Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-13T18:18:59.771Z Has data issue: false hasContentIssue false

Pfaffian Formulas for Spanning Tree Probabilities

Published online by Cambridge University Press:  30 May 2016

GRETA PANOVA
Affiliation:
Mathematics Department, University of Pennsylvania, Philadelphia, PA 19104, USA (e-mail: panova@math.upenn.edu), http://www.math.upenn.edu/~panova/
DAVID B. WILSON
Affiliation:
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA (e-mail: David.Wilson@microsoft.com), http://dbwilson.com

Abstract

We show that certain topologically defined uniform spanning tree probabilities for graphs embedded in an annulus can be computed as linear combinations of Pfaffians of matrices involving the line-bundle Green's function, where the coefficients count cover-inclusive Dyck tilings of skew Young diagrams.

Type
Paper
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Carroll, G. D. and Speyer, D. (2004) The cube recurrence. Electron. J. Combin. 11 R73.CrossRefGoogle Scholar
[2] Curtis, E. B., Ingerman, D. and Morrow, J. A. (1998) Circular planar graphs and resistor networks. Linear Algebra Appl. 283 115150.Google Scholar
[3] Forman, R. (1993) Determinants of Laplacians on graphs. Topology, 32 3546.Google Scholar
[4] Josuat-Vergés, M. and Kim, J. S. (2014) Generalized Dyck tilings (extended abstract). In 26th Formal Power Series and Algebraic Combinatorics: FPSAC, Discrete Math. Theor. Comput. Sci. Proc. pp. 181–192.Google Scholar
[5] Kenyon, R. (2011) Spanning forests and the vector bundle Laplacian. Ann. Probab. 39 19832017.Google Scholar
[6] Kenyon, R. W. and Wilson, D. B. (2009) Combinatorics of tripartite boundary connections for trees and dimers. Electron. J. Combin. 16 R112.CrossRefGoogle Scholar
[7] Kenyon, R. W. and Wilson, D. B. (2011) Boundary partitions in trees and dimers. Trans. Amer. Math. Soc. 363 13251364.Google Scholar
[8] Kenyon, R. W. and Wilson, D. B. (2011) Double-dimer pairings and skew Young diagrams. Electron. J. Combin. 18 130.Google Scholar
[9] Kenyon, R. W. and Wilson, D. B. (2014) The space of circular planar electrical networks. arXiv:1411.7425 Google Scholar
[10] Kenyon, R. W. and Wilson, D. B. (2015) Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on planar graphs. J. Amer. Math. Soc. 28 9851030.CrossRefGoogle Scholar
[11] Kim, J. S. (2012) Proofs of two conjectures of Kenyon and Wilson on Dyck tilings. J. Combin. Theory Ser. A, 119 16921710.CrossRefGoogle Scholar
[12] Kim, J. S., Mészáros, K., Panova, G. and Wilson, D. B. (2014) Dyck tilings, increasing trees, descents, and inversions. J. Combin. Theory Ser. A, 122 927.Google Scholar
[13] Shigechi, K. and Zinn-Justin, P. (2012) Path representation of maximal parabolic Kazhdan–Lusztig polynomials. J. Pure Appl. Algebra 216 25332548.CrossRefGoogle Scholar
[14] Wilson, D. B. (2014) Local statistics of the abelian sandpile model. Manuscript.Google Scholar