P., Anselmo-Franci, J. A., Xu, M., Woodruff, T. K., Campello, C. C. and Figueiredo, J. R. (2015). In vitro development of secondary follicles from pre-pubertal and adult goats cultured in two-dimensional or three-dimensional systems. Zygote, 23(4), 475484. doi: 10.1017/S0967199414000070 CrossRefGoogle Scholar
De Conto, E., Matte, U. and Cunha-Filho, J. S. (2021). BMP-6 and SMAD4 gene expression is altered in cumulus cells from women with endometriosis-associated infertility. Acta Obstetricia et Gynecologica Scandinavica, 100(5), 868875. doi: 10.1111/aogs.13931 CrossRefGoogle ScholarPubMed
de Figueiredo, J. R. and de Lima, L. F. (2017). Artificial ovary technology: Applications, state of art, limitations and prospects. Revista Brasileira de Reprodução Animal, 41(1), 248253.Google Scholar
de Figueiredo, J. R., de Lima, L. F., Silva, J. R. V. and Santos, R. R. (2018). Control of growth and development of preantral follicle: Insights from in vitro culture. Animal Reproduction, 15 Suppl. 1, 648659. doi: 10.21451/1984-3143-AR2018-0019 CrossRefGoogle Scholar
de Figueiredo, J. R., Cadenas, J., de Lima, L. F. and Santos, R. R. (2020). Advances in in vitro folliculogenesis in domestic ruminants. Animal Reproduction, 16(1), 5265. doi: 10.21451/1984-3143-AR2018-123 CrossRefGoogle ScholarPubMed
de Lima, L. F., Rubessa, M., Rocha, R. M. P., Winters, R., Milner, D. J., Campello, C. C., Figueiredo, J. R. and Wheeler, M. B. (2017). High diluted and dynamised follicle stimulating hormone modulates steroid production in isolated porcine preantral follicles cultured in vitro . Homeopathy, 106(2), 8792. doi: 10.1016/j.homp.2017.03.004 Google ScholarPubMed
Dumesic, D. A., Meldrum, D. R., Katz-Jaffe, M. G., Krisher, R. L. and Schoolcraft, W. B. (2015). Oocyte environment: Follicular fluid and cumulus cells are critical for oocyte health. Fertility and Sterility, 103(2), 303316. doi: 10.1016/j.fertnstert.2014.11.015 CrossRefGoogle ScholarPubMed
Durlej, M., Knapczyk-Stwora, K., Duda, M., Galas, J. and Slomczynska, M. (2011). The expression of FSH receptor (FSHR) in the neonatal porcine ovary and its regulation by flutamide. Reproduction in Domestic Animals, 46(3), 377384. doi: 10.1111/j.1439-0531.2010.01673.x CrossRefGoogle ScholarPubMed
Egan, D. F., Shackelford, D. B., Mihaylova, M. M., Gelino, S., Kohnz, R. A., Mair, W., Vasquez, D. S., Joshi, A., Gwinn, D. M., Taylor, R., Asara, J. M., Fitzpatrick, J., Dillin, A., Viollet, B., Kundu, M., Hansen, M. and Shaw, R. J. (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 331(6016), 456461. doi: 10.1126/science.1196371 CrossRefGoogle ScholarPubMed
Emerling, B. M., Weinberg, F., Snyder, C., Burgess, Z., Mutlu, G. M., Viollet, B., Budinger, G. R. and Chandel, N. S. (2009). Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radical Biology and Medicine, 46(10), 13861391. doi: 10.1016/j.freeradbiomed.2009.02.019 CrossRefGoogle ScholarPubMed
Eppig, J. J. and O’Brien, M. J. (1996). Development in vitro of mouse oocytes from primordial follicles. Biology of Reproduction, 54(1), 197207. doi: 10.1095/biolreprod54.1.197 CrossRefGoogle ScholarPubMed
Ferreira, A. C. A., Cadenas, J., , N. A. R., Correia, H. H. V., Guerreiro, D. D., Lobo, C. H., Alves, B. G., Maside, C., Gastal, E. L., Rodrigues, A. P. R. and Figueiredo, J. R. (2018). In vitro culture of isolated preantral and antral follicles of goats using human recombinant FSH: Concentration-dependent and stage-specific effect. Animal Reproduction Science, 196, 120129. doi: 10.1016/j.anireprosci.2018.07.004 CrossRefGoogle ScholarPubMed
Fitzpatrick, S. L. and Richards, J. S. (1994). Identification of a cyclic adenosine 3′, 5′-monophosphate-response element in the rat aromatase promoter that is required for transcriptional activation in rat granulosa cells and R2C leydig cells. Molecular Endocrinology, 8(10), 13091319. doi: 10.1210/mend.8.10.7854348 Google ScholarPubMed
Forrest, K. K., Flores, V. V., Gurule, S. C., Soto-Navarro, S., Shuster, C. B., Gifford, C. A. and Gifford, J. A. H. (2022). Effects of lipopolysaccharide on follicular estrogen production and developmental competence in bovine oocytes. Animal Reproduction Science, 237, 106927. doi: 10.1016/j.anireprosci.2022.106927 CrossRefGoogle ScholarPubMed
Frota, I. M. A., Silva, J. R. V., Leitão, C. C. F. and Brito, I. R. (2009). Importance of local growth factors in the regulation of ovarian folliculogenesis in mammals. Acta Scientiae Veterinariae, 37(3), 215224.Google Scholar
Frota, I. M., Leitao, C. C., Costa, J. J., Van den Hurk, R., Brito, I. R., Saraiva, M. V. A., Figueiredo, J. R. and Silva, J. R. V. (2011). Effects of BMP-7 and FSH on the development of goat preantral follicles and levels of mRNA for FSH-R, BMP-7 and BMP receptors after in-vitro culture. Animal Reproduction, 8(1–2), 2531.Google Scholar
Fushii, M., Yamada, R. and Miyano, T. (2021). In vitro growth of bovine oocytes in oocyte-cumulus cell complexes and the effect of follicle stimulating hormone on the growth of oocytes. Journal of Reproduction and Development, 67(1), 513. doi: 10.1262/jrd.2020-102 CrossRefGoogle ScholarPubMed
Gannon, A. M., Stämpfli, M. R. and Foster, W. G. (2012). Cigarette smoke exposure leads to follicle loss via an alternative ovarian cell death pathway in a mouse model. Toxicological Sciences, 125(1), 274284. doi: 10.1093/toxsci/kfr279 CrossRefGoogle ScholarPubMed
García-Guerra, A., Canavessi, A. M. O., Monteiro, P. L. J. Jr, Mezera, M. A., Sartori, R., Kirkpatrick, B. W. and Wiltbank, M. C. (2018). Trio, a novel bovine high fecundity allele: III. Acquisition of dominance and ovulatory capacity at a smaller follicle size. Biology of Reproduction, 98(3), 350365. doi: 10.1093/biolre/iox157 Google Scholar
Gautam, D., Vats, A., Pal, P., Haldar, A. and De, S. (2021). Characterization of anti-Müllerian hormone (AMH) gene in buffaloes and goats. Frontiers in Veterinary Science, 8, 627094. doi: 10.3389/fvets.2021.627094 CrossRefGoogle ScholarPubMed
Ghorbani, S., Eyni, H., Norahan, M. H., Zarrintaj, P., Urban, N., Mohammadzadeh, A., Mostafavi, E. and Sutherland, D. S. (2022). Advanced bioengineering of female germ cells to preserve fertility. Biology of Reproduction, 107(5), 11771204. doi: 10.1093/biolre/ioac160 Google ScholarPubMed
Ginther, O. J., Beg, M. A., Bergfelt, D. R., Donadeu, F. X. and Kot, K. (2001). Follicle selection in monovular species. Biology of Reproduction, 65(3), 638647. doi: 10.1095/biolreprod65.3.638 CrossRefGoogle ScholarPubMed
Glister, C., Kemp, C. F. and Knight, P. G. (2004). Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: Actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction, 127(2), 239254. doi: 10.1530/rep.1.00090 CrossRefGoogle ScholarPubMed
Gomes, F. D. R., de Brito, D. C. C., de Sá, N. A. R., Ñaupas, L. V. S., Palomino, G. J. Q., da Silva, R. F., Lopes, É. P. F., Mbemya, G. T., Alves, B. G., Zelinski, M., de Figueiredo, J. R. and Rodrigues, A. P. R. (2022). Development of sheep secondary follicles and preservation of aromatase and metalloproteinases 2 and 9 after vitrification and in vitro culture. Cell and Tissue Banking, 23(2), 247259. doi: 10.1007/s10561-021-09937-5 CrossRefGoogle ScholarPubMed
Gordy, C. and He, Y. W. (2012). The crosstalk between autophagy and apoptosis: Where does this lead? Protein and Cell, 3(1), 1727. doi: 10.1007/s13238-011-1127-x CrossRefGoogle ScholarPubMed
Green, L. J. and Shikanov, A. (2016). In vitro culture methods of preantral follicles. Theriogenology, 86(1), 229238. doi: 10.1016/j.theriogenology.2016.04.036 CrossRefGoogle ScholarPubMed
Hao, J., Tuck, A. R., Prakash, C. R., Damdimopoulos, A., Sjödin, M. O. D., Lindberg, J., Niklasson, B., Pettersson, K., Hovatta, O. and Damdimopoulou, P. (2020). Culture of human ovarian tissue in xeno-free conditions using laminin components of the human ovarian extracellular matrix. Journal of Assisted Reproduction and Genetics, 37(9), 21372150. doi: 10.1007/s10815-020-01886-4 CrossRefGoogle ScholarPubMed
Healy, M. W., Dolitsky, S. N., Villancio-Wolter, M., Raghavan, M., Tillman, A. R., Morgan, N. Y., DeCherney, A. H., Park, S. and Wolff, E. F. (2021). Creating an artificial 3-dimensional ovarian follicle culture system using a microfluidic system. Micromachines, 12(3), 261. doi: 10.3390/mi12030261 CrossRefGoogle ScholarPubMed
Huang, C. T., Weitsman, S. R., Dykes, B. N. and Magoffin, D. A. (2001). Stem cell factor and insulin-like growth factor-I stimulate luteinizing hormone-independent differentiation of rat ovarian theca cells. Biology of Reproduction, 64(2), 451456. doi: 10.1095/biolreprod64.2.451 CrossRefGoogle ScholarPubMed
Iber, D. and Geyter, C. D. (2013). Computational modelling of bovine ovarian follicle development. BMC Systems Biology, 7, 60. doi: 10.1186/1752-0509-7-60 CrossRefGoogle ScholarPubMed
Ishibashi, K., Hara, S. and Kondo, S. (2009). Aquaporin water channels in mammals. Clinical and Experimental Nephrology, 13(2), 107117. doi: 10.1007/s10157-008-0118-6 CrossRefGoogle ScholarPubMed
Ismail, R. S., Dubé, M. and Vanderhyden, B. C. (1997). Hormonally regulated expression and alternative splicing of kit ligand may regulate kit-induced inhibition of meiosis in rat oocytes. Developmental Biology, 184(2), 333342. doi: 10.1006/dbio.1997.8531 CrossRefGoogle ScholarPubMed
Jachter, S. L., Simmons, W. P., Estill, C., Xu, J. and Bishop, C. V. (2022). Matrix-free three-dimensional culture of bovine secondary follicles to antral stage: Impact of media formulation and epidermal growth factor (EGF). Theriogenology, 181, 8994. doi: 10.1016/j.theriogenology.2022.01.013 CrossRefGoogle ScholarPubMed
Kawashima, I. and Kawamura, K. (2018). Regulation of follicle growth through hormonal factors and mechanical cues mediated by Hippo signaling pathway. Systems Biology in Reproductive Medicine, 64(1), 311. doi: 10.1080/19396368.2017.1411990 CrossRefGoogle ScholarPubMed
Kayamori, T., Kosaka, N., Miyamoto, A. and Shimizu, T. (2009). The differential pathways of bone morphogenetic protein (BMP)-4 and -7 in the suppression of the bovine granulosa cell apoptosis. Molecular and Cellular Biochemistry, 323(1–2), 161168. doi: 10.1007/s11010-008-9976-1 CrossRefGoogle ScholarPubMed
Kere, M., Liu, P. C., Chen, Y. K., Chao, P. C., Tsai, L. K., Yeh, T. Y., Siriboon, C., Intawicha, P., Lo, N. W., Chiang, H. I., Fan, Y. K. and Ju, J. C. (2020). Ultrastructural characterization of porcine growing and in vitro matured oocytes. Animals: An Open Access Journal from MDPI, 10(4), 116. doi: 10.3390/ani10040664 CrossRefGoogle ScholarPubMed
Khunmanee, S. and Park, H. (2022). Three-dimensional culture for in vitro folliculogenesis in the aspect of methods and materials. Tissue Engineering. Part B, Reviews, 28(6), 12421257. doi: 10.1089/ten.TEB.2021.0229 CrossRefGoogle ScholarPubMed
Kim, J., Kundu, M., Viollet, B. and Guan, K. L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 13(2), 132141. doi: 10.1038/ncb2152 CrossRefGoogle ScholarPubMed
Lima, I. M. T., Brito, I. R., Rodrigues, G. Q., Silva, C. M. G., Magalhães-Padilha, D. M., Lima, L. F., Celestino, J. J. H., Campello, C. C., Silva, J. R. V., Figueiredo, J. R. and Rodrigues, A. P. R. (2011). Presence of c-kit mRNA in goat ovaries and improvement of in vitro preantral follicle survival and development with kit ligand. Molecular and Cellular Endocrinology, 345(1–2), 3847. doi: 10.1016/j.mce.2011.07.006 CrossRefGoogle ScholarPubMed
Lins, T. L. B. G., Cavalcante, A. Y. P., Santos, J. M. S., Menezes, V. G., Barros, V. R. P., Barberino, R. S., Bezerra, M. É. S., Macedo, T. J. S. and Matos, M. H. T. (2017). Rutin can replace the use of three other antioxidants in the culture medium, maintaining the viability of sheep isolated secondary follicles. Theriogenology, 89, 263270. doi: 10.1016/j.theriogenology.2016.11.019 CrossRefGoogle ScholarPubMed
Ma, L., Tang, X., Guo, S., Liang, M., Zhang, B. and Jiang, Z. (2020). miRNA-21-3p targeting of FGF2 suppresses autophagy of bovine ovarian granulosa cells through AKT/mTOR pathway. Theriogenology, 157, 226237. doi: 10.1016/j.theriogenology.2020.06.021 CrossRefGoogle ScholarPubMed
Macedo, T. J. S., Santos, J. M. S., Bezerra, M. É. S., Menezes, V. G., Gouveia, B. B., Barbosa, L. M. R., Lins, T. L. B. G., Monte, A. P. O., Barberino, R. S., Batista, A. M., Barros, V. R. P., Wischral, A., Queiroz, M. A. A., Araújo, G. G. L. and Matos, M. H. T. (2019). Immunolocalization of leptin and its receptor in the sheep ovary and in vitro effect of leptin on follicular development and oocyte maturation. Molecular and Cellular Endocrinology, 495, 110506. doi: 10.1016/j.mce.2019.110506 CrossRefGoogle ScholarPubMed
Magoffin, D. A. and Weitsman, S. R. (1994). Insulin-like growth factor-I regulation of luteinizing hormone (LH) receptor messenger ribonucleic acid expression and LH-stimulated signal transduction in rat ovarian theca-interstitial cells. Biology of Reproduction, 51(4), 766775. doi: 10.1095/biolreprod51.4.766 CrossRefGoogle ScholarPubMed
Makarevich, A. V., Földešiová, M., Pivko, J., Kubovičová, E. and Chrenek, P. (2018). Histological characteristics of ovarian follicle atresia in dairy cows with different milk production. Anatomia, Histologia, Embryologia, 47(6), 510516. doi: 10.1111/ahe.12389 CrossRefGoogle ScholarPubMed
Mbemya, G. T., de Sá, N. A. R., Guerreiro, D. D., de Sousa, F. G. C., Nguedia, S. N., Alves, B. G., Santos, F. W., Pessoa, O. D. L., Comizzoli, P., Figueiredo, J. R. and Rodrigues, A. P. R. (2019). Early ovine preantral follicles have a potential to grow until antral stage in two-step culture system in the presence of aqueous extract of Justicia insularis . Reproduction in Domestic Animals, 54(8), 11211130. doi: 10.1111/rda.13477 CrossRefGoogle ScholarPubMed
McGee, E. A., Chun, S. Y., Lai, S., He, Y. E. and Hsueh, A. J. (1999). Keratinocyte growth factor promotes the survival, growth, and differentiation of preantral ovarian follicles. Fertility and Sterility, 71(4), 732738. doi: 10.1016/s0015-0282(98)00547-0 CrossRefGoogle ScholarPubMed
Méduri, G., Charnaux, N., Driancourt, M. A., Combettes, L., Granet, P., Vannier, B., Loosfelt, H. and Milgrom, E. (2002). Follicle-stimulating hormone receptors in oocytes? Journal of Clinical Endocrinology and Metabolism, 87(5), 22662276. doi: 10.1210/jcem.87.5.8502 CrossRefGoogle ScholarPubMed
Meng, L., Jan, S. Z., Hamer, G., van Pelt, A. M., van der Stelt, I., Keijer, J. and Teerds, K. J. (2018). Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis. Biology of Reproduction, 99(4), 853863. doi: 10.1093/biolre/ioy116 Google ScholarPubMed
Monte, A. P. O., Santos, J. M., Menezes, V. G., Gouveia, B. B., Lins, T. L. B. G., Barberino, R. S., Oliveira, J. L., Donfack, N. J. and Matos, M. H. T. (2019). Growth differentiation factor-9 improves development, mitochondrial activity and meiotic resumption of sheep oocytes after in vitro culture of secondary follicles. Reproduction in Domestic Animals, 54(9), 11691176. doi: 10.1111/rda.13485 CrossRefGoogle ScholarPubMed
Nagyova, E., Salustri, A., Nemcova, L., Scsukova, S., Kalous, J. and Camaioni, A. (2020). Versican G1 fragment establishes a strongly stabilized interaction with hyaluronan-rich expanding matrix during oocyte maturation. International Journal of Molecular Sciences, 21(7), 114. doi: 10.3390/ijms21072267 CrossRefGoogle ScholarPubMed
Nuttinck, F., Collette, L., Massip, A. and Dessy, F. (1996). Histologic and autoradiographic study of the in vitro effects of FGF-2 and FSH on isolated bovine preantral follicles: Preliminary investigation. Theriogenology, 45(6), 12351245. doi: 10.1016/0093-691x(96)00078-7 CrossRefGoogle ScholarPubMed
O’Brien, M. J., Pendola, J. K. and Eppig, J. J. (2003). A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biology of Reproduction, 68(5), 16821686. doi: 10.1095/biolreprod.102.013029 CrossRefGoogle ScholarPubMed
Oktay, K., Briggs, D. and Gosden, R. G. (1997). Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. Journal of Clinical Endocrinology and Metabolism, 82(11), 37483751. doi: 10.1210/jcem.82.11.4346 Google ScholarPubMed
Orisaka, M., Hattori, K., Fukuda, S., Mizutani, T., Miyamoto, K., Sato, T., Tsang, B. K., Kotsuji, F. and Yoshida, Y. (2013). Dysregulation of ovarian follicular development in female rat: LH decreases FSH sensitivity during preantral-early antral transition. Endocrinology, 154(8), 28702880. doi: 10.1210/en.2012-2173 CrossRefGoogle ScholarPubMed
Orisaka, M., Orisaka, S., Jiang, J. Y., Craig, J., Wang, Y., Kotsuji, F. and Tsang, B. K. (2006). Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Molecular Endocrinology, 20(10), 24562468. doi: 10.1210/me.2005-0357 CrossRefGoogle ScholarPubMed
Orisaka, M., Jiang, J. Y., Orisaka, S., Kotsuji, F. and Tsang, B. K. (2009a). Growth differentiation factor 9 promotes rat preantral follicle growth by up-regulating follicular androgen biosynthesis. Endocrinology, 150(6), 27402748. doi: 10.1210/en.2008-1536 CrossRefGoogle ScholarPubMed
Orisaka, M., Tajima, K., Tsang, B. K. and Kotsuji, F. (2009b). Oocyte-granulosa-theca cell interactions during preantral follicular development. Journal of Ovarian Research, 2(1), 9. doi: 10.1186/1757-2215-2-9 CrossRefGoogle ScholarPubMed
Panta, A. M. T., Silva, A. F. B. D., Padilha, R. T., Correia, H. H. V., Rondina, D., Figueiredo, J. R. and Magalhães Padilha, D. M. (2019). Evaluation of in vitro culture systems for goat preantral follicles using reused ovaries from reproductive biotechniques: An alternative to maximize the potential of reproduction. Reproduction in Domestic Animals, 54(3), 480485. doi: 10.1111/rda.13377 CrossRefGoogle ScholarPubMed
Parrott, J. A. and Skinner, M. K. (1998). Thecal cell-granulosa cell interactions involve a positive feedback loop among keratinocyte growth factor, hepatocyte growth factor, and Kit ligand during ovarian follicular development. Endocrinology, 139(5), 22402245. doi: 10.1210/endo.139.5.6018 CrossRefGoogle ScholarPubMed
Parrott, J. A. and Skinner, M. K. (2000). Kit ligand actions on ovarian stromal cells: Effects on theca cell recruitment and steroid production. Molecular Reproduction and Development, 55(1), 5564. doi: 10.1002/(SICI)1098-2795(200001)55:1<55::AID-MRD8>3.0.CO;2-L3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Passos, M. J., Vasconcelos, G. L., Silva, A. W., Brito, I. R., Saraiva, M. V., Magalhães, D. M., Costa, J. J., Donato, M. A., Ribeiro, R. P., Cunha, E. V., Peixoto, C. A., Campello, C. C., Figueiredo, J. R., van den Hurk, R. and Silva, J. R. (2013). Accelerated growth of bovine preantral follicles in vitro after stimulation with both FSH and BMP-15 is accompanied by ultrastructural changes and increased atresia. Theriogenology, 79(9), 12691277. doi: 10.1016/j.theriogenology.2013.02.023 CrossRefGoogle ScholarPubMed
Paulini, F., Araujo, M. S., Silva, L. P. and Lucci, C. M. (2022). Initial steps on mapping differentially expressed proteins in bovine preantral follicles and ovarian tissue: An approach using single-follicle MALDI-MS and mass spectrometry imaging (MSI) analysis. Reproduction in Domestic Animals, 57(1), 1932. doi: 10.1111/rda.14025 CrossRefGoogle ScholarPubMed
Paulino, L. R. F. M., Cunha, E. V., Barbalho Silva, A. W., Souza, G. B., Lopes, E. P. F., Donato, M. A. M., Peixoto, C. A., Matos-Brito, B. G., van den Hurk, R. and Silva, J. R. V. (2018). Effects of tumour necrosis factor-alpha and interleukin-1 beta on in vitro development of bovine secondary follicles. Reproduction in Domestic Animals, 53(4), 9971005. doi: 10.1111/rda.13199 CrossRefGoogle ScholarPubMed
Paulino, L. R. F. M., Barroso, P. A. A., Silva, A. W. B., Souza, A. L. P., Bezerra, F. T. G., Silva, B. R., Donato, M. M. A., Peixoto, C. A. and Silva, J. R. V. (2020). Effects of epidermal growth factor and progesterone on development, ultrastructure and gene expression of bovine secondary follicles cultured in vitro . Theriogenology, 142, 284290. doi: 10.1016/j.theriogenology.2019.10.031 CrossRefGoogle ScholarPubMed
Paulino, L. R. F. M., de Assis, E. I. T., Azevedo, V. A. N., Silva, B. R., da Cunha, E. V. and Silva, J. R. V. (2022). Why is it so difficult to have competent oocytes from in vitro cultured preantral follicles? Reproductive Sciences, 29(12), 33213334. doi: 10.1007/s43032-021-00840-8 CrossRefGoogle ScholarPubMed
Paz, M. P., de Sousa, F. G. C., Alves, B. G., Lobo, C. H., Sales, A. D., Tavares, K. C. S., de Sá, N. A. R., Guerreiro, D. D., Maside, C., Rocha, R. M. P., Bertolini, L. R., Bordignon, V., de Figueiredo, J. R. and Rodrigues, A. P. R. (2018). Effect of aquaporin 3 knockdown by RNA interference on antrum formation in sheep secondary follicles cultured in vitro . Zygote, 26(5), 350358. doi: 10.1017/S096719941800031X CrossRefGoogle ScholarPubMed
Pontes, L. M. S., Gouveia, B. B., Menezes, V. G., de Barros, V. R. P., Barberino, R. S., do Monte, A. P. O., Donfack, N. J., Celestino, J. J. H., Salgueiro, C. C. M., de Figueiredo, J. R. and de Matos, M. H. T. (2019). Supplemented powdered coconut water (ACP-406®) promotes growth of goat secondary follicles and oocyte meiotic resumption. Animal Reproduction, 16(4), 819828. doi: 10.21451/1984-3143-AR2019-0008 CrossRefGoogle ScholarPubMed
Reineri, P. S., Coria, M. S., Barrionuevo, M. G., Hernández, O., Callejas, S. and Palma, G. A. (2018). Gene expression of growth factor BMP15, GDF9, FGF2 and their receptors in bovine follicular cells. Revista MVZ Córdoba, 23(3), 67786787. doi: 10.21897/rmvz.1367 CrossRefGoogle Scholar
Riaz, H., Yousuf, M. R., Liang, A., Hua, G. H. and Yang, L. (2019). Effect of melatonin on regulation of apoptosis and steroidogenesis in cultured buffalo granulosa cells. Animal Science Journal, 90(4), 473480. doi: 10.1111/asj.13152 CrossRefGoogle ScholarPubMed
Rocha, R. M. P., Rubessa, M., de Lima, L. F., da Silva, A. F. B., Winters, R., Polkoff, K., Milner, D., Campello, C. C., de Figueiredo, J. R. and Wheeler, M. (2021). Effect of base media, FSH and anti-Müllerian hormone (AMH) alone or in combination on the growth of pig preantral follicles in vitro . Research, Society and Development, 10(15), e53101522488. doi: 10.33448/rsd-v10i15.22488 CrossRefGoogle Scholar
Rodgers, R. J. and Irving-Rodgers, H. F. (2010). Formation of the ovarian follicular antrum and follicular fluid. Biology of Reproduction, 82(6), 10211029. doi: 10.1095/biolreprod.109.082941 CrossRefGoogle ScholarPubMed
Russell, D. L. and Robker, R. L. (2018). Cumulus cells. In: Skinner, M. K. (ed.) Encyclopedia of Reproduction, 2nd edition vol. 2, Academic Press, pp. 4346. doi: 10.1016/B978-0-12-801238-3.64392-1 CrossRefGoogle Scholar
Sabbah, D. A., Hajjo, R. and Sweidan, K. (2020). Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Current Topics in Medicinal Chemistry, 20(10), 815834. doi: 10.2174/1568026620666200303123102 CrossRefGoogle ScholarPubMed
Sakaguchi, K., Huang, W., Yang, Y., Yanagawa, Y. and Nagano, M. (2017). Relationship between in vitro growth of bovine oocytes and steroidogenesis of granulosa cells cultured in medium supplemented with bone morphogenetic protein-4 and follicle stimulating hormone. Theriogenology, 97, 113123. doi: 10.1016/j.theriogenology.2017.04.030 CrossRefGoogle ScholarPubMed
Sales, A. D., Duarte, A. B. G., Rodrigues, G. Q., Lima, L. F., Silva, G. M., Carvalho, A. A., Brito, I. R., da Maranguape, R. M. S., Lobo, C. H., Aragão, J. A. S., Moura, A. A., Figueiredo, J. R. and Rodrigues, A. P. R. (2015). Steady-state level of messenger RNA and immunolocalization of aquaporins 3, 7, and 9 during in vitro growth of ovine preantral follicles. Theriogenology, 84(1), 110. doi: 10.1016/j.theriogenology.2015.01.005 CrossRefGoogle ScholarPubMed
Santos, J. M. S., Monte, A. P. O., Lins, T. L. B. G., Barberino, R. S., Menezes, V. G., Gouveia, B. B., Macedo, T. J. S., Oliveira Júnior, J. L., Donfack, N. J. and Matos, M. H. T. (2019). Kaempferol can be used as the single antioxidant in the in vitro culture medium, stimulating sheep secondary follicle development through the phosphatidylinositol 3-kinase signaling pathway. Theriogenology, 136, 8694. doi: 10.1016/j.theriogenology.2019.06.036 CrossRefGoogle ScholarPubMed
Saraiva, M. V. A., Celestino, J. J. H., Araújo, V. R., Chaves, R. N., Almeida, A. P., Lima-Verde, I. B., Duarte, A. B. G., Silva, G. M., Martins, F. S., Bruno, J. B., Matos, M. H. T., Campello, C. C., Silva, J. R. V. and Figueiredo, J. R. (2011). Expression of follicle-stimulating hormone receptor (FSHR) in goat ovarian follicles and the impact of sequential culture medium on in vitro development of caprine preantral follicles. Zygote, 19(3), 205214. doi: 10.1017/S0967199410000511 CrossRefGoogle ScholarPubMed
Schoenfelder, M. and Einspanier, R. (2003). Expression of hyaluronan synthases and corresponding hyaluronan receptors is differentially regulated during oocyte maturation in cattle. Biology of Reproduction, 69(1), 269277. doi: 10.1095/biolreprod.102.011577 CrossRefGoogle ScholarPubMed
Seneda, M. M., Bergamo, L. Z., González, S. M., Zangirolamo, A. F. and Morotti, F. (2021). Oogênese e Foliculogênese em bovinos. Revista Brasileira de Reprodução Animal, 45(4), 323328. doi: 10.21451/1809-3000.RBRA2021.042 CrossRefGoogle Scholar
Sharma, G. T., Dubey, P. K. and Kumar, G. S., and Kumar. (2011) Localization and expression of follicle-stimulating hormone receptor gene in buffalo (Bubalus bubalis) pre-antral follicles. Reproduction in Domestic Animals, 46(1), 114120. doi: 10.1111/j.1439-0531.2010.01604.x CrossRefGoogle ScholarPubMed
Silva, A. W. B., Bezerra, F. T. G., Costa, J. J. N., Rossi, R. O. D. S., Passos, M. J., Vasconcelos, G. L., Rossetto, R., Donato, M. A. M., Magalhães-Padilha, D. M., Campello, C. C., Saraiva, M. V. A., Figueiredo, J. R., Peixoto, C. A., Van den Hurk, R. and Silva, J. R. V. (2014). Differential effects of activin-A and FSH on growth, viability and messenger RNA expression in cultured bovine preantral follicles. Livestock Science, 160(1), 199207. doi: 10.1016/j.livsci.2013.12.003 CrossRefGoogle Scholar
Silva, G. A. L., Araújo, L. B., Silva, L. C. R., Gouveia, B. B., Barberino, R. S., Lins, T. L. B. G., Monte, A. P. O., Macedo, T. J. S., Santos, J. M. S., Menezes, V. G., Silva, R. L. S. and Matos, M. H. T. (2021). Gallic acid promotes the in vitro development of sheep secondary isolated follicles involving the phosphatidylinositol 3-kinase pathway. Animal Reproduction Science, 230, 106767. doi: 10.1016/j.anireprosci.2021.106767 CrossRefGoogle ScholarPubMed
Simon, L. E., Kumar, T. R. and Duncan, F. E. (2020). In vitro ovarian follicle growth: A comprehensive analysis of key protocol variables. Biology of Reproduction, 103(3), 455470. doi: 10.1093/biolre/ioaa073 CrossRefGoogle ScholarPubMed
Skowronski, M. T., Kwon, T. H. and Nielsen, S. (2009). Immunolocalization of aquaporin 1, 5, and 9 in the female pig reproductive system. Journal of Histochemistry and Cytochemistry, 57(1), 6167. doi: 10.1369/jhc.2008.952499 CrossRefGoogle ScholarPubMed
Soares-Costa, M. A. A., Costa, J. J. N., Silva, A. W. B., Cunha, E. V., Paulino, L. R. F. M., Silva, B. R., Silva, A. L. C., van den Hurk, R. and Silva, J. R. V. (2018). Effects of frutalin and doxorubicin on growth, ultrastructure and gene expression in goat secondary follicles cultured in vitro . Research in Veterinary Science, 120, 3340. doi: 10.1016/j.rvsc.2018.08.006 CrossRefGoogle ScholarPubMed
Spicer, L. J., Aad, P. Y., Allen, D. T., Mazerbourg, S., Payne, A. H. and Hsueh, A. J. (2008). Growth differentiation factor 9 (GDF9) stimulates proliferation and inhibits steroidogenesis by bovine theca cells: Influence of follicle size on responses to GDF9. Biology of Reproduction, 78(2), 243253. doi: 10.1095/biolreprod.107.063446 CrossRefGoogle ScholarPubMed
Sugiura, K., Su, Y. Q., Diaz, F. J., Pangas, S. A., Sharma, S., Wigglesworth, K., O’Brien, M. J., Matzuk, M. M., Shimasaki, S. and Eppig, J. J. (2007). Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development, 134(14), 25932603. doi: 10.1242/dev.006882 CrossRefGoogle ScholarPubMed
Tanaka, Y., Matsuzaki, T., Tanaka, N., Iwasa, T., Kuwahara, A. and Irahara, M. (2019). Activin effects on follicular growth in in vitro preantral follicle culture. Journal of Medical Investigation, 66(1), (165171). doi: 10.2152/jmi.66.165 CrossRefGoogle ScholarPubMed
Tanimoto, R., Sekii, K., Morohaku, K., Li, J., Pépin, D. and Obata, Y. (2021). Blocking estrogen-induced AMH expression is crucial for normal follicle formation. Development, 148(6), 18. doi: 10.1242/dev.197459 CrossRefGoogle ScholarPubMed
Tomaszewski, C. E., DiLillo, K. M., Baker, B. M., Arnold, K. B. and Shikanov, A. (2021). Sequestered cell-secreted extracellular matrix proteins improve murine folliculogenesis and oocyte maturation for fertility preservation. Acta Biomaterialia, 132, 313324. doi: 10.1016/j.actbio.2021.03.041 CrossRefGoogle ScholarPubMed
Umer, S., Zhao, S. J., Sammad, A., Weldegebriall Sahlu, B. W., Yunwei, P. and Zhu, H. (2019). AMH: Could it be used as a biomarker for fertility and superovulation in domestic animals? Genes, 10(12), 114. doi: 10.3390/genes10121009 CrossRefGoogle ScholarPubMed
Vasconcelos, G. L., Saraiva, M. V. A., Costa, J. J. N., Passos, M. J., Silva, A. W. B., Rossi, R. O. D. S., Portela, A. M. L. R., Duarte, A. B. G., Magalhães-Padilha, D. M., Campelo, C. C., Figueiredo, J. R., Van den Hurk, R. and Silva, J. R. (2013). Effects of growth differentiation factor-9 and FSH on in vitro development, viability and mRNA expression in bovine preantral follicles. Reproduction, Fertility, and Development, 25(8), 11941203. doi: 10.1071/RD12173 CrossRefGoogle ScholarPubMed
Vasconcelos, E. M., Costa, F. C., Azevedo, A. V. N., Barroso, P. A. A., de Assis, E. I. T., Paulino, L. R. F. M., Silva, B. R., Silva, A. W. B., Souza, A. L. P. and Silva, J. R. V. (2021). Eugenol influences the expression of messenger RNAs for superoxide dismutase and glutathione peroxidase 1 in bovine secondary follicles cultured in vitro . Zygote, 29(4), 301306. doi: 10.1017/S0967199420000908 CrossRefGoogle ScholarPubMed
Wu, J. and Tian, Q. (2007). Role of follicle stimulating hormone and epidermal growth factor in the development of porcine preantral follicle in vitro . Zygote (Cambridge, England), 15(3), 233240. doi: 10.1017/S0967199407004194 CrossRefGoogle ScholarPubMed
Xavier, S. E. C. and Freitas, O. F. M. N. (2021). Manejo dietético e suplementar na fisiopatologia da síndrome dos ovários policísticos. [Dietary and supplementary management in the pathophysiology of polycystic ovary syndrome.] Research, Society and Development, 10(15), e237101522975e237101522975. doi: 10.33448/rsd-v10i15.22975 CrossRefGoogle Scholar
Xu, J., Xu, M., Bernuci, M. P., Fisher, T. E., Shea, L. D., Woodruff, T. K., Zelinski, M. B. and Stouffer, R. L. (2013). Primate follicular development and oocyte maturation in vitro . Advances in Experimental Medicine and Biology, 761, 4367. doi: 10.1007/978-1-4614-8214-7_5 CrossRefGoogle ScholarPubMed
Xu, F., Lawson, M. S., Bean, Y., Ting, A. Y., Pejovic, T., De Geest, K., Moffitt, M., Mitalipov, S. M. and Xu, J. (2021). Matrix-free 3D culture supports human follicular development from the unilaminar to the antral stage in vitro yielding morphologically normal metaphase II oocytes. Human Reproduction (Oxford), 36(5), 13261338. doi: 10.1093/humrep/deab003 CrossRefGoogle Scholar
Young, J. M. and McNeilly, A. S. (2010). Theca: The forgotten cell of the ovarian follicle. Reproduction, 140(4), 489504. doi: 10.1530/REP-10-0094 CrossRefGoogle ScholarPubMed
Yuan, J. H., Wang, J. Z., Lan, G. C., Sui, H. S., Yu, J. N. and Tan, J. H. (2008). Expression of steroidogenic enzymes and synthesis of steroid hormones during development of ovarian follicles in prepubertal goats. Domestic Animal Endocrinology, 34(4), 451460. doi: 10.1016/j.domaniend.2008.01.002 CrossRefGoogle ScholarPubMed
Zeleznik, A. J. (2004). The physiology of follicle selection. Reproductive Biology and Endocrinology: RB&E, 2, 31. doi: 10.1186/1477-7827-2-31 CrossRefGoogle ScholarPubMed
Zhang, M. (2018). Oocyte meiotic arrest. In: Skinner, M. K. (ed.) Encyclopedia of Reproduction, 2nd edition vol. 3, Academic Press, pp. 153158. doi: 10.1016/B978-0-12-801238-3.64443-4 CrossRefGoogle Scholar
Zhang, J., Liu, Y., Yao, W., Li, Q., Liu, H. and Pan, Z. (2018). Initiation of follicular atresia: Gene networks during early atresia in pig ovaries. Reproduction, 156(1), 2333. doi: 10.1530/REP-18-0058 CrossRefGoogle ScholarPubMed
Zhou, H. and Zhang, Y. (2005). Effect of growth factors on in vitro development of caprine preantral follicle oocytes. Animal Reproduction Science, 90(3–4), 265272. doi: 10.1016/j.anireprosci.2005.01.008 CrossRefGoogle ScholarPubMed
Zoheir, K. M., Harisa, G. I., Allam, A. A., Yang, L., Li, X., Liang, A., Abd-Rabou, A. A. and Harrath, A. H. (2017). Effect of alpha lipoic acid on in vitro development of bovine secondary preantral follicles. Theriogenology, 88, 124130. doi: 10.1016/j.theriogenology.2016.09.013 CrossRefGoogle ScholarPubMed
Zoheir, K. M., Darwish, A. M., Liguo, Y. and Ashour, A. E. (2021). Transcriptome comparisons detect new genes associated with apoptosis of cattle and buffaloes preantral follicles. Journal of Genetic Engineering and Biotechnology, 19(1), 151. doi: 10.1186/s43141-021-00253-9 CrossRefGoogle ScholarPubMed