Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T14:19:50.519Z Has data issue: false hasContentIssue false

S100A7 in the Fallopian tube: a comparative study

Published online by Cambridge University Press:  23 October 2013

Juan M Teijeiro
Affiliation:
Área Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 590, Rosario S2002LRK, Argentina.
Patricia E. Marini*
Affiliation:
Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 590, Rosario S2002LRK, Argentina. Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET, Rosario, Argentina.
*
All correspondence to Patricia E. Marini. Área Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 590, Rosario S2002LRK, Argentina. Tel: +54 341 4350661. Fax: +54 341 4804601. e-mail: marini@ibr.gov.ar or pmarini@fbioyf.unr.edu.ar

Summary

The oviduct is a dynamic organ in which final gamete maturation, fertilization and early embryo development take place. It is considered to be a sterile site; however the mechanism for sterility maintenance is still unknown. S100A7 is an anti-microbial peptide that has been reported in human reproductive tissues such as prostate, testicle, ovary, normal cervical epithelium and sperm. The current work reports the presence of S100A7 in the Fallopian tube and its localization at the apical surface of epithelial cells. For comparison, porcine S100A7 was used for antibody development and search for peptide in reproductive tissues. Although present in boar seminal vesicles and seminal plasma, S100A7 was not detected on female porcine organs. Also, in contrast with the human protein, porcine S100A7 did not show anti-microbial activity under the conditions tested. Phylogenetic analyses showed high divergence of porcine S100A7 from human, primate, bovine, ovine and equine sequences, being the murine sequence at a most distant branch. The differences in sequence homology, Escherichia coli-cidal activity, detectable presence and localization of S100A7 from human and pig, suggest that there are possible different functions in each organism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–402.Google Scholar
Avilés, M., Guitiérrez-Adán, A. & Coy, P. (2010). Oviductal secretions: will they be key factors for the future ARTs? Mol. Hum. Reprod. 16, 896906.CrossRefGoogle ScholarPubMed
Demott, R.P. & Suárez, S.S. (1992). Hyperactivated sperm progress in the mouse oviduct. Biol. Reprod. 46, 779–85.Google Scholar
Eckert, R.L. & Lee, K.C. (2006). S100A7 (Psoriasin): a story of mice and men. J. Invest. Dermatol. 126, 1442–4.Google Scholar
Fazeli, A., Elliott, R.M., Duncan, A.E., Moore, A., Watson, P.F. & Holt, W.V. (2003). In vitro maintenance of boar sperm viability by a soluble fraction obtained from oviductal apical plasma membrane preparations. Reproduction 125, 509–17.Google Scholar
Flechon, J.E. & Hunter, R.H. (1981). Distribution of spermatozoa in the utero-tubal junction and isthmus of pigs, and their relationship with the luminal epithelium after mating: a scanning electron microscope study. Tissue & Cell 13, 127–39.Google Scholar
Frew, L. & Stock, S.J. (2011). Antimicrobial peptides and pregnancy. Reproduction 141, 725–35.Google Scholar
Gläser, R., Harder, J., Lange, H., Bartels, J., Christophers, E. & Schröder, J.M. (2005). Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat. Immunol. 6, 5764.CrossRefGoogle ScholarPubMed
Gorodkin, J., Cirera, S., Hedegaard, J., Gilchrist, M.J., Panitz, F., Jørgensen, C., Scheibye-Knudsen, K., Arvin, T., Lumholdt, S., Sawera, M., Green, T., Nielsen, B.J., Havgaard, J.H., Rosenkilde, C., Wang, J., Li, H., Li, R., Liu, B., Hu, S., Dong, W., Li, W., Yu, J., Wang, J., Staefeldt, H-H., Wernersson, R., Madsen, L.B., Thomsen, B., Hornshøj, H., Bujie, Z., Wang, X., Wang, X., Bolund, L., Brunak, S., Yang, H., Bendixen, C. & Fredholm, M. (2007). Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags. Genome Biol. 8, R45. doi:10.1186/gb-2007–8-4-r45ºCrossRefGoogle ScholarPubMed
Harper, M.J.K. (1994). Gamete and zygote transport. In The Physiology of Reproduction (eds Knobil, E. & Neill, J.D.), pp.123–87. New York: Raven Press.Google Scholar
Holt, W.V. & Fazeli, A. (2010). The oviduct as a complex mediator of mammalian sperm function and selection. Mol. Reprod. Dev. 77, 934–43.Google Scholar
Hung, P.H. & Suárez, S.S. (2010). Regulation of sperm storage and movement in the ruminant oviduct. Soc. Reprod. Fertil. Suppl. 67, 257–66.Google Scholar
Hunter, R.H. (1981). Sperm transport and reservoirs in the pig oviduct in relation to the time of ovulation. J. Reprod. Fertil. 63, 109–17CrossRefGoogle Scholar
Hunter, R.H. (2005). The Fallopian tubes in domestic mammals: how vital is their physiological activity? Reprod. Nutr. Dev. 45, 281–90.CrossRefGoogle ScholarPubMed
Hunter, R.H.F. & Nichol, R. (1983). Transport of spermatozoa in the sheep oviduct: preovulatory sequestering of cells in the caudal isthmus. J. Exp. Zool. 228, 121–8.Google Scholar
Hunter, R.H. & Wilmut, I. (1984). Sperm transport in the cow: peri-ovulatory redistribution of viable cells within the oviduct. Reprod. Nutr. Dev. 24, 597608.CrossRefGoogle ScholarPubMed
Ignotz, G.G., Cho, M.Y. & Suárez, S.S. (2007). Annexins are candidate oviductal receptors for bovine sperm surface proteins and thus may serve to hold bovine sperm in the oviductal reservoir. Biol. Reprod. 77, 906–13.CrossRefGoogle ScholarPubMed
Killian, G. (2011). Physiology and endocrinology symposium: evidence that oviduct secretions influence sperm function: a retrospective view for livestock. J. Anim. Sci. 89, 1315–22.Google Scholar
Lee, K.C. & Eckert, R.L. (2007). S100A7 (Psoriasin)–mechanism of antibacterial action in wounds. J. Invest. Dermatol. 127, 945–57.CrossRefGoogle ScholarPubMed
Leese, H.J., Tay, J.I., Reischl, J. & Downing, S.J. (2001). Formation of Fallopian tubal fluid: role of a neglected epithelium. Reproduction 121, 339–46.Google Scholar
Lehrer, R.I., Rosenman, M., Harwig, S.S.S.L. & Eisenhauer, P. (1991). Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods 137, 167–73.Google Scholar
Madsen, P., Rasmussen, H.H., Leffers, H., Honore, B., Dejgaard, K., Olsen, E., Kiil, J., Walbum, E., Andersen, A.H., Basse, B., Lauridsen, J.B., Ratz, G.P., Celis, A., Vandekerckhove, J. & Celis, J.E. (1991). Molecular cloning, occurrence, and expression of a novel partially secreted protein “psoriasin” that is highly up-regulated in psoriatic skin. J. Invest. Dermatol. 97, 701–12.Google Scholar
Mildner, M., Stichenwirth, M., Abtin, A., Eckhart, L., Sam, C., Gläser, R., Schröder, J-M., Gmeiner, R., Mlitz, V., Pammer, J., Geusau, A. & Tschachler, E. (2010). Psoriasin (S100A7) is a major Escherichia coli-cidal factor of the female genital tract. Mucosal Immunol. 3, 602–9.CrossRefGoogle Scholar
Pacey, A.A., Davies, N., Warren, M.A., Barratt, C.L. & Cooke, I.D. (1995). Hyperactivation may assist human spermatozoa to detach from intimate association with the endosalpinx. Hum. Reprod. 10, 2603–9.Google Scholar
Pérez, F.A., Roma, S.M., Cabada, M.O. & Marini, P.E. (2006). Sperm binding glycoprotein is differentially present surrounding the lumen of isthmus and ampulla of the pig's oviduct. Anat. Embryol. 211, 619–24.Google Scholar
Pulkkinen, M.O. (1995). Oviductal function is critical for very early human life. Ann. Med. 27, 307–10.Google Scholar
Quayle, A.J. (2002). The innate and early immune response to pathogen challenge in the female genital tract and the pivotal role of epithelial cells. J. Reprod. Immunol. 57, 6179.Google Scholar
Rabilloud, T., Vuillard, L., Gilly, C. & Lawrence, J.J. (1994). Silver-staining of proteins in polyacrilamide gels: a general overview. Cell. Mol. Biol. (Noisy-le-grand) 40, 5775.Google Scholar
Regenhard, P., Leippe, M., Schubert, S., Podschun, R., Kalm, E., Grötzinger, J. & Looft, C. (2009). Antimicrobial activity of bovine psoriasin. Vet. Microbiol. 136, 335–40.Google Scholar
Shadeo, A., Chari, R., Vatcher, G., Campbell, J., Lonergan, K.M., Matisic, J., van Niekerk, D., Ehlen, T., Miller, D., Follen, M., Lam, W.L. & MacAulay, C. (2007). Comprehensive serial analysis of gene expression of the cervical transcriptome. BMC Genomics 8, 142. DOI: 10.1186/1471–2164–8-142CrossRefGoogle ScholarPubMed
Suárez, S.S. (1998). The oviductal sperm reservoir in mammals: mechanisms of formation. Biol. Reprod. 58, 1105–7.CrossRefGoogle ScholarPubMed
Suárez, S.S. (2007). Interactions of spermatozoa with the female reproductive tract: inspiration for assisted reproduction. Reprod. Fert. Dev. 19, 103–10.Google Scholar
Suárez, S.S. (2008). Regulation of sperm storage and movement in the mammalian oviduct. Int. J. Dev. Biol. 52, 455–62.Google Scholar
Teijeiro, J.M. & Marini, P.E. (2012a). The effect of oviductal deleted in malignant brain tumor 1 over porcine sperm is mediated by a signal transduction pathway that involves pro-AKAP4 phosphorylation. Reproduction 143, 773–85.Google Scholar
Teijeiro, J.M. & Marini, P.E. (2012b). S100A7 is present in human sperm and a homologous pig sperm protein interacts with sperm-binding glycoprotein (SBG). Andrologia 44 (Suppl 1), 772–9.Google Scholar
Teijeiro, J.M, Cabada, M.O. & Marini, P.E. (2008). Sperm binding glycoprotein (SBG) produces calcium and bicarbonate dependent alteration of acrosome morphology and protein tyrosine phosphorylation on boar sperm. J. Cell. Biochem. 103, 1413–23.Google Scholar
Teijeiro, J.M., Ignotz, G.G. & Marini, P.E. (2009). Annexin A2 is involved in pig (Sus scrofa) sperm-oviduct interaction. Mol. Reprod. Dev. 76, 334–41.CrossRefGoogle ScholarPubMed
Teijeiro, J.M., Dapino, D.G. & Marini, P.E. (2011). Porcine oviduct sperm binding glycoprotein and its deleterious effect on sperm: a mechanism for negative selection of sperm? Biol. Res. 44, 329–37.Google Scholar
Teijeiro, J.M., Roldan, M.L. & Marini, P.E. (2012). Molecular identification of the sperm selection involved porcine sperm binding glycoprotein (SBG) as deleted in malignant brain tumors 1 (DMBT1). Biochimie 94, 263–7.Google Scholar
Thomas, P.G., Ball, B.A. & Brinsko, S.P. (1994). Interaction of equine spermatozoa with oviduct epithelial cell explants is affected by estrous cycle and anatomic origin of explant. Biol. Reprod. 51, 222–8.Google Scholar
Wolf, R., Voscopoulos, C.J., FitzGerald, P.C., Goldsmith, P., Cataisson, C., Gunsior, M., Walz, M., Ruzicka, T. & Yuspa, S.H. (2006). The mouse S100A15 ortholog parallels genomic organization, structure, gene expression, and protein-processing pattern of the human S100A7/A15 subfamily during epidermal maturation. J. Invest. Dermatol. 126, 1600–8.Google Scholar
Zumoffen, C.M., Gil, R., Caille, A.M., Morente, C., Munuce, M.J. & Ghersevich, S.A. (2013). A protein isolated from human oviductal tissue in vitro secretion, identified as human lactoferrin, interacts with spermatozoa and oocytes and modulates gamete interaction. Hum. Reprod. 28, 1297–308.Google Scholar