Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-06T17:13:41.709Z Has data issue: false hasContentIssue false

Disorders of Infancy

from Section 4 - Neurodegenerative and Other Progressive Disorders in Childhood

Published online by Cambridge University Press:  28 April 2017

Juan M. Pascual
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliography

Al Hafid, N., Christodoulou, J. (2015). Phenylketonuria: a review of current and future treatments. Transl Pediatr. 4(4):304–17.Google ScholarPubMed
Koch, R., Verma, S., Gilles, F.H. (2008). Neuropathology of a 4-month-old infant born to a woman with phenylketonuria. Dev Med Child Neurol. 50(3):230–3.CrossRefGoogle ScholarPubMed
Steiner, C.E., Acosta, A.X., Guerreiro, M.M., et al. (2007). Genotype and natural history in unrelated individuals with phenylketonuria and autistic behavior. Arq Neuropsiquiatr. 65(2A):202–5.CrossRefGoogle ScholarPubMed

Bibliography

El-Hattab, AW. (2015). Inborn errors of metabolism. Clin Perinatol. 42(2):413–39.CrossRefGoogle ScholarPubMed
Seijo-Martínez, M., Navarro, C., Castro del Río, M., et al. (2005). L-2-hydroxyglutaric aciduria: Clinical, neuroimaging, and neuropathological findings. Arch Neurol. 62(4):666–70.CrossRefGoogle ScholarPubMed

Bibliography

da Silva, V., Vassella, F., Bischoff, A., et al. (1975). Clinical, biochemical and ultrastructural findings in a case of the infantile form. J Neurol. 211(1):61–8. Niemann-Pick’s disease.CrossRefGoogle Scholar
Schuchman, E.H., Wasserstein, M.P. (2015). Types A and B Niemann-Pick disease Best Pract Res Clin Endocrinol Metab. 29(2):237–47.CrossRefGoogle ScholarPubMed

Bibliography

Bonten, E.J., Annunziata, I., d’Azzo, A. (2014). Lysosomal multienzyme complex: pros and cons of working together. Cell Mol Life Sci. 71(11):2017–32.CrossRefGoogle ScholarPubMed
Gravel, R.A., Lowden, J.A., Callahan, J.W., et al. (1979). Infantile sialidosis: a phenocopy of type 1 GM1 gangliosidosis distinguished by genetic complementation and urinary oligosaccharides. Am J Hum Genet. 31(6):669–79.Google ScholarPubMed
Heroman, J.W., Rychwalski, P., Barr, C.C. (2008). Cherry red spot in sialidosis (mucolipidosis type I). Arch Ophthalmol. 126(2):270–1.CrossRefGoogle ScholarPubMed

Bibliography

Darin, N., Kyllerman, M., Hård, A.L., et al. (2009). Juvenile galactosialidosis with attacks of neuropathic pain and absence of sialyloligosacchariduria. Eur J Paediatr Neurol. 13(6):553–5.CrossRefGoogle ScholarPubMed

Bibliography

Niida, Y., Yokoi, A., Kuroda, M., et al. (2016). A girl with infantile neuronal ceroid lipofuscinosis caused by novel PPT1 mutation and paternal uniparental isodisomy of chromosome 1. Brain Dev. pii:S0387–7604.Google Scholar
Anderson, G.W., Goebel, H.H., Simonati, A. (2013). Human pathology in NCL. Biochim Biophys Acta. 1832(11):1807–26.Google ScholarPubMed

Bibliography

Ahmad, A., Mazhar, A.U., Anwar, M. (2009). Farber disease: A rare neurodegenerative disorder. J Coll Physicians Surg Pak. Jan;19(1):67–8.Google ScholarPubMed
Sands, M.S. (2013). Farber disease: understanding a fatal childhood disorder and dissecting ceramide biology. EMBO Mol Med. Jun;5(6):799801.CrossRefGoogle ScholarPubMed
Zhou, J., Tawk, M., Tiziano, F.D., et al. (2012). Spinal muscular atrophy associated with progressive myoclonic epilepsy is caused by mutations in ASAH1. Am J Hum Genet. Jul 13;91(1):514.CrossRefGoogle ScholarPubMed

Bibliography

Coker, M., Kalkan-Uçar, S., Kitiş, O., et al. (2009). Salla disease in Turkish children: Severe and conventional type. Turk J Pediatr. 51(6):605–9.Google ScholarPubMed
Paavola, L.E., Remes, A.M., Harila, M.J., et al. (2015). A 13-year follow-up of Finnish patients with Salla disease. J Neurodev Disord. 7(1):20.CrossRefGoogle ScholarPubMed
Sagné, C., Gasnier, B. (2008). Molecular physiology and pathophysiology of lysosomal membrane transporters. J Inherit Metab Dis. 31(2):258–66.CrossRefGoogle ScholarPubMed

Bibliography

Freeze, H.H. (2009). Towards a therapy for phosphomannomutase 2 deficiency, the defect in CDG-Ia patients. Biochim Biophys Acta. Sep;1792(9):835–40.Google ScholarPubMed
Grünewald, S. (2009). The clinical spectrum of phosphomannomutase 2 deficiency (CDG-Ia). Biochim Biophys Acta. Sep;1792(9):827–34.Google ScholarPubMed
Messenger, W.B, Yang, P., Pennesi, M.E. (2014). Ophthalmic findings in an infant with phosphomannomutase deficiency. Doc Ophthalmol. Apr;128(2):149–53.CrossRefGoogle Scholar

Bibliography

Braissant, O., Henry, H., Béard, E., et al. (2011). Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids; 40(5):1315–24.CrossRefGoogle ScholarPubMed
Clark, J.F., Cecil, K.M. (2015). Diagnostic methods and recommendations for the cerebral creatine deficiency syndromes. Pediatr Res. 77(3):398405.CrossRefGoogle ScholarPubMed

Bibliography

Angelini, C. (2015). Spectrum of metabolic myopathies. Biochim Biophys Acta. 1852(4):615–21.Google ScholarPubMed
Boustany, R.M. (2013). Lysosomal storage diseases–the horizon expands. Nat Rev Neurol.; 9(10):583–98.CrossRefGoogle ScholarPubMed
Pascual, J.M, Roe, C.R. (2013). Systemic metabolic abnormalities in adult-onset acid maltase deficiency: Beyond muscle glycogen accumulation. JAMA Neurol. 70(6):756–63.CrossRefGoogle ScholarPubMed

Bibliography

Saneto, R.P., Cohen, B.H., Copeland, W.C., et al. (2013). Alpers-Huttenlocher syndrome. Pediatr Neurol. 48(3):167–78.CrossRefGoogle ScholarPubMed

Bibliography

Gerards, M., Sallevelt, S.C., Smeets, H.J. (2016). Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol Genet Metab. 117(3):300–12.CrossRefGoogle ScholarPubMed
Leigh, D. (1951). Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry. 14(3):216–21.CrossRefGoogle ScholarPubMed

Bibliography

Kurian, M.A., Zhen, J., Cheng, S.Y., et al. (2009). Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Invest. 119(6):1595–603.Google ScholarPubMed
Ng, J., Zhen, J., Meyer, E., et al. (2014). Dopamine transporter deficiency syndrome: Phenotypic spectrum from infancy to adulthood. Brain. 137(Pt 4):1107–19.CrossRefGoogle ScholarPubMed

Bibliography

Matalon, R., Michals-Matalon, K., Surendran, S., et al. (2006). Canavan disease: studies on the knockout mouse. Adv Exp Med Biol. 576:7793.CrossRefGoogle ScholarPubMed
Zhang, H., Liu, X., Gu, X. (2010). Two novel missense mutations in the aspartoacylase gene in a Chinese patient with congenital Canavan disease. Brain Dev. 32(10):879–82.CrossRefGoogle Scholar

Bibliography

Ghai, S.J., Shago, M., Shroff, M., et al. ( 2011). Cockayne syndrome caused by paternally inherited 5 Mb deletion of 10q11.2 and a frameshift mutation of ERCC6. Eur J Med Genet. 54(3):272–6.CrossRefGoogle Scholar
Itoh, M., Hayashi, M., Shioda, K., et al. (1999). Neurodegeneration in hereditary nucleotide repair disorders. Brain Dev. 21(5):326–33.CrossRefGoogle ScholarPubMed

Bibliography

Smpokou, P., Samanta, M., Berry, G.T., et al. (2015). Menkes disease in affected females: The clinical disease spectrum. Am J Med Genet A. 167A(2):417–20.Google ScholarPubMed
Tümer, Z. (2013). An overview and update of ATP7A mutations leading to Menkes disease and occipital horn syndrome. Hum Mutat. 34(3):417–29.CrossRefGoogle ScholarPubMed

Bibliography

Hiebler, S., Masuda, T., Hacia, J.G., et al. (2014). The Pex1-G844D mouse: A model for mild human Zellweger spectrum disorder Mol Genet Metab. 111(4):522–32.CrossRefGoogle Scholar
Poll-The, B.T., Saudubray, J.M., Ogier, H.A., et al. (1987). Infantile Refsum disease: An inherited peroxisomal disorder. Comparison with Zellweger syndrome and neonatal adrenoleukodystrophy. Eur J Pediatr. 146(5):477–83.CrossRefGoogle ScholarPubMed

Bibliography

Graziano, A.C., Cardile, V. (2015). History, genetic, and recent advances on Krabbe disease. Gene. 555(1):213.CrossRefGoogle ScholarPubMed
Li, Y., Sands, M.S. (2014). Experimental therapies in the murine model of globoid cell leukodystrophy. Pediatr Neurol. 51(5):600–6.CrossRefGoogle ScholarPubMed

Bibliography

Eymard-Pierre, E., Yamanaka, K., Haeussler, M., et al. (2006). Novel missense mutation in ALS2 gene results in infantile ascending hereditary spastic paralysis. Ann Neurol. 59(6):976–80.CrossRefGoogle ScholarPubMed
Racis, L., Tessa, A., Pugliatti, M., et al. (2014). Infantile-onset ascending hereditary spastic paralysis: A case report and brief literature review. Eur J Paediatr Neurol. 18(2):235–9.CrossRefGoogle ScholarPubMed

Bibliography

Deconinck, N., Messaaoui, A., Ziereisen, F., et al. (2008). Metachromatic leukodystrophy without arylsulfatase A deficiency: A new case of saposin-B deficiency. Eur J Paediatr Neurol. Jan;12(1):4650.CrossRefGoogle ScholarPubMed
van Rappard, D.F., Boelens, J.J., Wolf, N.I. (2015). Metachromatic leukodystrophy: Disease spectrum and approaches for treatment. Best Pract Res Clin Endocrinol Metab. 29(2):261–73.CrossRefGoogle ScholarPubMed

Bibliography

Quinlan, R.A., Brenner, M., Goldman, J.E., et al. (2007). GFAP and its role in Alexander disease. Exp Cell Res. 313(10):2077–87.CrossRefGoogle ScholarPubMed
Sawaishi, Y. (2009). Review of Alexander disease: Beyond the classical concept of leukodystrophy. Brain Dev. 31(7):493–8.CrossRefGoogle ScholarPubMed

Bibliography

Hobson, G.M., Garbern, J.Y. (2012). Pelizaeus-Merzbacher disease, Pelizaeus-Merzbacher-like disease 1, and related hypomyelinating disorders. Semin Neurol. 32(1):62–7.Google ScholarPubMed
Masliah-Planchon, J., Dupont, C., Vartzelis, G., et al. (2015). Boespflug-Tanguy O. Insertion of an extra copy of Xq22.2 into 1p36 results in functional duplication of the PLP1 gene in a girl with classical Pelizaeus-Merzbacher disease. BMC Med Genet. Sep 2; 16:77.CrossRefGoogle Scholar

Bibliography

Chapleau, C.A., Lane, J., Larimore, J., Li, W., Pozzo-Miller, L., Percy, A.K. (2013). Recent progress in Rett syndrome and MeCP2 dysfunction: Assessment of potential treatment options. Future Neurol. 8(1): doi:10.2217/fnl.12.79.CrossRefGoogle ScholarPubMed
Gharesouran, J., Khalili, A.F., Azari, N.S., Vahedi, L. (2015). First case report of Rett syndrome in the Azeri Turkish population and brief review of the literature. Epilepsy Behav Case Rep. 3:1519.CrossRefGoogle ScholarPubMed

Bibliography

Kolb, S.J., Kissel, J.T. (2015). Spinal muscular atrophy. Neurol Clin. 33(4):831–46.CrossRefGoogle ScholarPubMed
Malerba, K.H., Tecklin, J.S. (2013). Clinical decision making in hypotonia and gross motor delay: A case report of type 1 spinal muscular atrophy in an infant. Phys Ther. Jun;93(6):833–41.CrossRefGoogle Scholar

Bibliography

Solomons, J., Ridgway, O., Hardy, C., et al. (2014). Infantile neuroaxonal dystrophy caused by uniparental disomy. Dev Med Child Neurol. 56(4):386–9.CrossRefGoogle ScholarPubMed
Kurian, M.A., McNeill, A., Lin, J.P., Maher, E.R. (2011). Childhood disorders of neurodegeneration with brain iron accumulation (NBIA). Dev Med Child Neurol. 53(5):394404.CrossRefGoogle ScholarPubMed

Bibliography

Choi, Y.J., Hyun, Y.S., Nam, S.H., et al. (2015). Novel compound heterozygous nonsense PRX mutations in a Korean Dejerine-Sottas neuropathy family. J Clin Neurol. 11(1):92–6.CrossRefGoogle Scholar
Jani-Acsadi, A., Ounpuu, S., Pierz, K., et al. (2015). Pediatric Charcot-Marie-tooth disease. Pediatr Clin North Am. 62(3):767–86.CrossRefGoogle ScholarPubMed

Bibliography

Echenne, B., Rideau, A., Roubertie, A., et al. (2008). Myotonic dystrophy type I in childhood Long-term evolution in patients surviving the neonatal period. Eur J Paediatr Neurol. 12(3):210–23.CrossRefGoogle ScholarPubMed
Ho, G., Cardamone, M., Farrar, M. (2015). Congenital and childhood myotonic dystrophy: Current aspects of disease and future directions. World J Clin Pediatr. 4(4):6680.CrossRefGoogle ScholarPubMed

Bibliography

Cullup, T., Kho, A.L., Dionisi-Vici, C., et al. (2013). Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet. 45(1):83–7.CrossRefGoogle ScholarPubMed

Bibliography

Ramantani, G., Häusler, M., Niggemann, P., et al. (2011). Aicardi-Goutières syndrome and systemic lupus erythematosus (SLE) in a 12-year-old boy with SAMHD1 mutations. J Child Neurol. 26(11:1425–8.CrossRefGoogle Scholar
Rice, G.I., Forte, G.M., Szynkiewicz, M., et al. (2013). Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 12(12):1159–69.CrossRefGoogle ScholarPubMed

Bibliography

Taratuto, A.L., Akman, H.O., Saccoliti, M., et al. (2010). Branching enzyme deficiency/glycogenosis storage disease type IV presenting as a severe congenital hypotonia: Muscle biopsy and autopsy findings, biochemical and molecular genetic studies. Neuromuscul Disord. 20(12):783–90.CrossRefGoogle ScholarPubMed
Tay, S.K., Akman, H.O., Chung, W.K., et al. (2004). Fatal infantile neuromuscular presentation of glycogen storage disease type IV. Neuromuscul Disord. 14(4):253–60.CrossRefGoogle ScholarPubMed

Bibliography

Basel-Vanagaite, L., Muncher, L., Straussberg, R., et al. (2006). Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol. 60(2):214–22.CrossRefGoogle ScholarPubMed
Lal, D., Becker, K., Motameny, S., et al. (2013). Homozygous missense mutation of NDUFV1 as the cause of infantile bilateral striatal necrosis. Neurogenetics. 14(1):85–7.CrossRefGoogle ScholarPubMed
Straussberg, R., Shorer, Z., Weitz, R., et al. (2002). Familial infantile bilateral striatal necrosis: clinical features and response to biotin treatment. Neurology. 59(7):983–9.CrossRefGoogle ScholarPubMed

Bibliography

Biancheri, R., Cerone, R., Schiaffino, M.C., et al. (2001). Cobalamin (Cbl) C/D deficiency: Clinical, neurophysiological and neuroradiologic findings in 14 cases. Neuropediatrics. 32(1):1422.CrossRefGoogle Scholar
Grünert, S.C., Fowler, B., Superti-Furga, A., et al. (2011) Hyperpyrexia resulting in encephalopathy in a 14-month-old patient with cblC disease. Brain Dev. 33(5):432–6.CrossRefGoogle Scholar
Martinelli, D., Deodato, F., Dionisi-Vici, C. (2011). Cobalamin C defect: Natural history, pathophysiology, and treatment. J Inherit Metab Dis. 34(1):127–35.CrossRefGoogle ScholarPubMed

Bibliography

Serrano, M., Pérez-Dueñas, B., Montoya, J., et al. (2012). Genetic causes of cerebral folate deficiency: Clinical, biochemical and therapeutic aspects. Drug Discov Today. 17(23–24):1299–306.CrossRefGoogle ScholarPubMed
Wang, Q., Li, X., Ding, Y., et al. (2015). The first Chinese case report of hereditary folate malabsorption with a novel mutation on SLC46A1. Brain Dev. 37(1):163–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Disorders of Infancy
  • Juan M. Pascual, University of Texas Southwestern Medical Center, Dallas
  • Book: Progressive Brain Disorders in Childhood
  • Online publication: 28 April 2017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Disorders of Infancy
  • Juan M. Pascual, University of Texas Southwestern Medical Center, Dallas
  • Book: Progressive Brain Disorders in Childhood
  • Online publication: 28 April 2017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Disorders of Infancy
  • Juan M. Pascual, University of Texas Southwestern Medical Center, Dallas
  • Book: Progressive Brain Disorders in Childhood
  • Online publication: 28 April 2017
Available formats
×