Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:29:50.659Z Has data issue: false hasContentIssue false

Steady shear rheology of a viscous emulsion in the presence of finite inertia at moderate volume fractions: sign reversal of normal stress differences

Published online by Cambridge University Press:  22 September 2016

Priyesh Srivastava
Affiliation:
Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
Abhilash Reddy Malipeddi
Affiliation:
Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, USA
Kausik Sarkar*
Affiliation:
Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, USA
*
Email address for correspondence: sarkar@gwu.edu

Abstract

The shear rheology of an emulsion of viscous drops in the presence of finite inertia is investigated using direct numerical simulation. In the absence of inertia, emulsions display a non-Newtonian rheology with positive first and negative second normal stress differences. However, recently it was discovered that a small amount of drop-level inertia alters their signs – the first normal stress difference becomes negative and the second one becomes positive, each in a small range of capillary numbers (Li & Sarkar, J. Rheol., vol. 49, 2005, pp. 1377–1394). Sign reversal was shown numerically and analytically, but only in the limit of a dilute emulsion where drop–drop interactions were neglected. Here, we compute the rheology of a density- and viscosity-matched emulsion, accounting for the interactions in the volume fraction range of 5 %–27 % and Reynolds number range of 0.1–10. The computed rheological properties (effective shear viscosity and first and second normal stress differences) in the Stokes limit match well with previous theoretical (Choi–Schowalter in the dilute limit) and simulated results (for concentrated systems) using the boundary element method. The two distinct components of the rheology arising from the interfacial stresses at the drop surface and the perturbative Reynolds stresses are investigated as functions of the drop Reynolds number, capillary number and volume fraction. The sign change is caused by the increasing drop inclination in the presence of inertia, which in turn directly affects the interfacial stresses. Increase of the volume fraction or capillary number increases the critical Reynolds number for sign reversals due to enhanced alignment of the drops with the flow directions. The effect of increasing the volume fraction on the rheology is explained by relating it to interactions and specifically to the contact pair-distribution function computed from the simulation. The excess stresses are seen to show an approximately linear behaviour with the Reynolds number in the range of 0.1–5, while with the capillary number and volume fraction, the variation is weakly quadratic.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, N. & Sarkar, K. 2007 Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear. J. Fluid Mech. 584, 121.Google Scholar
Aggarwal, N. & Sarkar, K. 2008a Effects of matrix viscoelasticity on viscous and viscoelastic drop deformation in a shear flow. J. Fluid Mech. 601, 6384.CrossRefGoogle Scholar
Aggarwal, N. & Sarkar, K. 2008b Rheology of an emulsion of viscoelastic drops in steady shear. J. Non-Newtonian Fluid Mech. 150, 1931.Google Scholar
Almusallam, A. S., Larson, R. G. & Solomon, M. J. 2000 A constitutive model for the prediction of ellipsoidal droplet shapes and stresses in immiscible blends. J. Rheol. 44, 10551083.Google Scholar
Batchelor, G. & Green, J. 1972 The determination of the bulk stress in a suspension of spherical particles to order c2. J. Fluid Mech. 56, 401427.CrossRefGoogle Scholar
Batchelor, G. K. 1970 Stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545570.Google Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface-tension. J. Comput. Phys. 100, 335354.CrossRefGoogle Scholar
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20, 111157.CrossRefGoogle Scholar
Brady, J. F. & Morris, J. F. 1997 Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348, 103139.CrossRefGoogle Scholar
Bunner, B. & Tryggvason, G. 1999 Direct numerical simulations of three-dimensional bubbly flows. Phys. Fluids 11, 19671969.Google Scholar
Chan, P. C. H. & Leal, L. G. 1981 An experimental study of drop migration in shear flow between concentric cylinders. Intl J. Multiphase Flow 7, 8399.Google Scholar
Choi, S. J. & Schowalter, W. R. 1975 Rheological properties of non-dilute suspensions of deformable particles. Phys. Fluids 18, 420427.CrossRefGoogle Scholar
Clausen, J. R., Reasor, D. A. & Aidun, C. K. 2011 The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules. J. Fluid Mech. 685, 202234.CrossRefGoogle Scholar
Doi, M. & Ohta, T. 1991 Dynamics and rheology of complex interfaces. I. J. Chem. Phys. 95, 12421248.Google Scholar
Einstein, A. 1906 Eine neue Bestimmung der Molekul-dimension. Ann. Phys. 19, 289306.Google Scholar
Foss, D. R. & Brady, J. F. 2000 Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation. J. Fluid Mech. 407, 167200.CrossRefGoogle Scholar
Frankel, N. A. & Acrivos, A. 1970 Constitutive equation for a dilute emulsion. J. Fluid Mech. 44, 65.Google Scholar
Haddadi, H. & Morris, J. F. 2014 Microstructure and rheology of finite inertia neutrally buoyant suspensions. J. Fluid Mech. 749, 431459.Google Scholar
Han, C. D. & King, R. G. 1980 Measurement of the rheological properties of concentrated emulsions. J. Rheol. 24, 213237.Google Scholar
Jackson, N. E. & Tucker, C. L. 2003 A model for large deformation of an ellipsoidal droplet with interfacial tension. J. Rheol. 47, 659682.Google Scholar
Kulkarni, P. M. & Morris, J. F. 2008 Suspension properties at finite Reynolds number from simulated shear flow. Phys. Fluids 20, 040602.CrossRefGoogle Scholar
Larson, R. G. 1999 The Structure and Rheology of Complex Fluids. Oxford University Press.Google Scholar
Lee, H. M. & Park, O. O. 1994 Rheology and dynamics of immiscible polymer blends. J. Rheol. 38, 14051425.CrossRefGoogle Scholar
Li, X. Y. & Sarkar, K. 2005a Drop dynamics in an oscillating extensional flow at finite Reynolds numbers. Phys. Fluids 17, 027103.CrossRefGoogle Scholar
Li, X. Y. & Sarkar, K. 2005b Effects of inertia on the rheology of a dilute emulsion of drops in shear. J. Rheol. 49, 13771394.Google Scholar
Li, X. Y. & Sarkar, K. 2005c Negative normal stress elasticity of emulsions of viscous drops at finite inertia. Phys. Rev. Lett. 95.CrossRefGoogle ScholarPubMed
Li, X. Y. & Sarkar, K. 2005d Numerical investigation of the rheology of a dilute emulsion of drops in an oscillating extensional flow. J. Non-Newtonian Fluid Mech. 128, 7182.CrossRefGoogle Scholar
Li, X. Y. & Sarkar, K. 2006 Drop deformation and breakup in a vortex at finite inertia. J. Fluid Mech. 564, 123.Google Scholar
Li, X. Y. & Sarkar, K. 2008 Front tracking simulation of deformation and buckling instability of a liquid capsule enclosed by an elastic membrane. J. Comput. Phys. 227, 49985018.CrossRefGoogle Scholar
Lin, C.-J., Peery, J. H. & Showalter, W. R. 1970 Simple shear flow round inertial effects and suspension rheology. J. Fluid Mech. 44, 117.CrossRefGoogle Scholar
Loewenberg, M. & Hinch, E. J. 1996 Numerical simulation of a concentrated emulsion in shear flow. J. Fluid Mech. 321, 395419.Google Scholar
Loewenberg, M. & Hinch, E. J. 1997 Collision of two deformable drops in shear flow. J. Fluid Mech. 338, 299315.CrossRefGoogle Scholar
Maffettone, P. L. & Minale, M. 1998 Equation of change for ellipsoidal drops in viscous flow. J. Non-Newtonian Fluid Mech. 78, 227241.Google Scholar
Morris, J. F. & Katyal, B. 2002 Microstructure from simulated Brownian suspension flows at large shear rate. Phys. Fluids 14, 1920.Google Scholar
Mukherjee, S. & Sarkar, K. 2010 Effects of viscoelasticity on the retraction of a sheared drop. J. Non-Newtonian Fluid Mech. 165, 340349.Google Scholar
Mukherjee, S. & Sarkar, K. 2011 Viscoelastic drop falling through a viscous medium. Phys. Fluids 23, 013101.Google Scholar
Mukherjee, S. & Sarkar, K. 2013 Effects of matrix viscoelasticity on the lateral migration of a deformable drop in a wall-bounded shear. J. Fluid Mech. 727, 318345.Google Scholar
Mukherjee, S. & Sarkar, K. 2014 Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall. Phys. Fluids 26, 103102.Google Scholar
Olapade, P. O., Singh, R. K. & Sarkar, K. 2009 Pair-wise interactions between deformable drops in free shear at finite inertia. Phys. Fluids 21, 063302.Google Scholar
Oldroyd, J. G. 1953 The elastic and viscous properties of emulsions and suspensions. Proc. R. Soc. Lond. A 218, 122132.Google Scholar
Pal, R. 2003 Viscous behavior of concentrated emulsions of two immiscible Newtonian fluids with interfacial tension. J. Colloid Interface Sci. 263, 296305.CrossRefGoogle ScholarPubMed
Patankar, N. A. & Hu, H. H. 2002 Finite Reynolds number effect on the rheology of a dilute suspension of neutrally buoyant circular particles in a Newtonian fluid. Intl J. Multiphase Flow 28, 409425.Google Scholar
Peters, G. W. M., Hansen, S. & Meijer, H. E. H. 2001 Constitutive modeling of dispersive mixtures. J. Rheol. 45, 659689.Google Scholar
Phung, T. N., Brady, J. F. & Bossis, G. 1996 Stokesian dynamics simulation of Brownian suspensions. J. Fluid Mech. 313, 181207.Google Scholar
Raiskinmaki, P., Astrom, J. A., Kataja, M., Latva-Kokko, M., Koponen, A., Jasberg, A., Shakib-Manesh, A. & Timonen, J. 2003 Clustering and viscosity in a shear flow of a particulate suspension. Phys. Rev. E 68, 5.Google Scholar
Raja, R. V., Subramanian, G. & Koch, D. L. 2010 Inertial effects on the rheology of a dilute emulsion. J. Fluid Mech. 646, 255296.CrossRefGoogle Scholar
Sarkar, K. & Schowalter, W. R. 2000 Deformation of a two-dimensional viscoelastic drop at non-zero Reynolds number in time-periodic extensional flows. J. Non-Newtonian Fluid Mech. 95, 315342.Google Scholar
Sarkar, K. & Schowalter, W. R. 2001 Deformation of a two-dimensional drop at non-zero Reynolds number in time-periodic extensional flows: numerical simulation. J. Fluid Mech. 436, 177206.Google Scholar
Schowalter, W. R., Chaffey, C. E. & Brenner, H. 1968 Rheological behavior of a dilute emulsion. J. Colloid Interface Sci. 26, 152.Google Scholar
Sibillo, V., Pasquariello, G., Simeone, M., Cristini, V. & Guido, S. 2006 Drop deformation in microconfined shear flow. Phys. Rev. Lett. 97, 054502.Google Scholar
Singh, R. K., Li, X. Y. & Sarkar, K. 2014 Lateral migration of a capsule in plane shear near a wall. J. Fluid Mech. 739, 421443.Google Scholar
Singh, R. K. & Sarkar, K. 2009 Effects of viscosity ratio and three dimensional positioning on hydrodynamic interactions between two viscous drops in a shear flow at finite inertia. Phys. Fluids 21, 103303.Google Scholar
Singh, R. K. & Sarkar, K. 2011 Inertial effects on the dynamics, streamline topology and interfacial stresses due to a drop in shear. J. Fluid Mech. 683, 149171.CrossRefGoogle Scholar
Smart, J. R. & Leighton, J. D. T. 1991 Measurement of the drift of a droplet due to the presence of a plane. Phys. Fluids A 3, 2128.Google Scholar
Subramanian, G., Koch, D. L., Zhang, J. S. & Yang, C. 2011 The influence of the inertially dominated outer region on the rheology of a dilute dispersion of low-Reynolds-number drops or rigid particles. J. Fluid Mech. 674, 307358.Google Scholar
Takahashi, Y., Kurashima, N., Noda, I. & Doi, M. 1994 Experimental tests of the scaling relation for textured materials in mixtures of 2 immiscible fluids. J. Rheol. 38, 699712.CrossRefGoogle Scholar
Taylor, G. I. 1932 The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. A 138, 4148.Google Scholar
Tucker, C. L. & Moldenaers, P. 2002 Microstructural evolution in polymer blends. Annu. Rev. Fluid Mech. 34, 177210.Google Scholar
Vinckier, I., Moldenaers, P. & Mewis, J. 1996 Relationship between rheology and morphology of model blends in steady shear flow. J. Rheol. 40, 613631.Google Scholar
Wetzel, E. D. & Tucker, C. L. 2001 Droplet deformation in dispersions with unequal viscosities and zero interfacial tension. J. Fluid Mech. 426, 199228.Google Scholar
Zhou, H. & Pozrikidis, C. 1993 The flow of ordered and random suspensions of two-dimensional drops in a channel. J. Fluid Mech. 255, 103127.CrossRefGoogle Scholar
Zinchenko, A. Z. & Davis, R. H. 2000 An efficient algorithm for hydrodynamical interaction of many deformable drops. J. Comput. Phys. 157, 539587.Google Scholar
Zinchenko, A. Z. & Davis, R. H. 2002 Shear flow of highly concentrated emulsions of deformable drops by numerical simulations. J. Fluid Mech. 455, 2162.Google Scholar
Zinchenko, A. Z. & Davis, R. H. 2004 Hydrodynamical interaction of deformable drops. In Emulsions: Structure Stability and Interactions (ed. Petsev, D. N.), chap. 10, pp. 391447. Elsevier.Google Scholar
Zinchenko, A. Z. & Davis, R. H. 2015 Extensional and shear flows, and general rheology of concentrated emulsions of deformable drops. J. Fluid Mech. 779, 197244.Google Scholar