Argon physisorption at 87 K is the new standard for texture analysis of microporous media recommended by the International Union of Pure and Applied Chemistry (IUPAC). However, geoscientists routinely use nitrogen (77 K) and carbon dioxide (273 K), both molecules with permanent polarization and the preference to interact with specific surface sites. In this work, N2, CO2, and Ar physisorption isotherms were measured and classical physisorption theories applied to investigate the suitability of Ar physisorption for the porosity assessment of mudrocks, clays, and (non)-porous analogs.
N2 and Ar physisorption isotherms are qualitatively similar with the most significant discrepancies in the submonolayer range. Textural parameters reveal linear relations but parameter ratios vary randomly, independent of the sorbent class. While N2 and CO2 (mostly) underestimate micropore volumes, nitrogen BET areas are consistently larger than argon BET areas. Those differences are probably associated with differences in polarization. But its effect on molecular orientation, for example, is presumably masked by microporosity and a narrow spacing of specific surface sites.
Mesopore size distributions and Gurvich (total) pore volumes agree well for N2 and Ar indicating similar pore size and pore volume access. Combining both parameters proves effective in identifying saturation pressure offsets which pose the largest uncertainty factor in the present study. Ar-based micropore size distributions reveal three distinct classes of mudrocks differing in organic matter maturity, and its contribution to microporosity. Empirical αs plots corroborate this classification underlining the discrepancies in the micropore range of mudrocks. Comparative hysteresis loop analysis indicated cavitation as one dominant evaporation mechanism in mudrocks and clays effecting a sample-specific compartmentalization of their pore networks.