Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-01T16:42:37.789Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  21 February 2019

Daniel Bulacu
Affiliation:
Universitatea din Bucureşti, Romania
Stefaan Caenepeel
Affiliation:
Vrije Universiteit Brussel
Florin Panaite
Affiliation:
Institute of Mathematics of the Romanian Academy
Freddy Van Oystaeyen
Affiliation:
Universiteit Antwerpen, Belgium
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Quasi-Hopf Algebras
A Categorical Approach
, pp. 515 - 524
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, E. 1977. Hopf Algebras. Cambridge: Cambridge University Press.Google Scholar
Aguiar, M. and Mahajan, S. 2010. Monoidal functors, species and Hopf algebras. CRM Monograph Series 29, Providence, RI: American Mathematical Society.Google Scholar
Akrami, S. E. and Majid, S. 2004. Braided cyclic cocycles and nonassociative geometry. J. Math. Phys., 45 (10), 38833911.CrossRefGoogle Scholar
Albuquerque, H., Elduque, A. and Pérez-Izquierdo, J. M. 2002. 2-quasialgebras. Comm. Algebra, 30 (2), 21612174.CrossRefGoogle Scholar
Albuquerque, H. and Majid, S. 1999. n -quasialgebras. In Santana, A. P., Duarte, A. L. and Queiro, J. F. (eds), Matrices and Group Representations (Coimbra, 1998). Textos Mat. Sér. B 19, Coimbra: Universidade de Coimbra, pp. 5764.Google Scholar
Albuquerque, H. and Majid, S. 1999. Quasialgebra structure of the octonions. J. Algebra, 220, 247264.CrossRefGoogle Scholar
Albuquerque, H. and Majid, S. 2002. Clifford algebras obtained by twisting of group algebras. J. Pure Appl. Algebra, 171, 133148.CrossRefGoogle Scholar
Albuquerque, H. and Panaite, F. 2009. On quasi-Hopf smash products and twisted tensor products of quasialgebras. Algebr. Represent. Theory, 12, 199234.CrossRefGoogle Scholar
Altschuler, D. and Coste, A. 1992. Quasi-quantum groups, knots, three manifolds and topological field theory. Comm. Math. Phys., 150, 83107.CrossRefGoogle Scholar
Anderson, F. W. and Fuller, K. R. 1992. Rings and Categories of Modules. Graduate Texts in Mathematics 13, 2nd edition. New York: Springer-Verlag.CrossRefGoogle Scholar
Andruskiewitsch, N. and Dăscălescu, S. 2003. Co-Frobenius Hopf algebras and the coradical filtration. Math. Z., 243 (1), 145154.CrossRefGoogle Scholar
Andruskiewitsch, N. and Enriquez, B. 1992. Examples of compact matrix pseudogroups arising from the twisting operation. Comm. Math. Phys., 149 (2), 195207.CrossRefGoogle Scholar
Angiono, I. E. 2010. Basic quasi-Hopf algebras over cyclic groups. Adv. Math., 225 (6), 35453575.CrossRefGoogle Scholar
Angiono, I. E., Ardizzoni, A. and Menini, C. 2017. Cohomology and coquasibialgebras in the category of Yetter-Drinfeld modules. Ann. Sc. Norm. Super. Pisa Cl. Sci., 17 (2), 609653.Google Scholar
Ardizzoni, A., Beattie, M. and Menini, C. 2015. Quantum lines for dual quasi-bialgebras. Algebr. Represent. Theory, 18 (1), 3564.Google Scholar
Ardizzoni, A., Bulacu, D. and Menini, C. 2013. Quasi-bialgebra structures and torsion-free abelian groups. Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 56 (104), 247265.Google Scholar
Ardizzoni, A., El Kaoutit, L. and Saracco, P. 2016. Functorial constructions for nonassociative algebras with applications to quasi-bialgebras. J. Algebra, 449, 460496.CrossRefGoogle Scholar
Ardizzoni, A., Menini, C. and Ştefan, D. 2007. A monoidal approach to splitting morphisms of bialgebras. Trans. Amer. Math. Soc., 359 (3), 9911044.CrossRefGoogle Scholar
Ardizzoni, A. and Pavarin, A. 2012. Preantipodes for dual quasi-bialgebras. Israel J. Math., 192 (1), 281295.CrossRefGoogle Scholar
Ardizzoni, A. and Pavarin, A. 2013. Bosonization for dual quasi-bialgebras and prean-tipode. J. Algebra, 390, 126159.CrossRefGoogle Scholar
Babelon, O., Bernard, D. and Billey, E. 1996. A quasi-Hopf algebra interpretation of quantum 3-j and 6-j symbols and difference equations. Phys. Lett. B, 375(1-4), 8997.CrossRefGoogle Scholar
Bagheri, S. 2014. Adjunctions of Hom and tensor as endofunctors of (bi-)module categories over quasi-Hopf algebras. Comm. Algebra, 42 (2), 488510.CrossRefGoogle Scholar
Bagheri, S. and Wisbauer, R. 2012. Hom-tensor relations for two-sided Hopf modules over quasi-Hopf algebras. Comm. Algebra, 40 (9), 32573287.CrossRefGoogle Scholar
Balan, A. 2009. A Morita context and Galois extensions for quasi-Hopf algebras. Comm. Algebra, 37 (4), 11291150.CrossRefGoogle Scholar
Balan, A. 2010. Galois extensions for coquasi-Hopf algebras. Comm. Algebra, 38 (4), 14911525.CrossRefGoogle Scholar
Balodi, M, Huang, H.-L. and Kumar, S. D. 2017. On the classification of finite quasi-quantum groups. Rev. Math. Phys., 29 (10), 1730003, 20pp.CrossRefGoogle Scholar
Beattie, M., Bulacu, D. and Torrecillas, B. 2007. Radford’s S4 formula for co-Frobenius Hopf algebras. J. Algebra, 307 (1), 330342.CrossRefGoogle Scholar
Beattie, M., Dăscălescu, S. and Grünenfelder, L. 1999. On the number of types of finite-dimensional Hopf algebras. Invent. Math., 136 (1), 17.CrossRefGoogle Scholar
Beattie, M., Iovanov, M. and Raianu, Ş. 2009. The antipode of a dual quasi-Hopf algebra with nonzero integrals is bijective. Algebr. Represent. Theory, 12 (2-5), 251255.CrossRefGoogle Scholar
Bénabou, J. 1963. Catégories avec multiplication. C. R. Acad. Sci. Paris Sér. I Math., 256, 18871890.Google Scholar
Bespalov, Y. and Drabant, B. 1998. Hopf (bi-)modules and crossed modules in braided monoidal categories. J. Pure Appl. Algebra, 123, 105129.CrossRefGoogle Scholar
Bespalov, Y. and Drabant, B. 1999. Cross product bialgebras I. J. Algebra, 219, 466505.CrossRefGoogle Scholar
Bespalov, Y. and Drabant, B. 1999. Cross product bialgebras II. J. Algebra, 240, 445504.CrossRefGoogle Scholar
Boboc, C., Dăscălescu, S. and Van Wyk, L. 2012. Isomorphisms between Morita context rings. Linear & Multilinear Algebra, 60 (5), 545563.CrossRefGoogle Scholar
Böhm, G. and Lack, S. 2016. Hopf comonads on naturally Frobenius map-monoidales. J. Pure Appl. Algebra, 220 (6), 21772213.CrossRefGoogle Scholar
Böhm, G. and Ştefan, D. 2012. A categorical approach to cyclic duality. J. Noncommut. Geom., 6 (3), 481538.CrossRefGoogle Scholar
Brauer, R. and Nesbitt, C. 1937. On the regular representations of algebras. Proc. Nat. Acad. Sci. USA, 23, 236240.CrossRefGoogle ScholarPubMed
Brzeziński, T. 2005. Galois comodules. J. Algebra, 290 (2), 503537.CrossRefGoogle Scholar
Brzeziński, T. and Majid, S. 2000. Quantum geometry of algebra factorisations and coalgebra bundles. Comm. Math. Phys., 213 (3), 491521.CrossRefGoogle Scholar
Brzeziński, T., Marquez, A. V. and Vercruysse, J. 2011. The Eilenberg-Moore category and a Beck-type theorem for a Morita context. Appl. Categ. Structures, 19 (5), 821858.CrossRefGoogle Scholar
Bulacu, D. 1999. On the antipode of semi-Hopf algebras and braided semi-Hopf algebras. Rev. Roum. Math. Pures Appl., 44, 329340.Google Scholar
Bulacu, D. 2009. The weak braided Hopf algebra structure of some Cayley-Dickson algebras. J. Algebra, 322, 24042427.CrossRefGoogle Scholar
Bulacu, D. 2011. A Clifford algebra is a weak Hopf algebra in a suitable symmetric monoidal category. J. Algebra, 332, 244284.CrossRefGoogle Scholar
Bulacu, D. 2017. A structure theorem for quasi-Hopf bimodule coalgebras. Theory Appl. Categ. (TAC), 32 (1), 130.Google Scholar
Bulacu, D. 2018. Quasi-quantum groups obtained from tensor braided Hopf algebras. Preprint, submitted.CrossRefGoogle Scholar
Bulacu, D. and Caenepeel, S. 2003. Two-sided two-cosided Hopf modules and Doi-Hopf modules for quasi-Hopf algebras. J. Algebra, 270, 5595.CrossRefGoogle Scholar
Bulacu, D. and Caenepeel, S. 2003. Integrals for (dual) quasi-Hopf algebras: Applications. J. Algebra, 266, 552583.CrossRefGoogle Scholar
Bulacu, D. and Caenepeel, S. 2003. The quantum double for quasitriangular quasi-Hopf algebras. Comm. Algebra, 31 (3), 14031425.CrossRefGoogle Scholar
Bulacu, D. and Caenepeel, S. 2012. On integrals and cointegrals for quasi-Hopf algebras. J. Algebra, 351, 390425.CrossRefGoogle Scholar
Bulacu, D., Caenepeel, S. and Panaite, F. 2005. More properties of Yetter-Drinfeld modules over quasi-Hopf algebras, in Caenepeel, S. and Van Oystaeyen, F. (eds.), Hopf Algebras in Noncommutative Geometry and Physics. Lecture Notes in Pure and Applied Mathematics 239. New York: Marcel Dekker, pp. 89112.Google Scholar
Bulacu, D., Caenepeel, S. and Panaite, F. 2006. Yetter-Drinfeld categories for quasi-Hopf algebras. Comm. Algebra, 34, 135.CrossRefGoogle Scholar
Bulacu, D., Caenepeel, S. and Torrecillas, B. 2009. Involutory quasi-Hopf algebras. Algebr. Represent. Theory, 12, 257285.CrossRefGoogle Scholar
Bulacu, D., Caenepeel, S. and Torrecillas, B. 2011. The braided monoidal structures on the category of vector spaces graded by the Klein group. Proc. Edinburgh Math. Soc., 54, 613641.CrossRefGoogle Scholar
Bulacu, D. and Nauwelaerts, E. 2002. Radford’s biproduct for quasi-Hopf algebras and bosonization. J. Pure Appl. Algebra, 174, 142.CrossRefGoogle Scholar
Bulacu, D. and Nauwelaerts, E. 2003. Quasitriangular and ribbon quasi-Hopf algebras. Comm. Algebra, 31 (2), 116.Google Scholar
Bulacu, D. and Panaite, F. 1998. A generalization of the quasi-Hopf algebra Dω (G). Comm. Algebra, 26, 41254141.CrossRefGoogle Scholar
Bulacu, D. and Panaite, F. 2018. Some ribbon elements for the quasi-Hopf algebra Dω (H). Preprint, submitted.CrossRefGoogle Scholar
Bulacu, D., Panaite, F. and Van Oystaeyen, F. 1999. Quantum traces and quantum dimensions for quasi-Hopf algebras. Comm. Algebra, 27, 61036122.CrossRefGoogle Scholar
Bulacu, D., Panaite, F. and Van Oystaeyen, F. 2000. Quasi-Hopf algebra actions and smash products. Comm. Algebra, 28, 631651.CrossRefGoogle Scholar
Bulacu, D., Panaite, F. and Van Oystaeyen, F. 2006. Generalized diagonal crossed products and smash products for quasi-Hopf algebras. Applications. Comm. Math. Phys., 266, 355399.CrossRefGoogle Scholar
Bulacu, D. and Torrecillas, B. 2004. Factorizable quasi-Hopf algebras: Applications. J. Pure Appl. Algebra, 194 (1-2), 3984.CrossRefGoogle Scholar
Bulacu, D. and Torrecillas, B. 2008. The representation-theoretic rank of the doubles of quasi-quantum groups. J. Pure Appl. Algebra, 212, 919940.CrossRefGoogle Scholar
Bulacu, D. and Torrecillas, B. 2006. Two-sided two-cosided Hopf modules and Yetter-Drinfeld modules for quasi-Hopf algebras. Appl. Categor. Structures, 28, 503530.CrossRefGoogle Scholar
Bulacu, D. and Torrecillas, B. 2018. Quasi-quantum groups obtained from the Tannaka-Krein reconstruction theorem. Preprint, submitted.Google Scholar
Bulacu, D. and Torrecillas, B. 2018. On sovereign, balanced and ribbon quasi-Hopf algebras. Preprint, submitted.CrossRefGoogle Scholar
Burciu, S. and Natale, S. 2013. Fusion rules of equivariantizations of fusion categories. J. Math. Phys., 54 (1), 013511, 21pp.CrossRefGoogle Scholar
Caenepeel, S., Ion, B., Militaru, G. and Zhu, S. 2000. The factorization problem and the smash biproduct of algebras and coalgebras. Algebr. Represent. Theory, 3, 1942.CrossRefGoogle Scholar
Caenepeel, S., Militaru, G. and Zhu, S. 2002. Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations. Lecture Notes in Mathematics 1787. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Cap, A., Schichl, H. and Vanžura, J. 1995. On twisted tensor products of algebras. Comm. Algebra, 23, 47014735.CrossRefGoogle Scholar
Curtis, C. W. and Reiner, I. 1962. Representation Theory of Finite Groups and Associative Algebras. Pure and Applied Mathematics 11. London–New York: Interscience.Google Scholar
Dăscălescu, S. 2008. Group gradings on diagonal algebras. Arch. Math. (Bassel), 91 (3), 212217.CrossRefGoogle Scholar
Dăscălescu, S., Iovanov, M. C. and Năstăsescu, C. 2013. Path subcoalgebras, finiteness properties and quantum groups. J. Noncommut. Geom., 7 (3), 737766.CrossRefGoogle Scholar
Dăscălescu, S., Năstăsescu, C. and Raianu, Ş. 2001. Hopf Algebras: An Introduction. Monographs Textbooks in Pure and Applied Mathematics 235, Marcel Dekker, New York: Marcel Dekker.Google Scholar
Deligne, P. 1990. Catégories Tannakiennes, in Cartier, P. et al. (eds.), The Grothendieck Festschrift, Volume 2. Basel: Birkhäuser, pp. 111195.Google Scholar
Dello, J., Panaite, F., Van Oystaeyen, F. and Zhang, Y. 2016. Structure theorems for bicomodule algebras over quasi-Hopf algebras, weak Hopf algebras and braided Hopf algebras. Comm. Algebra, 44, 46094636.CrossRefGoogle Scholar
Dieudonné, J. 1958. Remarks on quasi-Frobenius rings. Illinois J. Math., 2, 346354.CrossRefGoogle Scholar
Dijkgraaf, R., Pasquier, V. and Roche, P. 1990. Quasi-Hopf algebras, group cohomology and orbifold models. Nuclear Phys. B Proc. Suppl., 18 B, 6072.CrossRefGoogle Scholar
Drabant, B. 2001. Notes on balanced categories and Hopf algebras, in Pressley, A. (ed.), Quantum Groups and Lie Theory (Durham, 1999). Cambridge: Cambridge University Press, pp. 6388.Google Scholar
Drinfeld, V. G. 1989. Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations, in Belavin, A. A. and Kofen, P. (eds.), Problems of Modern Quantum Field Theory. Research Report in Physics. Berlin: Springer, pp. 1113.Google Scholar
Drinfeld, V. G. 1989. Quasi-Hopf algebras. Leningrad Math. J., 1 (6), 14191457.Google Scholar
Drinfeld, V. G. 1990. On almost cocommutative Hopf algebras. Leningrad Math. J., 1, 321342.Google Scholar
Drinfeld, V. G. 1991. On quasitriangular quasi-Hopf algebras and a group closely connected with Gal(). Leningrad Math. J., 2 (4), 829860.Google Scholar
Drinfeld, V. G. 1992. On the structure of quasitriangular quasi-Hopf algebras. Funct. Anal. Appl., 26 (1), 6365.CrossRefGoogle Scholar
Eilenberg, S. and Kelly, G. M. 1966. Closed categories, in Proceedings of the Conference on Categorical Algebra (La Jolla, 1965). New York: Springer, pp. 421562.CrossRefGoogle Scholar
Elhamdadi, M. and Makhlouf, A. 2013. Hom-quasi-bialgebras, in Andruskiewitsch, N., Cuadra, J. and Torrecillas, B. (eds.), Hopf Algebras and Tensor Categories, Contemporary Mathematics 585. Providence, RI: American Mathematical Society, pp. 227245.CrossRefGoogle Scholar
Enriquez, B. 2003. Quasi-Hopf algebras associated with semisimple Lie algebras and complex curves. Selecta Math. (N.S.), 9 (1), 161.CrossRefGoogle Scholar
Enriquez, B. and Felder, G. 1998. Elliptic quantum groups Eτ,η (sl2 ) and quasi-Hopf algebras. Comm. Math. Phys., 195 (3), 651689.CrossRefGoogle Scholar
Enriquez, B. and Halbout, G. 2004. Poisson algebras associated to quasi-Hopf algebras. Adv. Math., 186 (2), 363395.CrossRefGoogle Scholar
Enriquez, B. and Rubtsov, V. 1999. Quasi-Hopf algebras associated with sl2 and complex curves. Israel J. Math., 112, 61108.CrossRefGoogle Scholar
Etingof, P. and Gelaki, S. 1998. On finite dimensional semisimple and cosemisimple Hopf algebras in positive characteristic. Internat. Math. Res. Notices, 16, 851864.CrossRefGoogle Scholar
Etingof, P. and Gelaki, S. 2004. Finite dimensional quasi-Hopf algebras with radical of codimension 2. Math. Res. Lett., 11, 685696.CrossRefGoogle Scholar
Etingof, P. and Gelaki, S. 2005. On radically graded finite-dimensional quasi-Hopf algebras. Mosc. Math. J., 5 (2), 371378.CrossRefGoogle Scholar
Etingof, P. and Gelaki, S. 2006. Liftings of graded quasi-Hopf algebras with radical of prime codimension. J. Pure Appl. Algebra, 205 (2), 310322.CrossRefGoogle Scholar
Etingof, P. and Gelaki, S. 2009. The small quantum group as a quantum double. J. Algebra, 322 (7), 25802585.CrossRefGoogle Scholar
Etingof, P., Gelaki, S., Nikshych, D. and Ostrik, V. 2015. Tensor Categories. Mathematical Surveys and Monographs 205. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
Etingof, P., Nikshych, D. and Ostrik, V. 2005. On fusion categories. Ann. of Math., 162 (2), 581642.CrossRefGoogle Scholar
Etingof, P., Rowell, E. and Witherspoon, S. 2008. Braid group representations from twisted quantum doubles of finite groups. Pacific J. Math., 234 (1), 3341.CrossRefGoogle Scholar
Farsad, V., Gainutdinov, A.M. and Runkel, I. 2018. SL(2, Z)-action for ribbon quasi-Hopf algebras. Preprint, arXiv:1702.01086v3.Google Scholar
Freyd, P. and Yetter, D. 1989. Braided compact closed categories with applications to low dimensional topology. Adv. Math., 77, 156182.CrossRefGoogle Scholar
Freyd, P. and Yetter, D. 1992. Coherence theorems via knot theory. J. Pure Appl. Algebra, 78, 4976.CrossRefGoogle Scholar
Gelaki, S. 2005. Basic quasi-Hopf algebras of dimension n3. J. Pure Appl. Algebra, 198 (1-3), 165174.CrossRefGoogle Scholar
Goff, C., Mason, G. and Ng, S.-H. 2007. On the gauge equivalence of twisted quantum doubles of elementary abelian and extra-special 2-groups. J. Algebra, 312 (2), 849875.CrossRefGoogle Scholar
Gould, M. D. and Lekatsas, T. 2005. Some twisted results. J. Phys. A, 38 (47), 10123– 10144.CrossRefGoogle Scholar
Gould, M. D. and Lekatsas, T. 2006. Quasi-Hopf *-algebras. Unpublished, arXiv:0604520.Google Scholar
Gould, M. D. Zhang, Y.-Z. and Isaac, P. S. 2000. Casimir invariants from quasi-Hopf (super)algebras. J. Math. Phys., 41 (1), 547568.CrossRefGoogle Scholar
Gould, M. D., Zhang, Y.-Z. and Isaac, P. S. 2001. On quasi-Hopf superalgebras. Comm. Math. Phys., 224 (2), 341372.CrossRefGoogle Scholar
Hausser, F. and Nill, F. 1999. Diagonal crossed products by duals of quasi-quantum groups. Rev. Math. Phys., 11, 553629.CrossRefGoogle Scholar
Hausser, F. and Nill, F. 1999. Doubles of quasi-quantum groups. Comm. Math. Phys., 199, 547589.CrossRefGoogle Scholar
Hausser, F. and Nill, F. 1999. Integral theory for quasi-Hopf algebras. Unpublished, arXiv:9904164.Google Scholar
Hennings, M. A. 1996. Invariants of links and 3-manifolds obtained from Hopf algebras. J. Lond. Math. Soc. (2), 54 (3), 594624.CrossRefGoogle Scholar
Huang, H.-L. 2009. Quiver approaches to quasi-Hopf algebras. J. Math. Phys., 50 (4), 043501, 9 pp.CrossRefGoogle Scholar
Huang, H.-L. 2012. From projective representations to quasi-quantum groups, Sci. China Math., 55 (10), 20672080.CrossRefGoogle Scholar
Huang, H.-L., Liu, G. and Ye, Y. 2011. Quivers, quasi-quantum groups and finite tensor categories. Comm. Math. Phys., 303 (3), 595612.CrossRefGoogle Scholar
Huang, H.-L., Liu, G., Ye, Y. 2015. Graded elementary quasi-Hopf algebras of tame representation type. Israel J. Math., 209 (1), 157186.CrossRefGoogle Scholar
Huang, H.-L. and Yang, Y. 2015. Quasi-quantum linear spaces. J. Noncommut. Geom., 9 (4), 12271259.CrossRefGoogle Scholar
Huang, H.-L. and Yang, Y. 2015. Quasi-quantum planes and quasi-quantum groups of dimension p3 and p4 . Proc. Amer. Math. Soc., 143 (10), 42454260.CrossRefGoogle Scholar
Iglesias, F. C., Năstăsescu, C. and Vercruysse, J. 2010. Quasi-Frobenius functors: Applications. Comm. Algebra, 38 (8), 30573077.CrossRefGoogle Scholar
Iovanov, M. C. and Vercruysse, J. 2008. Co-Frobenius corings and adjoint functors. J. Pure Appl. Algebra, 212 (9), 20272058.CrossRefGoogle Scholar
Joyal, A. and Street, R. 1986. Braided Monoidal Categories. Mathematics Reports 860081. North Ryde: Macquarie University.Google Scholar
Joyal, A. and Street, R. 1991. Tortile Yang-Baxter operators in tensor categories. J. Pure Appl. Algebra, 71, 4351.CrossRefGoogle Scholar
Joyal, A. and Street, R. 1993. Braided tensor categories. Adv. Math., 102, 2078.CrossRefGoogle Scholar
Kadison, L. 2006. An approach to quasi-Hopf algebras via Frobenius coordinates. J. Algebra, 295 (1), 2743.CrossRefGoogle Scholar
Kadison, L. 1999. New Examples of Frobenius Extensions. University Lecture Series 14. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
Kadison, L. and Stolin, A. A. 2001. An approach to Hopf algebras via Frobenius coordinates. Beiträge Algebra Geom., 42 (2), 359384.Google Scholar
Kadison, L. and Stolin, A. A. 2002. An approach to Hopf algebras via Frobenius coordinates. II. J. Pure Appl. Algebra, 176 (2-3), 127152.CrossRefGoogle Scholar
Kaplansky, I. 1975. Bialgebras. Lecture Notes in Mathematics. University of Chicago.Google Scholar
Kassel, C. 1995. Quantum Groups. Graduate Texts in Mathematics 155. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Kassel, C. and Turaev, V. G. 1995. Double construction for monoidal categories. Acta Math., 175, 148.CrossRefGoogle Scholar
Kauffman, L. H. 1993. Gauss codes, quantum groups and ribbon Hopf algebras. Rev. Math. Phys., 5 (4), 735773.CrossRefGoogle Scholar
Kauffman, L. H. and Radford, D. E. 1993. A necessary and sufficient condition for a finite-dimensional Drinfeld double to be a ribbon Hopf algebra. J. Algebra, 159, 98114.CrossRefGoogle Scholar
Lam, T. Y. 1999. Lectures on Modules and Rings. Graduate Texts in Mathematics 189. New York: Springer-Verlag.CrossRefGoogle Scholar
Larson, R. G. 1971. Characters of Hopf algebras. J. Algebra, 17, 352368.CrossRefGoogle Scholar
Larson, R. G. and Radford, D. E. 1998. Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple. J. Algebra, 117, 267289.CrossRefGoogle Scholar
Larson, R. G. and Radford, D. E. 1998. Semisimple cosemisimple Hopf algebras. Amer. J. Math., 110, 187195.CrossRefGoogle Scholar
Larson, R. G. and Sweedler, M. E. 1969. An associative orthogonal bilinear form for Hopf algebras. Amer. J. Math., 91, 7594.CrossRefGoogle Scholar
Laugwitz, R. 2015. Braided Drinfeld and Heisenberg doubles. J. Pure Appl. Algebra, 19 (10), 45414596.CrossRefGoogle Scholar
Links, J. R., Gould, M. D. and Zhang, Y.-Z. 2000. Twisting invariance of link polynomials derived from ribbon quasi-Hopf algebras. J. Math. Phys., 41, 50205032.CrossRefGoogle Scholar
Liu, G. 2014. The quasi-Hopf analogue of uq (sl2 ). Math. Res. Lett., 21 (3), 585603.CrossRefGoogle Scholar
Liu, G., Van Oystaeyen, F. and Zhang, Y. 2016. Representations of the small quasi-quantum group Quq (sl2). Bull. Belg. Math. Soc. Simon Stevin, 23 (5), 779800.CrossRefGoogle Scholar
Liu, G., Van Oystaeyen, F. and Zhang, Y. 2017. Quasi-Frobenius-Lusztig kernels for simple Lie algebras. Trans. Amer. Math. Soc., 369 (3), 20492086.CrossRefGoogle Scholar
Mac Lane, S. 1971. Categories for the Working Mathematician. Graduate Texts in Mathematics 5. New York: Springer-Verlag.CrossRefGoogle Scholar
Mack, G. and Schomerus, V. 1992. Quasi-Hopf quantum symmetry in quantum theory. Nuclear Phys. B, 370 (1), 185230.CrossRefGoogle Scholar
Majid, S. 1990. Representation-theoretic rank and double Hopf algebras. Comm. Algebra, 18 (11), 37053712.CrossRefGoogle Scholar
Majid, S. 1991. Doubles of quasitriangular Hopf algebras. Comm. Algebra, 19 (11), 30613073.CrossRefGoogle Scholar
Majid, S. 1991. Representations, duals and quantum doubles of monoidal categories. Rend. Circ. Math. Palermo (2) Suppl., 26, 197206.Google Scholar
Majid, S. 1994. Algebras and Hopf algebras in braided categories. In Bergen, J. and Montgomery, S. (eds.), Advances in Hopf Algebras (Chicago, IL, 1992) Lecture Notes in Pure and Applied Mathematics 158. New York: Dekker, pp. 55105.Google Scholar
Majid, S. 1998. Quantum double for quasi-Hopf algebras. Lett. Math. Phys., 45, 19.CrossRefGoogle Scholar
Majid, S. 1995. Foundations of Quantum Group Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Maltsiniotis, G. 1995. Traces dans les catégories monoïdales, dualité et catégories monoïdales fibrées. Cahiers Topologie Géom. Différentielle Catég., 36 (3), 195288.Google Scholar
Markl, M. and Shnider, S. 1996. Cohomology of Drinfeld algebras: a homological algebra approach. Int. Math. Res. Not., 9, 431445.CrossRefGoogle Scholar
Markl, M. and Shnider, S. 1996. Drinfeld algebra deformations, homotopy comodules and the associahedra. Trans. Amer. Math. Soc., 348 (9), 35053547.CrossRefGoogle Scholar
Mason, G. and Ng, S.-H. 2001. Group cohomology and gauge equivalence of some twisted quantum doubles. Trans. Amer. Math. Soc., 353 (9), 34653509.CrossRefGoogle Scholar
Mason, G. and Ng, S.-H. 2005. Central invariants and Frobenius-Schur indicators for semisimple quasi-Hopf algebras. Adv. Math., 190 (1), 161195.CrossRefGoogle Scholar
Mason, G. and Ng, S.-H. 2014. Cleft extensions and quotients of twisted quantum doubles, in Mason, G., Penkov, I. and Wolf, J. A. (eds.), Developments and Retrospectives in Lie Theory. Developments in Mathematics 38. Cham: Springer.Google Scholar
Masuoka, A. 2003. Cohomology and coquasi-bialgebra extensions associated to a matched pair of bialgebras. Adv. Math., 173 (2), 262315.CrossRefGoogle Scholar
Milnor, J. and Moore, J. C. 1965. On the structure of Hopf algebras. Ann. of Math., 81, 211264.CrossRefGoogle Scholar
Montgomery, S. 1993. Hopf Algebras and their Actions on Rings. CBMS Regional Conference Series in Mathematics 82. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
Naidu, D. and Nikshych, D. 2008. Lagrangian subcategories and braided tensor equivalences of twisted quantum doubles of finite groups. Comm. Math. Phys., 279, 845872.CrossRefGoogle Scholar
Naidu, D., Nikshych, D. and Witherspoon, S. 2009. Fusion subcategories of representation categories of twisted quantum doubles of finite groups. Int. Math. Res. Not., 22, 41834219.Google Scholar
Nakayama, T. 1938. Note on symmetric algebras. Ann. of Math., 39, 659668.CrossRefGoogle Scholar
Nakayama, T. 1939. On Frobeniusean algebras. Ann. of Math. (2), 40, 611633.CrossRefGoogle Scholar
Nakayama, T. 1941. On Frobeniusean algebras. II. Ann. of Math. (2), 42, 121.CrossRefGoogle Scholar
Natale, S. 2003. On group theoretical Hopf algebras and exact factorizations of finite groups. J. Algebra, 270 (1), 199211.CrossRefGoogle Scholar
Năstăsescu, C., Raianu, Ş. and Van Oystaeyen, F. 1990. Modules graded by G-sets. Math. Z., 203 (4), 605627.CrossRefGoogle Scholar
Năstăsescu, C. and Torrecillas, B. 2005. Morita duality for Grothendieck categories with applications to coalgebras. Comm. Algebra, 33 (11), 40834096.CrossRefGoogle Scholar
Năstăsescu, C., Van Den Bergh, M. and Van Oystaeyen, F. 1989. Separable functors applied to graded rings. J. Algebra, 123 (2), 397413.CrossRefGoogle Scholar
Năstăsescu, C. and Van Oystaeyen, F. 1982. Graded Ring Theory. North-Holland Mathematical Library 28. Amsterdam–New York: North Holland.Google Scholar
Ng, S.-H. and Schauenburg, P. 2008. Central invariants and higher indicators for semisimple quasi-Hopf algebras. Trans. Amer. Math. Soc., 360 (4), 18391860.CrossRefGoogle Scholar
Nichols, W. D. and Zoeller, M. B. 1989. A Hopf algebra freeness theorem. Amer. J. Math., 111, 381385.CrossRefGoogle Scholar
Oberst, U. and Schneider, H. -J. 1974, Untergruppen formeller Gruppen von endlichem Index. J. Algebra, 31, 1044.CrossRefGoogle Scholar
Ospel, C. 2002. Cohomological properties of the quantum shuffle product and application to the construction of quasi-Hopf algebras. J. Pure Appl. Algebra, 173 (3), 315337.CrossRefGoogle Scholar
Panaite, F. 1998. A Maschke-type theorem for quasi-Hopf algebras, in Verschoren, A. and Caenepeel, S. (eds.), Rings, Hopf Algebras and Brauer Groups(Antwerp/Brussels, 1996). Lecture Notes in Pure and Applied Mathematics 197. New York: Marcel Dekker, pp. 201207.Google Scholar
Panaite, F. 2007. Doubles of (quasi) Hopf algebras and some examples of quantum groupoids and vertex groups related to them, in Kauffman, L. H., Radford, D. E. and Souza, F. J. O. (eds), Hopf Algebras and Generalizations. Contemporary Mathematics 441. Providence, RI: American Mathematical Society, pp. 91115.CrossRefGoogle Scholar
Panaite, F., Staic, M. D. and Van Oystaeyen, F. 2010. Pseudosymmetric braidings, twines and twisted algebras. J. Pure Appl. Algebra, 214 (6), 867884.CrossRefGoogle Scholar
Panaite, F. and Ştefan, D. 1997. When is the category of comodules a braided tensor category? Rev. Roum. Math. Pures Appl., 42, 107119.Google Scholar
Panaite, F. and Van Oystaeyen, F. 2000. Existence of integrals for finite dimensional quasi-Hopf algebras. Bull. Belg. Math. Soc. Simon Stevin, 7, 261264.CrossRefGoogle Scholar
Panaite, F. and Van Oystaeyen, F. 2000. Quasi-Hopf algebras and the centre of a tensor category, in Caenepeel, S. and Van Oystaeyen, F. (eds.), Hopf Algebras and Quantum Groups. Lecture Notes in Pure and Applied Mathematics 209. New York: Marcel Dekker, pp. 221235.Google Scholar
Panaite, F. and Van Oystaeyen, F. 2004. Quasi-Hopf algebras and representations of octonions and other quasialgebras. J. Math. Phys., 45, 39123929.CrossRefGoogle Scholar
Panaite, F. and Van Oystaeyen, F. 2007. L-R-smash product for (quasi-) Hopf algebras. J. Algebra, 309, 168191.CrossRefGoogle Scholar
Panaite, F. and Van Oystaeyen, F. 2007. A structure theorem for quasi-Hopf comodule algebras. Proc. Amer. Math. Soc., 135, 16691677.CrossRefGoogle Scholar
Pareigis, B. 1971. When Hopf algebras are Frobenius algebras. J. Algebra, 18, 588596.CrossRefGoogle Scholar
Pareigis, B. 1977. Non-additive ring and module theory I. General theory of monoids. Publ. Math. Debrecen, 24, 189204.CrossRefGoogle Scholar
Radford, D. E. 1976. The order of the antipode of a finite-dimensional Hopf algebra is finite. Amer. J. Math., 98, 333355.CrossRefGoogle Scholar
Radford, D. E. 1977. Pointed Hopf algebras are free over Hopf subalgebras. J. Algebra, 45, 266273.CrossRefGoogle Scholar
Radford, D. E. 1977. Freeness (projectivity) criteria for Hopf algebras over Hopf subalgebras. J. Pure Appl. Algebra, 11, 1528.CrossRefGoogle Scholar
Radford, D. E. 1985. The structure of Hopf algebras with a projection. J. Algebra, 92 (2), 322347.CrossRefGoogle Scholar
Radford, D. E. 1992. On the antipode of a quasitriangular Hopf algebra. J. Algebra, 151, 111.CrossRefGoogle Scholar
Radford, D. E. 1994. On Kauffman’s knot invariants arising from finite dimensional Hopf algebras, in Bergen, J. and Montgomery, S. (eds.), Advances in Hopf algebras (Chicago, IL, 1992), Lecture Notes in Pure and Applied Mathematics 158, Dekker, New York: Marcel Dekker, pp. 205266.Google Scholar
Radford, D. E. 2012. Hopf Algebras. Series on Knots and Everything 49. Hackensack, NJ: World Scientific.Google Scholar
Reshetikhin, N. Y. and Semenov-Tian-Shansky, M. A. 1988. Quantum R-matrices and factorization problems. J. Geom. Phys., 5, 533550.CrossRefGoogle Scholar
Reshetikhin, N. Y. and Turaev, V. G. 1990. Ribbon graphs and their invariants derived from quantum groups. Comm. Math. Phys., 127, 126.CrossRefGoogle Scholar
Rotman, J. 1979. An Introduction to Homological Algebra. New York: Academic Press.Google Scholar
Sakáloš, Š. 2017. On categories associated to a quasi-Hopf algebra. Comm. Algebra, 45 (2), 722748.CrossRefGoogle Scholar
Schauenburg, P. 1994. Hopf modules and Yetter-Drinfel’d modules. J. Algebra, 169, 874890.CrossRefGoogle Scholar
Schauenburg, P. 2002. Hopf modules and the double of a quasi-Hopf algebra. Trans. Amer. Math. Soc., 354, 33493378.CrossRefGoogle Scholar
Schauenburg, P. 2002. Hopf bimodules, coquasibialgebras, and an exact sequence of Kac. Adv. Math., 165 (2), 194263.CrossRefGoogle Scholar
Schauenburg, P. 2003. Actions of monoidal categories and generalized Hopf smash products. J. Algebra, 270 (2), 521563.CrossRefGoogle Scholar
Schauenburg, P. 2004. On the Frobenius-Schur indicators for quasi-Hopf algebras. J. Algebra, 282 (1), 129139.CrossRefGoogle Scholar
Schauenburg, P. 2004. Two characterizations of finite quasi-Hopf algebras. J. Algebra, 273 (2), 538550.CrossRefGoogle Scholar
Schauenburg, P. 2004. A quasi-Hopf algebra freeness theorem. Proc. Amer. Math. Soc., 132 (4), 965972.CrossRefGoogle Scholar
Schauenburg, P. 2005. Quotients of finite quasi-Hopf algebras, in Caenepeel, S. and Van Oysaeyen, F. (eds.), Hopf Algebras in Noncommutative Geometry and Physics. Lecture Notes in Pure and Applied Mathematics 239. New York: Marcel Dekker, pp. 281290.Google Scholar
Schneider, H.-J. 1995. Lectures on Hopf Algebras. Trabajos de Matematica 31, University of Córdoba.Google Scholar
Shnider, S. and Sternberg, S. 1993. Quantum Groups: From Coalgebras to Drinfeld Algebras. Graduate Texts in Mathematical Physics II. Cambridge, MA: International Press.Google Scholar
Sommerhäuser, Y. 2010. On the notion of a ribbon quasi-Hopf algebra. Rev. Unión Mat. Argent., 51, 177192.Google Scholar
Sommerhäuser, Y. and Zhu, Y. 2013. On the central charge of a factorizable Hopf algebra. Adv. Math., 236, 158223.CrossRefGoogle Scholar
Stasheff, J. 1992. Drinfeld’s quasi-Hopf algebras and beyond, in Stasheff, J. and Gerstenhaber, M. (eds.), Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990). Contemporary Mathematics 134. Providence, RI: American Mathematical Society, pp. 297307.CrossRefGoogle Scholar
Street, R. 1999. The quantum double and related constructions. J. Pure Appl. Algebra, 132, 195206.CrossRefGoogle Scholar
Street, R. 2004. Frobenius algebras and monoidal categories. Annual Meeting Aust. Math. Soc. Macquarie University.Google Scholar
Sweedler, M. E. 1969. Hopf Algebras. New York: Benjamin.Google Scholar
Sweedler, M. E. 1968. Cohomology of algebras over Hopf algebras. Trans. Amer. Math. Soc., 133, 205239.CrossRefGoogle Scholar
Ştefan, D. 1997. The set of types of n-dimensional semisimple and cosemisimple Hopf algebras is finite. J. Algebra, 193 (2), 571580.CrossRefGoogle Scholar
Takeuchi, M. 1999. Finite Hopf algebras in braided tensor categories. J. Pure Appl. Algebra, 138, 5982.CrossRefGoogle Scholar
Turaev, V. G. 1992. Modular categories and 3-manifold invariants. Int. J. Modern Phys. B, 6, 18071824.CrossRefGoogle Scholar
Van Daele, A. 1997. The Haar measure on finite quantum groups. Proc. Amer. Math. Soc., 125, 34893500.CrossRefGoogle Scholar
Van Daele, A. and Van Keer, S. 1994. The Yang–Baxter and Pentagon equation. Compositio Math., 91, 201221.Google Scholar
Yetter, D. 1992. Framed tangles and a theorem of Deligne on braided deformations of Tannakian categories, in Stasheff, J. and Gerstenhaber, M. (eds.), Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990). Contemporary Mathematics 134. Providence, RI: American Mathematical Society, pp. 325350.CrossRefGoogle Scholar
Yetter, D. 2001. Functorial Knot Theory: Categories of Tangles, Coherence, Categorical Deformations, and Topological Invariance. Series on Knots and Everything 26. River Edge, NJ: World Scientific.CrossRefGoogle Scholar
Wang, Y., Zhang, L. Y. and Niu, R. F. 2013. Structure theorem for dual quasi-Hopf bicomodules and its application. Math. Notes, 94 (3-4), 470481.CrossRefGoogle Scholar
Weibel, C. 1994. An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics 38. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Woronowicz, S. 1989. Differential calculus on compact matrix pseudogroups (quantum groups). Comm. Math. Phys., 122, 125170.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×