Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-01T22:05:22.414Z Has data issue: false hasContentIssue false

2 - Glioma surgery

Published online by Cambridge University Press:  05 March 2016

John H. Sampson
Affiliation:
Duke University Medical Center, Durham
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Duke Glioma Handbook
Pathology, Diagnosis, and Management
, pp. 24 - 48
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Johannesen, TB, Langmark, F, Lote, K. Progress in long-term survival in adult patients with supratentorial low-grade gliomas: a population-based study of 993 patients in whom tumors were diagnosed between 1970 and 1993. Journal of Neurosurgery, 2003;99(5):854862.Google ScholarPubMed
Philippon, JH, Clemenceau, SH, Fauchon, FH, Foncin, JF. Supratentorial low-grade astrocytomas in adults. Neurosurgery, 1993;32(4):554559.CrossRefGoogle ScholarPubMed
Capelle, L, Fontaine, D, Mandonnet, E, et al. Spontaneous and therapeutic prognostic factors in adult hemispheric World Health Organization grade II gliomas: a series of 1097 cases. Journal of Neurosurgery, 2013;118(6):11571168.CrossRefGoogle ScholarPubMed
Smith, JS, Chang, EF, Lamborn, KR, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. Journal of Clinical Oncology, 2008;26(8):13381345.CrossRefGoogle ScholarPubMed
Ius, T, Isola, M, Budai, R, et al. Low-grade glioma surgery in eloquent areas: volumetric analysis of extent of resection and its impact on overall survival. A single-institution experience in 190 patients. Journal of Neurosurgery, 2012;117(6):10391052.CrossRefGoogle ScholarPubMed
McGirt, MJ, Chaichana, KL, Gathinji, M, et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. Journal of Neurosurgery, 2009;110(1):156162.CrossRefGoogle ScholarPubMed
Nitta, M, Muragaki, Y, Maruyama, T, et al. Updated therapeutic strategy for adult low-grade glioma stratified by resection and tumor subtype. Neurologia Medico-Chirurgica, 2013;53(7):447454.CrossRefGoogle Scholar
Skrap, M, Mondani, M, Tomasino, B, et al. Surgery of insular nonenhancing gliomas: volumetric analysis of tumoral resection, clinical outcome, and survival in a consecutive series of 66 cases. Neurosurgery, 2012;70(5):10811093.CrossRefGoogle Scholar
Ahmadi, R, Dictus, C, Hartmann, C, et al. Long-term outcome and survival of surgically treated supratentorial low-grade glioma in adult patients. Acta Neurochirurgica, 2009;151(11):13591365.CrossRefGoogle ScholarPubMed
Yordanova, YN, Moritz-Gasser, S, Duffau, H. Awake surgery for WHO grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. Journal of Neurosurgery, 2011;115(2):232239.CrossRefGoogle Scholar
Jakola, AS, Myrmel, KS, Kloster, R, et al. Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA, 2012;308(18):18811888.CrossRefGoogle Scholar
Claus, EB, Horlacher, A, Hsu, L, et al. Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer, 2005;103(6):12271233.CrossRefGoogle ScholarPubMed
Shaw, E, Arusell, R, Scheithauer, B, et al. Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. Journal of Clinical Oncology, 2002;20(9):22672276.Google ScholarPubMed
Yeh, SA, Ho, JT, Lui, CC, et al. Treatment outcomes and prognostic factors in patients with supratentorial low-grade gliomas. British Journal of Radiology, 2005;78(927):230235.CrossRefGoogle ScholarPubMed
Karim, AB, Maat, B, Hatlevoll, R, et al. A randomized trial on dose–response in radiation therapy of low-grade cerebral glioma: European Organization for Research and Treatment of Cancer (EORTC) study 22844. International Journal of Radiation Oncology, Biology, Physics, 1996;36(3):549556.CrossRefGoogle ScholarPubMed
Grabowski, MM, Recinos, PF, Nowacki, AS, et al. Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. Journal of Neurosurgery, 2014;121(5):11151123.CrossRefGoogle ScholarPubMed
Oszvald, A, Guresir, E, Setzer, M, et al. Glioblastoma therapy in the elderly and the importance of the extent of resection regardless of age. Journal of Neurosurgery, 2012;116(2):357364.CrossRefGoogle ScholarPubMed
Brown, PD, Maurer, MJ, Rummans, TA, et al. A prospective study of quality of life in adults with newly diagnosed high-grade gliomas: the impact of the extent of resection on quality of life and survival. Neurosurgery, 2005;57(3):495504.CrossRefGoogle ScholarPubMed
Schneider, JP, Trantakis, C, Rubach, M, et al. Intraoperative MRI to guide the resection of primary supratentorial glioblastoma multiforme – a quantitative radiological analysis. Neuroradiology, 2005;47(7):489500.CrossRefGoogle ScholarPubMed
Stummer, W, Reulen, HJ, Meinel, T, et al. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery, 2008;62(3):564576.CrossRefGoogle ScholarPubMed
Buckner, JC, Schomberg, PJ, McGinnis, WL, et al. A phase III study of radiation therapy plus carmustine with or without recombinant interferon-alpha in the treatment of patients with newly diagnosed high-grade glioma. Cancer, 2001;92(2):420433.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Ushio, Y, Kochi, M, Hamada, J, Kai, Y, Nakamura, H. Effect of surgical removal on survival and quality of life in patients with supratentorial glioblastoma. Neurologia Medico-Chirurgica, 2005;45(9):454460.CrossRefGoogle ScholarPubMed
Stark, AM, Nabavi, A, Mehdorn, HM, Blomer, U. Glioblastoma multiforme–report of 267 cases treated at a single institution. Surgical Neurology, 2005;63(2):162169.CrossRefGoogle ScholarPubMed
Levin, VA, Yung, WK, Bruner, J, et al. Phase II study of accelerated fractionation radiation therapy with carboplatin followed by PCV chemotherapy for the treatment of anaplastic gliomas. International Journal of Radiation Oncology, Biology, Physics, 2002;53(1):5866.CrossRefGoogle ScholarPubMed
Keles, GE, Chang, EF, Lamborn, KR, et al. Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma. Journal of Neurosurgery, 2006;105(1):3440.CrossRefGoogle ScholarPubMed
Tortosa, A, Vinolas, N, Villa, S, et al. Prognostic implication of clinical, radiologic, and pathologic features in patients with anaplastic gliomas. Cancer, 2003;97(4):10631071.CrossRefGoogle ScholarPubMed
Lacroix, M, Abi-Said, D, Fourney, DR, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. Journal of Neurosurgery, 2001;95(2):190198.CrossRefGoogle ScholarPubMed
Sanai, N, Polley, MY, McDermott, MW, Parsa, AT, Berger, MS. An extent of resection threshold for newly diagnosed glioblastomas. Journal of Neurosurgery, 2011;115(1):38.CrossRefGoogle ScholarPubMed
Chaichana, KL, Cabrera-Aldana, EE, Jusue-Torres, I, et al. When gross total resection of a glioblastoma is possible, how much resection should be achieved? World Neurosurgery, 2014;82(1–2):e257265.CrossRefGoogle ScholarPubMed
Barker, FG, 2nd, Chang, SM, Gutin, PH, et al. Survival and functional status after resection of recurrent glioblastoma multiforme. Neurosurgery, 1998;42(4):709720.CrossRefGoogle ScholarPubMed
Helseth, R, Helseth, E, Johannesen, TB, et al. Overall survival, prognostic factors, and repeated surgery in a consecutive series of 516 patients with glioblastoma multiforme. Acta Neurologica Scandinavica, 2010;122(3):159167.CrossRefGoogle Scholar
Mandl, ES, Dirven, CM, Buis, DR, Postma, TJ, Vandertop, WP. Repeated surgery for glioblastoma multiforme: only in combination with other salvage therapy. Surgical Neurology, 2008;69(5):506509.CrossRefGoogle ScholarPubMed
Bloch, O, Han, SJ, Cha, S, et al. Impact of extent of resection for recurrent glioblastoma on overall survival: clinical article. Journal of Neurosurgery, 2012;117(6):10321038.CrossRefGoogle ScholarPubMed
Oppenlander, ME, Wolf, AB, Snyder, LA, et al. An extent of resection threshold for recurrent glioblastoma and its risk for neurological morbidity. Journal of Neurosurgery, 2014;120(4):846853.CrossRefGoogle ScholarPubMed
Clarke, JL, Ennis, MM, Yung, WK, et al. Is surgery at progression a prognostic marker for improved 6-month progression-free survival or overall survival for patients with recurrent glioblastoma? Neuro-Oncology, 2011;13(10):11181124.CrossRefGoogle ScholarPubMed
Park, JK, Hodges, T, Arko, L, et al. Scale to predict survival after surgery for recurrent glioblastoma multiforme. Journal of Clinical Oncology, 2010;28(24):38383843.CrossRefGoogle ScholarPubMed
Rogic, M, Deletis, V, Fernandez-Conejero, I. Inducing transient language disruptions by mapping of Broca’s area with modified patterned repetitive transcranial magnetic stimulation protocol. Journal of Neurosurgery, 2014;120(5):10331041.CrossRefGoogle ScholarPubMed
Quiñones-Hinojosa, A, Ojemann, SG, Sanai, N, Dillon, WP, Berger, MS. Preoperative correlation of intraoperative cortical mapping with magnetic resonance imaging landmarks to predict localization of the Broca area. Journal of Neurosurgery, 2003;99(2):311318.CrossRefGoogle ScholarPubMed
Wen, HT, Rhoton, AL, Jr., de Oliveira, E, et al. Microsurgical anatomy of the temporal lobe: part 1: mesial temporal lobe anatomy and its vascular relationships as applied to amygdalohippocampectomy. Neurosurgery, 1999;45(3):549591.CrossRefGoogle ScholarPubMed
Wen, HT, Rhoton, AL, Jr., Marino, R, Jr. Gray matter overlying anterior basal temporal sulci as an intraoperative landmark for locating the temporal horn in amygdalohippocampectomies. Neurosurgery, 2006;59(4 Suppl 2):ONS221227.Google ScholarPubMed
Schmahmann, JD, Smith, EE, Eichler, FS, Filley, CM. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Annals of the New York Academy of Sciences, 2008;1142:266309.CrossRefGoogle ScholarPubMed
Weiller, C, Bormann, T, Saur, D, Musso, M, Rijntjes, M. How the ventral pathway got lost: and what its recovery might mean. Brain and Language, 2011;118(1–2):2939.Google ScholarPubMed
Frey, S, Campbell, JS, Pike, GB, Petrides, M. Dissociating the human language pathways with high angular resolution diffusion fiber tractography. Journal of Neuroscience, 2008;28(45):1143511444.CrossRefGoogle ScholarPubMed
Kuijlen, JM, Teernstra, OP, Kessels, AG, Herpers, MJ, Beuls, EA. Effectiveness of antiepileptic prophylaxis used with supratentorial craniotomies: a meta-analysis. Seizure, 1996;5(4):291298.Google Scholar
Pulman, J, Greenhalgh, J, Marson, AG. Antiepileptic drugs as prophylaxis for post-craniotomy seizures. Cochrane Database of Systematic Reviews, 2013;2:CD007286.Google Scholar
Sayegh, ET, Fakurnejad, S, Oh, T, Bloch, O, Parsa, AT. Anticonvulsant prophylaxis for brain tumor surgery: determining the current best available evidence. Journal of Neurosurgery, 2014;121(5):11391147.CrossRefGoogle ScholarPubMed
Ott, C, Kerscher, C, Luerding, R, et al. The impact of sedation on brain mapping: a prospective, interdisciplinary, clinical trial. Neurosurgery, 2014;75(2):117123.CrossRefGoogle ScholarPubMed
Hansen, E, Seemann, M, Zech, N, et al. Awake craniotomies without any sedation: the awake–awake–awake technique. Acta Neurochirurgica, 2013;155(8):14171424.CrossRefGoogle ScholarPubMed
Taylor, MD, Bernstein, M. Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. Journal of Neurosurgery, 1999;90(1):3541.CrossRefGoogle Scholar
De Witt Hamer, PC, Robles, SG, Zwinderman, AH, Duffau, H, Berger, MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. Journal of Clinical Oncology, 2012;30(20):25592565.CrossRefGoogle ScholarPubMed
Fritsch, G, Hitzig, E. Über die elektrische Erregbarkeit desGrosshirns. Archiv für Anatomie, Physiologie und wissenschafliche Medicin, 1870;37:4253.Google Scholar
Kombos, T, Suess, O, Kern, BC, et al. Comparison between monopolar and bipolar electrical stimulation of the motor cortex. Acta Neurochirurgica, 1999;141:12951301.CrossRefGoogle ScholarPubMed
Penfield, W, Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 1937;60:389443.CrossRefGoogle Scholar
Chang, EF, Clark, A, Smith, JS, et al. Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. Journal of Neurosurgery, 2011;114(3):566573.CrossRefGoogle ScholarPubMed
Duffau, H, Lopes, M, Arthuis, F, et al. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. Journal of Neurology, Neurosurgery, and Psychiatry, 2005;76(6):845851.CrossRefGoogle Scholar
Sanai, N, Mirzadeh, Z, Berger, MS. Functional outcome after language mapping for glioma resection. New England Journal of Medicine, 2008;358(1):1827.CrossRefGoogle ScholarPubMed
Ohue, S, Kohno, S, Inoue, A, et al. Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery, 2012;70(2):283293; discussion 294.CrossRefGoogle ScholarPubMed
Axelson, HW, Hesselager, G, Flink, R. Successful localization of the Broca area with short-train pulses instead of ‘Penfield’ stimulation. Seizure, 2009;18(5):374375.CrossRefGoogle ScholarPubMed
Taniguchi, M, Cedzich, C, Schramm, J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery, 1993;32(2):219226.CrossRefGoogle ScholarPubMed
Szelenyi, A, Joksimovic, B, Seifert, V. Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. Journal of Clinical Neurophysiology, 2007;24(1):3943.CrossRefGoogle ScholarPubMed
Seidel, K, Beck, J, Stieglitz, L, Schucht, P, Raabe, A. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. Journal of Neurosurgery, 2013;118(2):287296.CrossRefGoogle ScholarPubMed
Raabe, A, Beck, J, Schucht, P, Seidel, K. Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. Journal of Neurosurgery, 2014;120(5):10151024.CrossRefGoogle ScholarPubMed
Roessler, K, Donat, M, Lanzenberger, R, et al. Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. Journal of Neurology, Neurosurgery, and Psychiatry, 2005;76(8):11521157.CrossRefGoogle ScholarPubMed
Forster, MT, Hattingen, E, Senft, C, et al. Navigated transcranial magnetic stimulation and functional magnetic resonance imaging: advanced adjuncts in preoperative planning for central region tumors. Neurosurgery, 2011;68(5):13171324.CrossRefGoogle ScholarPubMed
Rogic, M, Deletis, V, Fernandez-Conejero, I. Inducing transient language disruptions by mapping of Broca’s area with modified patterned repetitive transcranial magnetic stimulation protocol. Journal of Neurosurgery, 2014;120(5):10331041.CrossRefGoogle ScholarPubMed
Pouratian, N, Bookheimer, SY, Rex, DE, Martin, NA, Toga, AW. Utility of preoperative functional magnetic resonance imaging for identifying language cortices in patients with vascular malformations. Journal of Neurosurgery, 2002;97(1):2132.CrossRefGoogle ScholarPubMed
Meier, MP, Ilmberger, J, Fesl, G, Ruge, MI. Validation of functional motor and language MRI with direct cortical stimulation. Acta Neurochirurgica, 2013;155(4):675683.CrossRefGoogle ScholarPubMed
de Ribaupierre, S, Fohlen, M, Bulteau, C, et al. Presurgical language mapping in children with epilepsy: clinical usefulness of functional magnetic resonance imaging for the planning of cortical stimulation. Epilepsia, 2012;53(1):6778.CrossRefGoogle ScholarPubMed
Nimsky, C, Ganslandt, O, Hastreiter, P, et al. Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery, 2005;56(1):130137; discussion 138.CrossRefGoogle ScholarPubMed
Nimsky, C, Ganslandt, O, Merhof, D, Sorensen, AG, Fahlbusch, R. Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. NeuroImage, 2006;30(4):12191229.CrossRefGoogle ScholarPubMed
Wu, JS, Zhou, LF, Tang, WJ, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery, 2007;61(5):935948.CrossRefGoogle ScholarPubMed
Gonzalez-Darder, JM, Gonzalez-Lopez, P, Talamantes, F, et al. Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurgical Focus, 2010;28(2):E5.CrossRefGoogle ScholarPubMed
Bello, L, Castellano, A, Fava, E, et al. Intraoperative use of diffusion tensor imaging fiber tractography and subcortical mapping for resection of gliomas: technical considerations. Neurosurgical Focus, 2010;28(2):E6.CrossRefGoogle ScholarPubMed
Panciani, PP, Fontanella, M, Schatlo, B, et al. Fluorescence and image guided resection in high grade glioma. Clinical Neurology and Neurosurgery, 2012;114(1):3741.CrossRefGoogle ScholarPubMed
Krieg, SM, Shiban, E, Buchmann, N, et al. Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. Journal of Neurosurgery, 2012;116(5):9941001.CrossRefGoogle Scholar
Takahashi, S, Vajkoczy, P, Picht, T. Navigated transcranial magnetic stimulation for mapping the motor cortex in patients with rolandic brain tumors. Neurosurgical Focus, 2013;34(4):E3.CrossRefGoogle Scholar
Roux, FE, Boulanouar, K, Ranjeva, JP, et al. Usefulness of motor functional MRI correlated to cortical mapping in Rolandic low-grade astrocytomas. Acta Neurochirurgica, 1999;141(1):7179.CrossRefGoogle Scholar
Zhu, FP, Wu, JS, Song, YY, et al. Clinical application of motor pathway mapping using diffusion tensor imaging tractography and intraoperative direct subcortical stimulation in cerebral glioma surgery: a prospective cohort study. Neurosurgery, 2012;71(6):11701183; discussion 1183–1194.CrossRefGoogle Scholar
Leclercq, D, Duffau, H, Delmaire, C, et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. Journal of Neurosurgery, 2010;112(3):503511.CrossRefGoogle Scholar
Bello, L, Gambini, A, Castellano, A, et al. Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. NeuroImage, 2008;39(1):369382.CrossRefGoogle Scholar
Valdes, PA, Leblond, F, Kim, A, et al. Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. Journal of Neurosurgery, 2011;115(1):1117.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×