Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T00:38:36.862Z Has data issue: false hasContentIssue false

Simplicial localization of monoidal structures, and a non-linear version of Deligne's conjecture

Published online by Cambridge University Press:  01 December 2004

Joachim Kock
Affiliation:
Laboratoire de Mathematiques, J. A. Dieudonné, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice cedex 2, Francetoen@math.unice.fr
Bertrand Toën
Affiliation:
Laboratoire de Mathematiques, J. A. Dieudonné, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice cedex 2, Francetoen@math.unice.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that if $(M,\otimes,I)$ is a monoidal model category then $\mathbb{R}\underline{\rm End}_{M}(I)$ is a (weak) 2-monoid in sSet. This applies in particular when M is the category of A-bimodules over a simplicial monoid A: the derived endomorphisms of A then form its Hochschild cohomology, which therefore becomes a simplicial 2-monoid.

Type
Research Article
Copyright
Foundation Compositio Mathematica 2005