Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-10T01:43:30.970Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 December 2018

Jean-Philippe Ansermet
Affiliation:
École Polytechnique Fédérale de Lausanne
Sylvain D. Brechet
Affiliation:
École Polytechnique Fédérale de Lausanne
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Séguin-Ainé, M., De l’influence des Chemins de Fer et de l’art de les tracer et de les conduire, Imprimerie Pitrat Ainé (1887).Google Scholar
2Crowther, J. G., British Scientists of the XIXth Century, vol. 1, Pelican Books, London (1940).Google Scholar
3von Mayer, J. R., Bemerkungen über die Kräfte der unbelebten Natur, Annalen der Chemie (1842), cited by K. Simonyi, Kulturgeschichte der Physik, Harri Deutsch Verlag (2004), § 4.5.8.Google Scholar
4Joule, J. P., On the Existence of an Equivalent Relation between Heat and the Ordinary Forms of Mechanical Power, Phil. Mag. London, Edinburgh, and Dublin, Series 3, 27 (179), 205–207 (1845).Google Scholar
5Müller, I., A History of Thermodynamics, Springer, Berlin-Heidelberg (2007).Google Scholar
6Gruber, Ch., Martin, Ph.-A., De l’atome antique à l’atome quantique, Presses Polytechniques et Universitaires Romandes (2013).Google Scholar
7von Helmholtz, H., Über die Erhaltung der Kraft, eine physikalische Abhandlung, Druck und Verlag von G. Reimer (1847).Google Scholar
8Riley, K. F., Hobson, M. P., Bence, S. J., Mathematical Methods for Physics and Engineering, Cambridge University Press (2006), § 5.2, § 5.5, § 5.7.Google Scholar
9Ansermet, J.-Ph., Mécanique, Traité de physique, Presses polytechniques et Universitaires Romandes (2013), § 4.3.2.Google Scholar
10Gruber, Ch., Brechet, S. D., Lagrange Equations Coupled to a Thermal Equation: Mechanics as Consequence of Thermodynamics, Entropy, 13, 367378 (2011).Google Scholar
11Ansermet, J.-Ph., Mécanique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2013), § 1.17.3.Google Scholar
12Ansermet, J.-Ph., Mécanique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2013), § 3.20.Google Scholar
13Ansermet, J.-Ph., Mécanique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2013), § 5.31.Google Scholar
14Stückelberg von Breidenbach, E. C. G., Scheurer, P. B., Thermocinétique phénoménologique galiléenne, Birhäuser Verlag, Basel and Stuttgart (1974).Google Scholar
15Ansermet, J.-Ph., Mécanique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2013), § 1.3.2.Google Scholar
16Guggenheim, E. A., Thermodynamics, an Advanced Treatment for Chemists and Physicists, North-Holland Pub. Co., Amsterdam (1949).Google Scholar
17Pascal, B., Traité de l’équilibre des liqueurs et de la pesanteur de la masse de l’air, Guillaume Desprez, Paris (1654).Google Scholar
18Lieb, E. H., Yngvason, J., The Physics and Mathematics of the Second Law of Thermodynamics, Phys. Rep. 310, 196 (1999).Google Scholar
19Lieb, E. H., Yngvason, J., A Fresh Look at Entropy and the Second Law of Thermodynamics, Phys. Today 54, 3237 (2000).Google Scholar
20Fuchs, H. U., The Dynamics of Heat, Springer, Berlin-Heidelberg (2010).Google Scholar
21Gibbs, J. W., Graphical Methods in the Thermodynamics of Fluids, Transactions of the Connecticut Academy, II, 309–342, April–May (1873).Google Scholar
22Hawking, S. W., Ellis, G. F. R., The Large Scale Structure of Space-Time, Cambridge University Press (1973).CrossRefGoogle Scholar
23Botsis, J., Deville, M., Mécanique des milieux continus, Traité de physique, Presses Polytechniques et Universitaires Romandes (2015).Google Scholar
24Einstein, A., Physics and Reality (1936), cited in Albert Einstein, Oeuvres choisies, vol. 5, Seuil (1971).Google Scholar
25Einstein, A., cited by Lieb, E. H. and Yngvason, J. in A Fresh Look at Entropy and the Second Law of Thermodynamics, Phys. Today 54, 3237 (2000).Google Scholar
26Müller, I., A History of Thermodynamics: The Doctrine of Energy and Entropy. Springer, Berlin, Heidelberg (2007).Google Scholar
27Jaumann, G., Geschlossenes System physikalischer und chemischer Diffrentialgestze, Sitzungbericht Akademie der Wissenschaften, Wien, 12 IIa (1911).Google Scholar
28Lohr, E., Entropie und geschlossenes Gleichungssystem. Denkschrift der Akademie der Wissenshaften 93 (1926).Google Scholar
29Poiseuille, J.-L.-M., Le mouvement des liquides dans les tubes de petits diamètres, Paris (1844).Google Scholar
30Ferrari, Ch., Gruber, Ch., Friction Force: From Mechanics to Thermodynamics, Eur. J. P. 31, 11591175 (2010).Google Scholar
31Carrington, G., Basic Thermodynamics, Oxford Science Publications, New York (1994).Google Scholar
32Goupil, M., Du Flou au Clair, Histoire de l’affinité chimique, Editions du Comité des Travaux historiques et scientifiques, Paris (1991), § 4.Google Scholar
33Callen, H. B., Thermodynamics and an introduction to Thermostatistics, John Wiley & Sons, Inc. (1985), § 5.4.Google Scholar
34Callen, H. B., Thermodynamics and an Introduction to Thermostatistics, John Wiley & Sons, Inc. (1985), p. 288.Google Scholar
35von Helmholtz, H., Die Thermodynamik chemischer Vorgänge, Wissenschaftliche Abhandlungen von Hermann Helmholtz, vol. 2 (1883), p. 958978.Google Scholar
36Howard, I. K, H Is for Enthalpy, Thanks to Heike Kamerlingh Onnes and Alfred W. Porter, J. Chem. Educ. 79 (6), 697 (2002).Google Scholar
37Callen, H. B., Thermodynamics and an Introduction to Thermostatistics, John Wiley & Sons Inc. (1985).Google Scholar
38Lebon, G., Jou, D., Casas-Vazquez, J., Understanding Non-Equilibrium Thermodynamics, Springer Verlag, Berlin (2008), p. 2223.Google Scholar
39Lebon, G., Jou, D., Casas-Vazquez, J., Understanding Non-Equilibrium Thermodynamics, Springer Verlag, Berlin (2008), p. 23.Google Scholar
40Callen, H. B., Thermodynamics, John Wiley & Sons Inc., New York (1960), § 7.Google Scholar
41Bruhat, G., Thermodynamique, Masson & Cie, 6th edition, Paris (1968), § 63.Google Scholar
42de Lavoisier, A. L., de Laplace, P.-S., Mémoire sur la chaleur, Mémoires de l’Académie des Sciences (1787).Google Scholar
43Boyle, R., De la nature de l’air, Etienne Michallet, Paris (1669).Google Scholar
44Mariotte, E., A Continuation of New Experiments Physico-Mechanical, Touching the Spring and Weight of the Air and Their Effects, Henry Hall, Oxford (1679).Google Scholar
45Charles, J. (1787) mentioned by Gay-Lussac, L. in Recherches sur la dilatation des gaz et des vapeurs, Annales de chimie 43, 157 (1802).Google Scholar
46Gay Lussac, L., Mémoire sur la combinaison des substances gazeuses, les unes avec les autres, Mémoires de la Société d’Arceuil 2, 207234 (1809).Google Scholar
47Avogadro, A., Essai d’une manière de déterminer les masses relatives des molécules élémentaires des corps, Journal de Physique 73, 5876 (1810).Google Scholar
48Bruhat, G., Thermodynamique, Masson & Cie, 6th edition, (1968), p. 124.Google Scholar
49Deluc, J. A., Recherche sur les modifications de l’atmosphère, vol. 2, Genève, (1772).Google Scholar
50Truesdell, C., The Tragicomical History of Thermodynamics 1822–1854, Springer-Verlag, New York (1980).Google Scholar
51König, R., Frontiers in Refrigeration and Cooling: How to Obtain and Sustain Ultra-Low Temperatures beyond Nature’s Ambience, Inter. J. of Refrig. 23, 577587 (2000).Google Scholar
52Galgani, L., Scotti, A., Remarks on Convexity of Thermodynamic Functions, Physica 40, 150152 (1968).Google Scholar
53Callen, H. B., Thermodynamics and an Introduction to Thermostatistics, Wiley, 2nd edition (1985), § 8.1.1.Google Scholar
54Le Bellac, M., Mortessagne, F., Batrouni, G. G., Equilibrium and Non-Equilibrium Statistical Thermodynamics, Cambridge University Press (2004).Google Scholar
55Callen, H. B., Thermodynamics and an Introduction to Thermostatistics, Wiley, 2nd edition (1985).Google Scholar
56J., S. and Blundell, K. M., Concepts in Thermal Physics, Oxford University Press (2009), § 28.7.Google Scholar
57Elenius, M., Dzugutov, M., Evidence for a Liquid-Solid Critical Point in a Simple Monatomic System, J. Chem. Phys. 131, 104502 (2009).Google Scholar
58Han, S., Choi, M. Y., Kumar, P., Stanley, H. E., Phase Transitions in Confined Water Nanofilms, Nat. Phys., 6, 685 (2010).Google Scholar
59P. Atkins, Julio de Paula, Atkins’ Physical Chemistry, Oxford University Press, 7th edition (2002), p. 176, 181.Google Scholar
60van der Waals, J. D., PhD thesis, Over de continuiteit van den gas en vloeistoftestand (1873).Google Scholar
61Maxwell, J. C., On the Dynamical Evidence of the Molecular Constitution of Bodies, Nature, 11, 357359 (1875).Google Scholar
62Legault, M., Blum, L., The Coexistence Line in Mean Field Theories, Fluid Phase Equilibria, 91, 5566 (1993).Google Scholar
63Peter Atkins, Julio de Paula, Atkins’ Physical Chemistry, Oxford University Press, 7th edition (2002), p. 186.Google Scholar
64Johnston, C., Advances in Thermodynamics of the van der Waals Fluid, Morgan & Claypool Publishers (2014).Google Scholar
65Callen, H. B., Thermodynamics and an Introduction to Thermostatistics, Wiley, 2nd edition (1985), § 8.2.2.Google Scholar
66Mashaei, P. R., Shahryari, M., Madani, S., Analytical Study of Multiple Evaporator Heat Pipe with Nanofluid: A Smart Material for Satellite Equipment Cooling Application, Aerospace Science and Technology 59, 112121 (2016).Google Scholar
67Borel, J.-P., Chatelain, A., Surface Stress and Surface Tension: Equilibrium and Pressure in Small Particles, Surf. Sci. 156, 572579 (1985).Google Scholar
68Buffat, Ph., Borel, J.-P., Size Effect on the Melting Temperature of Gold Particles, Phys. Rev. A 13 (6), 2287 (1976).Google Scholar
69Siegel, R. W., Cluster-Assembled Nanophase Materials, Annu. Rev. Mater. Sci. 21, 559578 (1991).Google Scholar
70Carnot, S., Reflections on the Motive Power of heat and on Machines Fitted to Develop That Power, John Wiley & Sons (1897).Google Scholar
71Depont, Ph., L’entropie et tout ça, le roman de la thermodynamique, Cassini (2001).Google Scholar
72Feynman, R., Leighton, R. B., Sands, M., The Feynman Lectures on Physics, Adison-Wesley (1963).Google Scholar
73Curzon, F. L., Alborn, B., Efficiency of a Carnot Engine at Maximum Power Output, American Journal of Physics 43, 22 (1975).Google Scholar
74Bruhat, G., Thermodynamique, Masson & Cie, 6th edition (1968), p. 173.Google Scholar
75Kondepudi, D., Prigogine, I., Modern Thermodynamics, John Wiley & Sons Ltd (1998).Google Scholar
76Goupil, M., Du Flou au Clair, Histoire de l’Affinité de Cardan à Prigogine, Editions du Comité des Travaux historiques et scientifiques, Paris (1991).Google Scholar
77Friedli, C. K. W., Chimie générale pour ingénieur, Presses Polytechniques et Universitaires Romandes (2010).Google Scholar
78Infelta, P., Introductory Thermodynamics, Brown Walker Press, Boca Raton Florida (2004).Google Scholar
79Guggenheim, E. A., Thermodynamics, an Advanced Treatment for Chemists and Physicists, North-Holland (1977).Google Scholar
80Marchand, A., Facoult, A., La thermodynamique mot à mot, De Boek Université (1995).Google Scholar
81Callen, H. B., Thermodynamics, 1st edition, John Wiley & Sons, New York (1960), § D6.Google Scholar
82Dreyfus, B., Lacaze, A., Cours de thermodynamique, Dunod (1971).Google Scholar
83Girault, H., Electrochimie physique et analytique, Presses Polytechniques et Universitaires Romandes (2012), p. 235.Google Scholar
84Reiss, H., Methods of Thermodynamics, Dover, Mineola, New York (1996), § 5.39 and following.Google Scholar
85Horn, R. A., Johnson, C. R., Matrix Analysis, Cambridge University Press (1990).Google Scholar
86de Groot, S. R., Mazur, P., Non-Equlibirum Thermodynamics, Dover, New York (1984), p. 371375.Google Scholar
87Kuzminskii, Y. V., Zasukha, V. A., Kuzminskaya, G. Y., Thermoelectric Effects in Electrochemical Systems: Nonconventional Thermogalvanic Cells, J. Power Sources 52, 231242 (1994).Google Scholar
88Lee, S. W., Yang, Y., Lee, H.-W., Ghasemi, H., Kraemer, D., Chen, G., Cui, Y., An Electrochemical System for Efficiently Harvesting Low–Grade Heat Energy, Nat. Commun. 5, 3942 (2014).Google Scholar
89Mattis, D. C., The Theory of Magnetism Made Simple, World Scientific, New Jersey (2006).Google Scholar
90Gilbert, W., Fleuy Mottelay, P., De Magnete, Dover Publication Inc., New York (1958).Google Scholar
91Kohout, S., Roos, J., Keller, H., Novel Sensor Design for Torque Magnetometry, Rev. Sci. Instrum. 78, 013903 (2007).Google Scholar
92Känzig, W., History of Ferroelectricity 1938–1955, Ferroelectrics. 74, 285291 (1987).Google Scholar
93Pohl, H. A., The Motion and Precipitation of Suspensoids in Divergent Electric Fields, J. Appl. Phys. 22 (7), 869871, (1951) and H. A. Pohl, Some Effects of Nonuniform Fields on Dielectrics, J. Appl. Phys. 29 (8), 1182–1188 (1958).Google Scholar
94Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., Chu, S., Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles, Opt. Lett. 11 (5) 288290 (1986).Google Scholar
95Maxwell, J. C., On the Physical Lines of Force, Philos. Mag. 4, 161 (1861).Google Scholar
96Poynting, J. H., On the Transfer of Energy in the Electromagnetic Field, Philos. Trans. Royal Soc. 175, 343361 (1884).Google Scholar
97Debye, P., Polar Molecules, Dover, New York (1945).Google Scholar
98Clausisus, R., Die mechanische U’gretheorie (1879).Google Scholar
99Mossotti, O. F., Mem. di mathem. e fisica in Modena 24, 49 (1850).Google Scholar
100Larmor, J., A Dynamical Theory of the Electric and Luminiferous Medium. Part III. Relations with Material Media, Philos. Trans. Royal Soc. 190, 205493 (1897).Google Scholar
101Bloch, F., Nuclear Induction, Phys. Rev. 70, 460473 (1946).Google Scholar
102Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 43, 111, 174, 175.Google Scholar
103Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 119.Google Scholar
104Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 181182.Google Scholar
105Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 117.Google Scholar
106Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 175.Google Scholar
107Brechet, S. D., Roulet, A., Ansermet, J.-P, Magnetoelectric Ponderomotive Force, Mod. Phys. Lett. B 27 (21), 1350150 (2013).Google Scholar
108Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 303, 305.Google Scholar
109Brechet, S. D., Reuse, F. A., Ansermet, J.-Ph., Thermodynamics of Continuous Media with Electromagnetic Fields, Eur. Phys. J. B 85, 412 (2012).Google Scholar
110Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 118.Google Scholar
111Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 174.Google Scholar
112Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 120, 177.Google Scholar
113Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 58.Google Scholar
114Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 86.Google Scholar
115Reuse, F., Electrodynamique, Traité de physique, Presses et Polytechniques Universitaires Romandes (2012), p. 88.Google Scholar
116Reuse, F., Electrodynamique, Traité de physique, Presses et Polytechniques Universitaires Romandes (2012), p. 93.Google Scholar
117Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 82, 86.Google Scholar
118Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 2829.Google Scholar
119Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 45.Google Scholar
120Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 103.Google Scholar
121Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 186.Google Scholar
122Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 154.Google Scholar
123Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 219.Google Scholar
124Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 222.Google Scholar
125Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), p. 220.Google Scholar
126Brechet, S. D., Ansermet, J.-Ph. Thermodynamics of a Continuous Medium with Electric and Magnetic Dipoles, Eur. Phys. J. B 86, 318 (2013).Google Scholar
127Debye, P., Einige Bermerkungen zur Magnetisierung bei tiefer Temperatur, Ann. Phys. 81, 1154 (1926).Google Scholar
128Liu, D., Origin and Tuning of the Magnetocaloric Effect in the Magnetic Refrigerant Mn1.1 Fe0.9 (P0.8 Ge0.2), Phys. Rev. B 79, 014435, (2009).Google Scholar
129Kitanovski, A., Golf, P. W., Innovative Ideas for Future Research on Magnetocaloric Technologies, Int. J. Refrig. 33, 449464 (2010).Google Scholar
130Kittel, C., Introduction to Solid State Physics, John Wiley & Sons Inc., Hoboken, 5th edition (1976).Google Scholar
131Slichter, C. P., Principles of Magnetic Resonance, Springer-Verlag, Berlin-Heidelberg (1990), § 6.3.Google Scholar
132Ozeki, S., Miyamoto, J., Ono, S., Wakai, C., Watanabe, T., Water-Solid Interactions under Steady Magnetic Fields: Magnetic Field-Induced Adsorption and Desorption of Water, J. Phys. Chem. 100, 42054212 (1996).Google Scholar
133Squires, T. M., Quake, S. R., Microfluidics: Fluid Physics at the Nanoliter Scale, Rev. Mod. Phys. 77, 977 (2005).Google Scholar
134Tishin, A. M., Spichkin, Y. I., Recent Progress in Magnetocaloric Effect: Mechanisms and Potential Applications, Int. J. Refrig. 37, 223229 (2014).Google Scholar
135Hagmann, C., Benfod, D. J., Richards, P. L., Paramagnetic Salt Pill Design for Magnetic Refrigerators used in Space Applications, Cryogencis, 34 (3), 213219 (1994).Google Scholar
136Bohigas, X., Molins, E., Roig, A., Tejada, J., Zhang, X. X., Room-Temperature Magnetic Refrigerator using Permanent Magnets, IEEE Trans. Mag. 36 (3), 538544 (2000).CrossRefGoogle Scholar
137Carnot, S., Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance., Bachelier, Paris (1924).Google Scholar
138Ferrari, Ch., Gruber, Ch., Friction Force: From Mechanics to Thermodynamics, Eur. J. Phys. 31, 1159 (2010).Google Scholar
139Eckart, C., The Thermodynamics of Irreversible Processes. I. The Simple Fluid, Phys. Rev. 58, 267269 (1940).Google Scholar
140Eckart, C., The Thermodynamics of Irreversible Processes. II. Fluid Mixtures, Phys. Rev. 58, 269275 (1940).Google Scholar
141Botsis, J., Deville, M., Mécanique des milieux continus, Presses Polytechniques et Universitaires Romandes (2006), p. 4951.Google Scholar
142Ryhming, I. L., Dynamique des fluides, Presses Polytechniques et Universitaires Romandes (2009), p. 27.Google Scholar
143Reuse, F., Electrodynamique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2012), equation (2.57).Google Scholar
144Botsis, J., Deville, M., Mécanique des milieux continus, Traité de physique, Presses Polytechniques et Universitaires Romandes (2015), § 2.4.2.Google Scholar
145Ansermet, J.-Ph., Mécanique, Traité de physique, Presses Polytechniques et Universitaires Romandes (2013) § 3.21.Google Scholar
146Stückelberg von Breidenbach, E. C. G., Scheurer, P. B., Thermocinétique phénoménologique galiléenne, Birkhauser Verlag, Basel and Stuttgart, (1974) p. 177.Google Scholar
147Gremaud, G., Théorie eulérienne des milieux déformables, Presses Polytechniques et Universitaires Romandes (2013), p. 11.Google Scholar
148Brechet, S. D., Ansermet, J.-Ph., Thermodynamics of Continuous Media with Intrinsic Rotation and Magnetoelectric Coupling, Continuum Mech. Therm. 26 (2), 115142 (2014).Google Scholar
149Yamagami, T., Saito, Y., Matsuzuka, Y., Namiki, M., Toriumi, M., Yokota, R., Hirosawa, H., Matsushima, K., Development of the Highest Altitude Balloon, Adv. Space Res. 33, 16531659 (2004).Google Scholar
150Dufour, L., Sur une variation de température qui accompagne la diffusion des gaz à travers une cloison de terre poreuse, Archives des Sciences Physiques et naturelles, Genève 49, (1874).Google Scholar
151Dufour, L., Diffusion des gaz à travers les parois poreuses, Archives des sciences physiques et naturelles 45, 912 (1872).Google Scholar
152Dufour, L., Über die Diffusion der Gase durch poröse Wände und die sie begleitenden Temperaturveränderungen, Annalen der Physik 28, 490 (1873)Google Scholar
153Reichl, M., Herzog, M., Goetz, A., Braun, D., Why Charged Molecules Move across a Temperature Gradient: The Role of Electric Fields, Phys. Rev. Lett. 112, 198101 (2014).Google Scholar
154Belfiore, L. A., Transport Phenomena for Chemical Reactor Design, Wiley, Hoboken, New Jersey (2003) p. 700702.Google Scholar
155Belfiore, L. A., Karim, M. N., Belfiore, C. J., Tubular Bioreactor Models That Include Onsager-Curie Scalar Cross-Phenomena to Describe Stress-Dependent Rates of Cell Proliferation, Biophys. Chem. 135 (1–3), 4150 (2008).Google Scholar
156Andrews, K. D., Feugier, P., Black, R. A., Hunt, J. A., Vascular Prostheses Performance Related To Cell-Shear Responses, Journal of Surgical Research 149 (1), 3946 (2007).Google Scholar
157Belfiore, L. A., Soret Diffusion and Non-Ideal Dufour Conduction in Macroporous Catalysts with Exothermic Chemical Reaction at Large Intrapellet Damköhler Numbers, Canadian J. Chem. Eng. 85, 268279 (2007).Google Scholar
158Gravier, L., Serrano-Guisan, S., Reuse, F. and Ansermet, J.-Ph., Thermodynamic Description of Heat and Spin Transport in Magnetic Nanostructures, Phys. Rev. B 73, 024419 (2006).Google Scholar
159Ansermet, J-Ph., Thermodynamic Description of Spin Mixing in Spin-Dependent Transport, IEEE Trans. Mag. 329–335 (2008).Google Scholar
160Eckart, C., The Thermodynamics of Irreversible Processes. I. The Simple Fluid. Phys. Rev. 58, 267 (1940).Google Scholar
161Eckart, C., The Thermodynamics of Irreversible Processes. II. Fluid Mixtures. Phys. Rev. 58, 269 (1940).Google Scholar
162Onsager, L., Reciprocal Relations in Irreversible Processes. I, Phys. Rev. 37, 405 (1931).Google Scholar
163Onsager, L., Reciprocal Relations in Irreversible Processes. II, Phys. Rev. 38, 2265 (1931).Google Scholar
164Casimir, H. B. G., On Onsager’s Principle of Microscopic Reversibility, Rev. Mod. Phys. 17, 343 (1945).Google Scholar
165Prigogine, I., Etude thermodynamique des phénomènes irréversibles, Desoer, Liège, (1947).Google Scholar
166Prigogine, I., Stengers, I., La Nouvelle Alliance, Editions Gallimard (1991).Google Scholar
167Prigogine, I., Stengers, I., Order out of Chaos: Man’s New Dialogue with Nature, Flamingo, New-York City (1984).Google Scholar
168Curie, P., Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique, J. Phys. Théor. Appl. 3, 393 (1894).Google Scholar
169Callen, H. B., Thermodynamics and an Introduction to Thermostatistics, 2nd edition, Wiley, New York (1985).Google Scholar
170Fourier, J., Théorie de la chaleur, Firmin Didot, Paris (1822).Google Scholar
171Righi, A., Rotazione delle linee isotermiche del bismuto posto in un campo magnetico, Atti della Reale Accademia dei Lincei, Rendiconti 4, 284 (1887).Google Scholar
172Leduc, A., Sur la conductibilité calorifique du bismuth dans un champ magnétique et la déviation des lignes isothermes, Journal de Physique 6, 378 (1887).Google Scholar
173Fick, A., Über diffusion, Poggendorff’s Annalen der Physik 94, 5986 (1855).Google Scholar
174Dufour, L., Uber die Diffusion der Gase durch poröse Wände und die sie begleitenden Temperaturveränderungen, Annalen der Physik 28, 490 (1873).Google Scholar
175Soret, C., Sur l’état d’équilibre que prend, au point de vue de sa concentration, une dissolution saline primitivement homogène, dont deux parties sont portées à des températures différentes, Archives des Sciences Physiques et Naturelles, Genève, 2, 4861 (1879).Google Scholar
176Brechet, S. D. et, Ansermet, J.-Ph., Heat-Driven Spin Currents on Large Scales, physica status solidi (RRL) 5 (12), 423425 (2011).Google Scholar
177Ohm, G. S., Die galvanische Kette, T. H. Riemann, Berlin (1827).Google Scholar
178Hall, E. H., On a New Action of the Magnet on Electric Currents, Am. J. Mathemat., 2 (3), 287292 (1879).Google Scholar
179von Ettinghausen, A., Nernst, Walther, Über das Auftreten electromotorischer Kräfte in Metallplatten, welche von einem Wärmestrome durchflossen werden und sich im magnetischen Felde befinden, Annalen der Physik, 265 (10), 343347 (1886).Google Scholar
180Seebeck, T. J., Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz, Abh. Akad. Wiss. Berlin, 289346 (1822).Google Scholar
181Thomson, W., On a Mechanical Theory of Thermoelectric Currents, Proc. Royal Soc. Edinburgh 91–98 (1851).Google Scholar
182Joule, J. P., On the Effects of Magnetism upon the Dimensions of Iron and Steel Bars, Phil. Mag., London, Edinburgh, and Dublin, 30, 225241 (1847).Google Scholar
183Peltier, J. C. A., Nouvelles expériences sur la caloricité des courants électriques, Ann. Chim. Phys. 56, 371 (1834).Google Scholar
184Gravier, L., Serrano-Guisan, S., Reuse, F., Ansermet, J.-Ph., Spin-Dependent Peltier Effect of Perpendicular Currents in Multilayered Nanowires, Phys. Rev. B 73, 052410 (2006).Google Scholar
185Ansermet, J.-Ph., Thermodynamic Description of Spin Mixing in Spin-Dependent Transport, IEEE Trans. Magn. 44 (3), 329 (2008).Google Scholar
186Valet, T., Fert, A., Theory of the Perpendicular Magnetoresistance in Magnetic Multilayers, Phys. Rev. B 48, 7099 (1993).Google Scholar
187Harman, T. C., Special Techniques for Measurement of Thermoelectric Properties, J. App. Phys. 29, 1373 (1958).Google Scholar
188Goldsmid, H. J., Introduction to Thermoelectricity, Springer, Berlin-Heidelberg (2010).Google Scholar
189Snyder, G. J., Ursell, T. S., Thermoelectric Efficiency and Compatibility, Phys. Rev. Lett. 91 (4) 138301 (2003).Google Scholar
190Landau, L. D., Lifshitz, E. M., Pitaevskii, L.-P., Electrodynamics of Continuous Media, Landau and Lifshitz Course of Theoretical Physics, volume 8, Pergamon Press, Oxford, 3rd edition (2000).Google Scholar
191Zhou, C., Birner, S., Tang, Y., Heinselman, K., Grayson, M., Driving Perpendicular Heat Flow : (p × n)-Type Transverse Thermoelectrics for Microscale and Cryogenic Peltier Cooling, Phys. Rev. Lett. 110, 227701 (2013).Google Scholar
192Aoki, K., Akimoto, K., Tokuda, K., Matsuda, H., Osteryoung, J., Linear Sweep Voltammetry at Very Small Stationary Disk Electrodes, J. Electroanal. Chem. 171, 219230 (1984).Google Scholar
193Fleschmann, M., Pons, S., The Behavior of Microdisk and Microring Electrodes, J. Electroanal. Chem. 222, 107115 (1987).Google Scholar
194Bond, A. M., Oldham, K. B., Zoski, C. G., Steady-State Voltammetry, Anal. Chim. Acta. 216, 177230 (1989).Google Scholar
195Heinze, J., Ultramicroelectrodes in Electrochemistry, Angew. Chem. Int. Ed. Engl. 32, 12681288 (1993).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×