Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-15T17:15:19.909Z Has data issue: false hasContentIssue false

11 - T Tauri and Herbig Ae/Be stars

from III - Stars and their environment

Published online by Cambridge University Press:  05 May 2015

Ludmilla Kolokolova
Affiliation:
University of Maryland, College Park
James Hough
Affiliation:
University of Hertfordshire
Anny-Chantal Levasseur-Regourd
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akitaya, H, Ikeda, Y., Kawabata, K. S. et al. (2011). Linear polarization in forbidden lines of the T Tauri star RY Tauri. Astronomy and Astrophysics, 499, 163173.CrossRefGoogle Scholar
Alonso-Albi, T., Fuente, A., Bachiller, R.et al. (2009). Circumstellar disks around Herbig Be stars. Astronomy and Astrophysics, 497, 117–136.CrossRefGoogle Scholar
Apai, D., Pascucci, I., Brandner, W.et al. (2004). NACO polarimetric differential imaging of TW Hya. A sharp look at the closest T Tauri disk. Astronomy and Astrophysics, 415, 671676.CrossRefGoogle Scholar
Appenzeller, I. (1994). Herbig Ae/Be stars: The interface between low-mass and high-mass star formation. In Thé, P. S., Pérez, M. R., and van den Heuvel, P. J., eds., The Nature and Evolutionary Status of Herbig Ae/Be Stars, Vol. 62. San Francisco USA: Astronomical Society of the Pacific, pp. 1219.Google Scholar
Appenzeller, I. and Mundt, R. (1989). T Tauri stars. Astronomy and Astrophysics Review, 1, 291334.CrossRefGoogle Scholar
Aspin, C., McLean, I. S., and Coyne, G. V. (1985). CCD observations of bipolar nebulae. III. R Mon/NGC 2261. Astronomy and Astrophysics, 148, 159166.Google Scholar
Asselin, L., Ménard, F., Bastien, P., Monin, J.-L., and Rouan, D. (1996). The environment of V633 Cassiopeiae and V376 Cassiopeiae: Evidence for circumstellar disks. The Astrophysical Journal, 472, 349359.CrossRefGoogle Scholar
Bastien, P. (1981). The wavelength dependence of linear polarization in T Tauri stars. Astronomy and Astrophysics, 94, 294298.Google Scholar
Bastien, P. (1982). A linear polarization survey of linear polarization in T Tauri stars. Astronomy and Astrophysics Supplement, 48, 153164 and 48, 513518.Google Scholar
Bastien, P. (1985). A linear polarization survey of southern T Tauri stars. The Astrophysical Journal Supplement, 59, 277291.CrossRefGoogle Scholar
Bastien, P. (1987). Polarization, jets and the distribution of circumstellar dust around T Tauri stars and other young infrared sources. The Astrophysical Journal, 317, 231240.CrossRefGoogle Scholar
Bastien, P. (1988). Polarization properties of T Tauri stars and other pre-main sequence objects. In Coyne, G. V., Magalhães, A. M., Moffat, A. F. J.et al., eds., Proceedings of the Vatican Observatory Conference on Polarized Radiation of Circumstellar Origin. Vatican: Vatican Press, pp. 541582.Google Scholar
Bastien, P. (1991). Polarization of light and models of the circumstellar environment of young stellar objects. In Lada, C. and Kylafis, N., eds., Physics of Star Formation and Early Stellar Evolution. NATO Advanced Study Institute. Dordrecht, Holland: Kluwer Academic Publishers, pp. 709736.CrossRefGoogle Scholar
Bastien, P. (1996). Polarization of young stellar objects. In Roberge, W. G. and Whittet, D. C. B., eds., Polarimetry of the Interstellar Medium. ASP Conference, 97. San Francisco USA: Astronomical Society of the Pacific, pp. 297314.Google Scholar
Bastien, P. and Landstreet, J. D. (1979). Polarization observations of the T Tauri stars RY Tauri, T Tauri, and V866 Scorpii. The Astrophysical Journal, 229, L37L40.CrossRefGoogle Scholar
Bastien, P. and Ménard, F. (1988). On the interpretation of polarization maps of young stellar objects. The Astrophysical Journal, 326, 334338.CrossRefGoogle Scholar
Bastien, P. and Ménard, F. (1990a). Parameters of disks around young stellar objects from polarization observations. The Astrophysical Journal, 364, 232241.CrossRefGoogle Scholar
Bastien, P. and Ménard, F. (1990b) Recent results on polarization of T Tauri stars and other young stellar objects. In Mirzoyan, L. V., Pettersen, B. R., and Tsvetkov, M. K., eds., Flare Stars in Star Clusters, Associations and the Solar Vicinity. IAU Symposium 137. Dordrecht, Holland: Kluwer, pp. 179184.CrossRefGoogle Scholar
Bastien, P., Ménard, F., Asselin, L., and Turbide, L. (1989a). The circumstellar environment of two young stars in Cassiopeia. In Modeling the Stellar Environment: How and why? Fourth IAP Astrophysics Meeting. Gif-sur-Yvette, France: Éditions Frontières, pp. 185188.Google Scholar
Bastien, P., Robert, C., and Nadeau, R. (1989b). Circular polarization in T Tauri stars. II. New observations and evidence for multiple scattering. The Astrophysical Journal, 339, 10891092.CrossRefGoogle Scholar
Bastien, P., Vernet, E., Drissen, L.et al. (2007). The variability of polarized standard stars. In Sterken, C., ed., The Future of Photometric, Spectrophotometric and Polarimetric Standardization. ASP Conference, 364. San Francisco USA: Astronomical Society of the Pacific, pp. 529541.Google Scholar
Berger, J.-P. and Ménard, F. (1997). The contribution of circumbinary envelopes to polarisation modulations. In Malbet, F. and Castets, A., eds., Low-Mass Star Formation – from Infall to Outflow. IAU Symposium 182. Dordrecht, the Netherlands: Kluwer, pp. 201203.Google Scholar
Bertout, C. (1989). T Tauri stars: Wild as dust. Annual Review of Astronomy and Astrophysics, 27, 351395.CrossRefGoogle Scholar
Bjorkman, K. S. (2012). Polarimetry of binary stars and exoplanets. In Richards, M. T. and Hubeny, I., eds., From Interacting Binaries to Exoplanets: Essential Modeling Tools. IAU Symposium 282. Cambridge University Press, pp. 173180.Google Scholar
Bjorkman, K. S. and Schulte-Ladbeck, R. (1994). Ultraviolet and optical spectropolarimetry of Herbig Ae/Be stars. In Thé, P. S., Perez, M. R., and van den Heuvel, E. P. J., eds., The Nature and Evolutionary Status of Herbig Ae/Be Stars. ASP, Vol. 62. San Francisco, USA: Astronomical Society of the Pacific, pp. 7477.Google Scholar
Bouvier, J., Chelli, A., Allain, S.et al. (1999). Magnetospheric accretion onto the T Tauri star AA Tauri. I. Constraints from multisite spectrophotometric monitoring. Astronomy and Astrophysics, 349, 619635.Google Scholar
Bouvier, J., Grankin, K. N., Alencar, S. H. P.et al. (2003). Eclipses by circumstellar material in the T Tauri star AA Tau. II. Evidence for non-stationary magnetospheric accretion. Astronomy and Astrophysics, 409, 169192.CrossRefGoogle Scholar
Bouvier, J., Grankin, K., Ellerbroek, L. E., Bouy, H. and Barrado, D. (2013). AA Tauri’s sudden and long-lasting deepening: Enhanced extinction by its circumstellar disk. Astronomy and Astrophysics, 557, A77 (9p).CrossRefGoogle Scholar
Brown, J. C., McLean, I. S., and Emslie, A. G. (1978). Polarisation by Thomson scattering in optically thin stellar envelopes. II – Binary and multiple star envelopes and the determination of binary inclinations. Astronomy and Astrophysics, 68, 415427.Google Scholar
Campbell, B., Persson, S. E., and McGregor, P. J. (1986). Images of star-forming regions. I. Optical and radio morphology of the bipolar outflow source GL 490. The Astrophysical Journal, 305, 336352.CrossRefGoogle Scholar
Campbell, B., Persson, S. E., Strom, S. E., and Grasdalen, G. L. (1988). Images of star-forming regions. II. The circumstellar environment of L1551 IRS 5. The Astronomical Journal, 95, 11731184.CrossRefGoogle Scholar
Cantó, J., Rodriguez, L. F., Barral, J. F., and Carral, P. (1981). Carbon monoxide observations of R Monocerotis, NGC 2261, and Herbig-Haro 39 – The interstellar nozzle. The Astrophysical Journal, 244, 102114.CrossRefGoogle Scholar
Catala, C. (1989). Herbig Ae and Be stars. In Reipurth, B., ed., Proceedings of the ESO Workshop on Low Mass Star Formation and Pre-Main Sequence Objects. Garching bei München, Germany: ESO, pp. 471489.Google Scholar
Clarke, D., Naghizadeh-Khouei, J., Simmons, J. F. L. and Stewart, B. G. (1993). A statistical assessment of zero-polarization catalogues. Astronomy and Astrophysics, 269, 617626.Google Scholar
Close, L. M., Roddier, F., Hora, J. L.et al. (1997). Adaptive optics infrared imaging polarimetry and optical HST imaging of Hubble’s nebula (R Monocerotis/NGC 2261): A close look at a very young active Herbig Ae/Be star. The Astrophysical Journal, 489, 210221.CrossRefGoogle Scholar
Daniel, J.-Y. (1980). Monte Carlo analysis of polarization by Mie scattering in circumstellar envelopes. Astronomy and Astrophysics, 87, 204209.Google Scholar
de Winter, D. and van den Ancker, M. E. (1997). The peculiar B[e] star HD 45677. II. Photometric behaviour and spectroscopic properties. Astronomy and Astrophysics Supplement, 121, 275299.CrossRefGoogle Scholar
Duchêne, G., McCabe, C., Ghez, A. M., and Macintosh, B. A. (2004). A multiwavelength scattered light analysis of the dust grain population in the GG Tauri circumbinary ring. The Astrophysical Journal, 606, 969982.CrossRefGoogle Scholar
Dyck, H. M., Simon, T., and Zuckerman, B. (1982). Discovery of an infrared companion to T Tauri. The Astrophysical Journal, 225, L103L106.CrossRefGoogle Scholar
Fisher, O., Henning, Th., and Yorke, H. W. (1994). Simulation of polarization maps. I. Protostellar envelopes. Astronomy and Astrophysics, 284, 187209.Google Scholar
Garrison, L. M. and Anderson, C. M. (1978). Observational studies of the Herbig Ae/Be stars. II. Polarimetry. The Astrophysical Journal, 221, 601607.CrossRefGoogle Scholar
Grinin, V. P. (1994). Polarimetric activity of Herbig Ae/Be stars. In Thé, P. S., Perez, M. R., and van den Heuvel, E. P. J., eds., The Nature and Evolutionary Status of Herbig Ae/Be Stars. ASP conference Vol. 62. San Francisco, USA: Astronomical Society of the Pacific, pp. 6370.Google Scholar
Grinin, V. P. (2000). Photopolarimetric activity of pre-main-sequence stars. In Garzón, F., Eiroa, C., de Winter, D., and Mahoney, T. J., eds., Disks, Planetesimals, and Planets. ASP Conference, Vol. 219. San Francisco, USA: Astronomical Society of the Pacific, pp. 216230.Google Scholar
Hall, R. C. (1965). Polarization and color measures of NGC 2261. Publications of the Astronomical Society, 77, 158163.CrossRefGoogle Scholar
Harrington, D. M. and Kuhn, J. R. (2007). Spectropolarimetry of the Hα line in Herbig Ae/Be stars. The Astrophysical Journal, 667, L89L92.CrossRefGoogle Scholar
Harrington, D. M. and Kuhn, J. R. (2009a). Spectropolarimetric observations of Herbig Ae/Be stars. II. Comparison of spectropolarimetric surveys: HAEBE, Be and other emission-line stars. The Astrophysical Journal Supplement, 180, 138181.CrossRefGoogle Scholar
Harrington, D. M. and Kuhn, J. R. (2009b). Ubiquitous Hα-polarized line profiles: Absorptive spectropolarimetric effects and temporal variability in post-AGB, Herbig Ae/Be, and other stellar types. The Astrophysical Journal, 695, 238247.CrossRefGoogle Scholar
Herbig, G. H. (1968). The structure and spectrum of R Monocerotis. The Astrophysical Journal, 152, 439441.CrossRefGoogle Scholar
Herbig, G. (1994). The Ae/Be stars. In Thé, P. S., Pérez, M. R., and van den Heuvel, P. J., eds., The Nature and Evolutionary Status of Herbig Ae/Be Stars. ASP Conference, Vol. 62. San Francisco, USA: Astronomical Society of the Pacific, pp. 3–10.Google Scholar
Herbst, W., Herbst, D. K., Grossman, E. J., and Weinstein, D. (1994). Catalogue of UBVRI photometry of T Tauri stars and analysis of the causes of their variability. The Astronomical Journal, 108, 19061923.CrossRefGoogle Scholar
Hillenbrand, L. A., Strom, S. E., Vrba, F. J., and Keene, J. (1992). Herbig Ae/Be star: Intermediate-mass accretion stars surrounded by massive circumstellar accretion disks. The Astrophysical Journal, 397, 613643.CrossRefGoogle Scholar
Hioki, H., Itoh, Y., Oasa, Y., Fukagawa, M., and Hayashi, M. (2011). High-resolution optical and near-infrared images of the FS Tauri circumbinary disk. Publications of the Astronomical Society of Japan, 63, 543554.CrossRefGoogle Scholar
Hodapp, K.-W. (1984). Infrared polarization of sources with bipolar mass outflow. Astronomy and Astrophysics, 141, 255262.Google Scholar
Hoffman, J. L.Whitney, B. A., and Nordsieck, K. H. (2003). The effect of multiple scattering on the polarization from binary star envelopes. I. Self- and externally illuminated disks. The Astrophysical Journal, 598, 572587.CrossRefGoogle Scholar
Hough, J. H., Bailey, J., Cunningham, E. C., McCall, A., and Axon, D. J. (1981). Linear polarization of T Tauri stars. Monthly Notices of the Royal Astronomical Society, 195, 429436.CrossRefGoogle Scholar
Jain, S. K. and Bhatt, H. C. (1995). Study of variability of the polarization in Herbig Ae/Be stars. Astronomy and Astrophysics Supplement, 111, 399405.Google Scholar
Jain, S. K., Bhatt, H. C., and Sagar, R. (1990). Measurements of linear polarization of some Herbig Ae/Be stars. Astronomy and Astrophysics Supplement, 83, 237244.Google Scholar
Jolin, M.-A., Bastien, P., Denni, F.et al. (2010). Toward understanding the environment of R Monocerotis from high-resolution near-infrared polarimetric observations. The Astrophysical Journal, 721, 17481754.CrossRefGoogle Scholar
Jones, T. J. and Dick, H. M. (1978). Infrared polarimetry of three bipolar nebulae. The Astrophysical Journal, 220, 159164.CrossRefGoogle Scholar
Joshi, U. C., Deshpande, M. R., and Kulshreta, A. K. (1987). Polarization measurements of some T Tauri stars. In Appenzeller, I. and Jordan, C., eds., Circumstellar Matter, IAU Symposium, 122. Dordrecht, the Netherlands: D. Reidel Publishing Company, pp. 135138.CrossRefGoogle Scholar
Koerner, D. W. and Sargent, A. I. (1995). Imaging the small-scale circumstellar gas around T Tauri stars. The Astronomical Journal, 109, 2138–2145.CrossRefGoogle Scholar
Koresko, C. D. (2000). A third star in the T Tauri system. The Astrophysical Journal, 531, L147L149.CrossRefGoogle Scholar
Kuhn, J. R., Berdyugina, S. V., Fluri, D. M., Harrington, D. M., and Stenflo, J. O. (2007). A new mechanism for polarizing light from obscured stars. The Astrophysical Journal, 668, L63L66.CrossRefGoogle Scholar
Manset, N. (2005). Polarimetry of binary stars. In Adamson, A., Aspin, C. J., Davis, C. J., and Fujiyoshi, T., eds., Astronomical Polarimetry: Current Status and Future Directions. ASP Conference, Vol. 343, San Francisco, USA: Astronomical Society of the Pacific, pp. 389400.Google Scholar
Manset, N. and Bastien, P. (2000). Polarimetric variations of binary stars. I. Numerical simulations for circular and eccentric binaries in Thomson scattering envelopes. The Astronomical Journal, 120, 413429.CrossRefGoogle Scholar
Manset, N. and Bastien, P. (2001a). Polarimetric variations of binary stars. II. Numerical simulations for circular and eccentric binaries in Mie scattering envelopes. The Astronomical Journal, 122, 26922699.CrossRefGoogle Scholar
Manset, N. and Bastien, P. (2001b). Polarimetric variations of binary stars. III. Periodic polarimetric variations of the Herbig Ae/Be star MWC 1080. The Astronomical Journal, 122, 34533465.CrossRefGoogle Scholar
Manset, N. and Bastien, P. (2002). Polarimetric variations of binary stars. IV. Pre-main-sequence spectroscopic binaries located in Taurus, Auriga, and Orion. The Astronomical Journal, 124, 10891117.CrossRefGoogle Scholar
Manset, N. and Bastien, P. (2003). Polarimetric variations of binary stars. V. Pre-main-sequence spectroscopic binaries located in Ophiuchus and Scorpius. The Astronomical Journal, 125, 32743301.CrossRefGoogle Scholar
Manset, N.Bastien, P., and Bertout, C. (2005). Polarimetric variations of binary stars. VI. Orbit-induced variations in the pre-main-sequence binary AK Scorpii. The Astronomical Journal, 129, 480491.CrossRefGoogle Scholar
Manset, N., Bastien, P., Ménard, F.et al. (2009). Photometric and polarimetric clues to the circumstellar environment of RY Lupi. Astronomy and Astrophysics, 499, 137148.CrossRefGoogle Scholar
Mathieu, R. D. (1994). Pre-main-sequence binary stars. Annual Review of Astronomy and Astrophysics, 32, 465530.CrossRefGoogle Scholar
Matsumura, M., Seki, M., and Kawabata, K. (1999). Simultaneous polarimetry and photometry of the young stellar object R Monocerotis. The Astronomical Journal, 117, 429438.CrossRefGoogle Scholar
McCabe, C., Duchêne, G., and Ghez, A. M. (2003). The first detection of spatially resolved mid-infrared scattered light from a protoplanetary disk. The Astrophysical Journal, 588, L113L116.CrossRefGoogle Scholar
McLean, I. S. and Brown, J. C. (1978). Polarisation by Thomson scattering in optically thin stellar envelopes. III. A statistical study of the oblateness and rotation of Be star envelopes. Astronomy and Astrophysics, 69, 291296.Google Scholar
Mekkaden, M. V. (1999). Polarimetric and spectroscopic study of the weak-emission T Tauri star V 410 Tauri. Astronomy and Astrophysics, 344, 111116.Google Scholar
Mekkaden, M. V., Muneer, S., and Raveendran, A. V. (2007). Photometric, spectroscopic and polarimetric variability of the weak-emission T Tauri star HD 288313. Monthly Notices of the Royal Astronomical Society, 378, 10791088.CrossRefGoogle Scholar
Ménard, F. (1989). Étude de la polarisation causée par des grains dans les enveloppes circumstellaires denses. Ph.D. thesis, Université de Montréal.Google Scholar
Ménard, F. (1991). Monte Carlo radiative transfer models of circumstellar disks. In Arcoragi, J.-P., Bastien, P., and Pudritz, R., eds., Graduate Workshop on Star Formation. Dép. de physique, Université de Montréal, pp. 161165.Google Scholar
Ménard, F. and Bastien, P. (1992). Linear polarization of T Tauri stars. II. A sample of objects fainter than 13th magnitude. The Astronomical Journal, 103, 564572.CrossRefGoogle Scholar
Ménard, F. and Bertout, C. (1999). The nature of young solar-type stars. In Lada, C. J. and Kylafis, N. D., eds., The Origin of Stars and Planetary Systems. NATO ASIC Proceedings 540. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 341374.Google Scholar
Ménard, F., Bastien, P., and Robert, C. (1988). Detection of circular polarization in R Monocerotis and NGC 2261 – Implications for the polarization mechanism. The Astrophysical Journal, 335, 290294.CrossRefGoogle Scholar
Ménard, F., Duchêne, G., Viard, É., and Colombet, L. (1996). Can the geometrical parameters of YSOs’ accretion disks be evaluated by polarimetry? In Roberge, W. G. and Whittet, D. C. B., eds., Polarimetry of the Interstellar Medium. ASP Conference, Vol. 97. San Francisco, USA: Astronomical Society of the Pacific, pp. 315320.Google Scholar
Ménard, F., Bouvier, J., Dougados, C., Mel’nikov, S. Y., and Grankin, K. N. (2003). Constraints on the disk geometry of the T Tauri star AA Tau from linear polarimetry. Astronomy and Astrophysics, 409, 163167.CrossRefGoogle Scholar
Minchin, N. R., Hough, J. H., McCall, A.et al. (1991). Near-infrared imaging polarimetry of bipolar nebulae – III. R Mon/NGC 2261. Monthly Notices of the Royal Astronomical Society, 249, 707715.CrossRefGoogle Scholar
Moneti, A., Pipher, J. L., Helfer, H. L., McMillan, R. S., and Perry, M. L. (1984). Magnetic field structure in the Taurus dark cloud. The Astrophysical Journal, 282, 508515.CrossRefGoogle Scholar
Monin, J.-L., Ménard, F., and Duchêne, G. (1998). Using polarimetry to check rotation alignment in PMS binary stars. Principles of the method and first results. Astronomy and Astrophysics, 339, 113122.Google Scholar
Monin, J.-L., Ménard, F., and Peretto, N. (2006). Disc orientations in pre-main-sequence multiple systems. A study in southern star formation regions. Astronomy and Astrophysics, 446, 201210.CrossRefGoogle Scholar
Mottram, J. C., Vink, J. S., Oudmaijer, R. D., and Patel, M. (2007). On the difference between Herbig Ae and Herbig Be stars. Astronomy and Astrophysics, 337, 13631374.Google Scholar
Mundt, R. and Fried, J. W. (1983). Jets from young stars. The Astrophysical Journal, 274, L83L86.CrossRefGoogle Scholar
Murakawa, K. (2010). Radiative transfer modeling of the dust disk of the Herbig Be star R Monocerotis. Astronomy and Astrophysics, 422(A46), 110.Google Scholar
Murakawa, K., Preibisch, T., Kraus, S.et al. (2008). VLT/NACO and Subaru/CIAO JHK-band high resolution imaging polarimetry of the Herbig Be star R Monocerotis. Astronomy and Astrophysics, 488, L75L78.CrossRefGoogle Scholar
Nadeau, R. and Bastien, P. (1986). Circular polarization in T Tauri stars. The Astrophysical Journal, 307, L5L8.CrossRefGoogle Scholar
O’Sullivan, M., Truss, M., Walker, C.et al. (2005). Modelling the photopolarimetric variability of AA Tau. Monthly Notices of the Royal Astronomical Society, 358(2), 632640.CrossRefGoogle Scholar
Oudmaijer, R. D. and Drew, J. E. (1999). Hα spectropolarimetry of B[e] and Herbig Be stars. Monthly Notices of the Royal Astronomical Society, 305, 166180.CrossRefGoogle Scholar
Oudmaijer, R. D., Palacios, J., Eiroa, C., and the EXPORT collaboration (2001). EXPORT: Optical photometry and polarimetry of Vega-type and pre-main sequence stars. Astronomy and Astrophysics, 379, 564578.CrossRefGoogle Scholar
Oudmaijer, R. D., Drew, J. E., and Vink, J. S. (2005). Near-infrared spectropolarimetry of hot massive stars. Monthly Notices of the Royal Astronomical Society, 364, 725730.CrossRefGoogle Scholar
Pereyra, A., Magalhães, A. M., and Araújo, F. X. (2009a). Hα spectropolarimetry of RY Tauri and PX Vulpeculae. Astronomy and Astrophysics, 495, 195199.CrossRefGoogle Scholar
Pereyra, A., Girart, J. M., Magalhães, A. M., Rodrigues, C. V., and de Araújo, F. X. (2009b). Near infrared polarimetry of a sample of YSOs. Astronomy and Astrophysics, 501, 595607.CrossRefGoogle Scholar
Perrin, M. D., Graham, J. R., Kalas, P.et al. (2004). Laser guide star adaptive optics imaging polarimetry of Herbig Ae/Be stars. Science, 303, 13451348.CrossRefGoogle ScholarPubMed
Perrin, M. D., Duchêne, G., Kalas, P., and Graham, J. R. (2006). Discovery of an optically thick, edge-on disk around the Herbig Ae star PDS 144N. The Astrophysical Journal, 645, 12721282.CrossRefGoogle Scholar
Petrov, P. P., Zajtseva, G. V., Efimov, Yu. S.et al. (1999). Brightening of the T Tauri star RY Tauri in 1996. Photometry, polarimetry and high-resolution spectroscopy. Astronomy and Astrophysics, 341, 553559.Google Scholar
Petrova, N. N. and Shevchenko, V. S. (1987). Polarization in the light from Herbig Ae/Be stars. Soviet Astronomy Letters, 13, 289293.Google Scholar
Poeckert, R. (1982). Model atmospheres of Be Stars. In Jascheck, M. and Groth, H-G., eds., Be Stars. IAU Symposium, 98. Dordrecht, the Netherlands: Reidel, pp. 453481.CrossRefGoogle Scholar
Poeckert, R., Bastien, P., and Landstreet, J. D. (1979). Intrinsic polarization of Be stars. The Astronomical Journal, 84, 812830.CrossRefGoogle Scholar
Potter, D. E. (2003). A search for debris disks with a dual channel adaptive optics imaging polarimeter. Ph.D. thesis, University of Hawaii.Google Scholar
Quanz, S. P., Schmid, H. M., Geissler, K.et al. (2011). Very large telescope/NACO polarimetric differential imaging of HD 100546—disk structure and grain properties between 10 and 140 AU. The Astrophysical Journal, 738, 23 (20p).CrossRefGoogle Scholar
Rostopchina, A. N., Grinin, V. P., Okazaki, A.et al. (1997). Dust around young stars. Photopolarimetric activity of the classical Herbig Ae/Be star RR Tauri. Astronomy and Astrophysics, 327, 145154.Google Scholar
Rostopchina-Shakhovskaja, A. N., Grinin, V. P., and Shakhovskoi, D. N. (2012). Unusual recurrent eclipses of the UX Ori star WW Vul. Astrophysics, 55, 147155.CrossRefGoogle Scholar
Rudy, R. J. and Kemp, J. C. (1976). AO Cassiopeiae – Phase-locked polarization and the geometry of the gas stream. The Astrophysical Journal, 207, L125L128.CrossRefGoogle Scholar
Schulte-Ladbeck, R. (1983). Linear polarization variations of six T Tauri stars. Astronomy and Astrophysics, 120, 203214.Google Scholar
Schulte-Ladbeck, R., Shepherd, D. S., Nordsieck, K. H.et al. (1992). Evidence for a bipolar nebula around the peculiar B[e] star HD 45677 from ultraviolet spectropolarimetry. The Astrophysical Journal, 401, L105L108.CrossRefGoogle Scholar
Serkowski, K. (1969a). Changes in polarization of T Tauri stars. The Astrophysical Journal, 156, L55L57.CrossRefGoogle Scholar
Serkowski, K. (1969b). Polarization of reflection nebulae associated with VY Canis Majoris and R Coronae Austrinae. The Astrophysical Journal, 158, L107L110.CrossRefGoogle Scholar
Shawl, S. J. (1975). Wavelength dependence of polarization. XXIX. Observations of red variable stars. The Astronomical Journal, 80, 602624.CrossRefGoogle Scholar
Snell, R. L., Loren, R. B., and Plambeck, R. L. (1980). Observations of CO in L1551: Evidence for stellar wind driven shocks. The Astrophysical Journal, 239, L17L22.CrossRefGoogle Scholar
Stahler, S. W. and Palla, F. (2004). The Formation of Stars. Weinheim, Germany: Wiley-VCH.CrossRefGoogle Scholar
Stassun, K. and Wood, K. (1999). Magnetic accretion and photopolarimetric variability in classical T Tauri stars. The Astrophysical Journal, 510, 892904.CrossRefGoogle Scholar
St-Onge, G. and Bastien, P. (2008). A jet associated with the classical T Tauri star RY Tauri. The Astrophysical Journal, 674, 10321036.CrossRefGoogle Scholar
Tamura, M. and Fukagawa, M. (2005). Circumstellar disks in PMS and T Tauri stars—Herbig Ae/Be stars, Vega-like stars, and submillimeter polarizations. In Adamson, A., Aspin, C. J., Davis, C. J., and Fujiyoshi, T., eds., Astronomical Polarimetry: Current Status and Future Directions. ASP Conference, Vol. 343. San Francisco, USA: Astronomical Society of the Pacific, pp. 215226.Google Scholar
Tamura, M. and Sato, S. (1989). A two micron polarization survey of T Tauri stars. Astronomical Journal, 98, 13681381.CrossRefGoogle Scholar
Thé, P. S., Pérez, M. R., and van den Heuvel, P. J., eds. (1994). The Nature and Evolutionary Status of Herbig Ae/Be Stars. San Francisco, USA: Astronomical Society of the Pacific.Google Scholar
Vardanian, R. A. (1964). The polarization of T and RY Tau. Soobshcheniya Byurakanskoj Observatorii, 35, 323.Google Scholar
Vink, J. S., Drew, J. E., Harries, T. J., and Oudmaijer, R. D. (2002). Probing the circumstellar structure of Herbig Ae/Be stars. Monthly Notices of the Royal Astronomical Society, 337, 356368.CrossRefGoogle Scholar
Vink, J. S., Drew, J. E., Harries, T. J., Oudmaijer, R. D., and Unruh, Y. (2003). Resolved polarization changes across Hα in the classical T Tauri star RY Tauri. Astronomy and Astrophysics, 406, 703707.CrossRefGoogle Scholar
Vink, J. S., Drew, J. E., Harries, T. J., Oudmaijer, R. D., and Unruh, Y. (2005a). Probing the circumstellar structures of T Tauri stars and their relationship to those of Herbig stars. Monthly Notices of the Royal Astronomical Society, 359, 10491064.CrossRefGoogle Scholar
Vink, J. S., Harries, T. J., and Drew, J. E. (2005b). Polarimetric line profiles for scattering off rotating disks. Astronomy and Astrophysics, 430, 213222.CrossRefGoogle Scholar
Vrba, F. J. (1975). Polarization characteristics of Herbig Ae and Be stars. The Astrophysical Journal, 195, 101106.CrossRefGoogle Scholar
Vrba, F. J., Strom, S. E., and Strom, K. M. (1976). Magnetic field structure in the vicinity of five dark clouds complexes. The Astronomical Journal, 81, 958970.CrossRefGoogle Scholar
Vrba, F. J., Schmidt, G. D., and Hintzen, P. M. (1979). Observations and evaluation of the polarization in Herbig Ae/Be stars. The Astrophysical Journal, 227, 185196.CrossRefGoogle Scholar
Waters, L. B. F. M. and Waelkens, C. (1998). Herbig Ae/Be stars. Annual Review of Astronomy and Astrophysics, 36, 233266.CrossRefGoogle Scholar
Watson, A. M., Stapelfeldt, K. R., Wood, K., and Ménard, F. (2007). Multiwavelength imaging of young stellar object disks: Toward an understanding of disks structure and evolution. In Reipurth, B., Jewitt, D., and Keil, K., eds., Protostars and Planets V. Tucson, USA: University of Arizona Press and Lunar and Planetary Institute, pp. 523538.Google Scholar
Weintraub, D. A., Goodman, A. A., and Akeson, R. L. (2000). Polarized light from star-forming regions. In Manning, V., Boss, A. P., and Russell, S. S., eds., Protostars and Planets IV. Tucson, USA: University of Arizona Press, pp. 247271.Google Scholar
Wheelwright, H. E., Vink, J. S., Oudmaijer, R. D., and Drew, J. E. (2011). On the alignment between the circumstellar disks and orbital planes of Herbig Ae/Be binary systems. Astronomy and Astrophysics, 532, A28 (10p).CrossRefGoogle Scholar
Whitney, B. A. and Hartmann, L. (1992). Model scattering envelopes of young stellar objects. I. Method and application to circumstellar disks. The Astrophysical Journal, 395, 529539.CrossRefGoogle Scholar
Whitney, B. A. and Hartmann, L. (1993). Model scattering envelopes of young stellar objects. II. Infalling envelopes. The Astrophysical Journal, 402, 605622.CrossRefGoogle Scholar
Whitney, B. A., Kenyon, S. J., and Gómez, M. (1997). Near-infrared imaging polarimetry of embedded young stars in the Taurus–Auriga molecular clouds. The Astrophysical Journal, 485, 703734.CrossRefGoogle Scholar
Wolstencroft, R. D. and Simon, T. (1975). The variable circular polarization of V1057 Cygni. The Astrophysical Journal, 199, L169L171.CrossRefGoogle Scholar
Wood, K., Kenyon, S. J., Whitney, B. A., and Bjorkman, J. E. (1996). Magnetic accretion and photopolarimetric variability in T Tauri stars. The Astrophysical Journal, 458, L79L82.CrossRefGoogle Scholar
Yudin, R. V. (1988). Analysis of correlations between polarimetric and photometric characteristics of young stars. Soviet Astronomy AJ USSR, 32, 652659.Google Scholar
Yudin, R. V. (2000). Analysis of correlations between polarimetric and photometric characteristics of young stars. A new approach to the problem after eleven years’ study. Astronomy and Astrophysics Supplement, 144, 285306.CrossRefGoogle Scholar
Yudin, R. V. and Evans, A. (1998). Polarimetry of southern peculiar early—type stars. Astronomy and Astrophysics Supplement, 131, 401429.CrossRefGoogle Scholar
Zellner, B. H. (1970). Wavelength dependence of polarization XXI. R Monocerotis. The Astronomical Journal, 75, 182185.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×