Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-26T19:36:39.113Z Has data issue: false hasContentIssue false

4 - Network Structure and Geometric Parameters

Published online by Cambridge University Press:  15 September 2022

Catalin R. Picu
Affiliation:
Rensselaer Polytechnic Institute, New York
Get access

Summary

The structure of network materials is stochastic. This chapter introduces the minimum set of geometric parameters required to describe the network structure. This set includes the fiber and crosslink densities, the mean segment length, a measure of preferential fiber orientation, and the connectivity index. The relation between the mean segment length and the fiber density is established for two- and three-dimensional networks with cellular and fibrous architectures. The effect of fiber tortuosity, fiber preferential alignment, and excluded volume interactions on the mean segment length are outlined. The statistics of pore sizes in networks of fibrous and cellular types is discussed in terms of the geometric network parameters. The percolation threshold, at which the first connected path forms across the network domain, is discussed for specific methods used to generate the network.

Type
Chapter
Information
Network Materials
Structure and Properties
, pp. 95 - 127
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboav, D. A. (1970). The arrangement of grains in a polycrystal. Metallography 3, 383390.Google Scholar
Balberg, I., Anderson, C. H., Alexander, S. & Wagner, N. (1984). Excluded volume and its relation to the onset of percolation. Phys. Rev. B 30, 39333943.Google Scholar
Balberg, I. & Binenbaum, N. (1984). Percolation thresholds in the three-dimensional sticks system. Phys. Rev. Lett. 52, 14651468.Google Scholar
Chen, N., Koker, M. K. A., Uzun, S. & Silberstein, M. N. (2016). In-situ X-ray study of the deformation mechanisms of non-woven polypropylene. Int. J. Sol. Struct. 97–98, 200208.CrossRefGoogle Scholar
Chiu, S. N., Stoyan, D., Kendall, W. S., & Mecke, J. (2013). Stochastic geometry and its applications, 3rd ed. Wiley, Chichester, UK.CrossRefGoogle Scholar
Corte, H. & Lloyd, E. H. (1965). Fluid flow through paper and sheet structure. In: Consolidation of the paper web. Transactions of the 3rd Fundamental Research Symposium. BPBMA, London, 9811009.Google Scholar
Crain, I. K. & Miles, R. E. (1976). Monte Carlo estimates of the distributions of the random polygons determined by random lines in the plane. J. Stat. Comput. Simul. 4, 293325.Google Scholar
Dean, P & Bird, N. F. (1967). Monte Carlo estimates of critical percolation probabilities. Proc. Camb. Phil. Soc. 63, 477479.CrossRefGoogle Scholar
Deogekar, S., Yan, Z. & Picu, R. C. (2019). Random fiber networks with superior properties through network topology control. J. Appl. Mech. 86, 081010.Google Scholar
van Dillen, T., Onck, P. R. & van der Giessen, E. (2008). Models for stiffening in cross-linked biopolymer networks: a comparative study. J. Mech. Phys. Sol. 56, 22402264.Google Scholar
Eichorn, S. J. & Sampson, W. W. (2005). Statistical geometry of pores and statistics of porous nanofibrous assemblies. J. R. Soc. Interface 2, 309318.CrossRefGoogle Scholar
Ekman, A., Miettinen, A., Tallinen, T. & Timonen, J. (2014). Contact formation in random networks of elongated objects. Phys. Rev. Lett. 113, 268001.Google Scholar
Erdős, P. & Rényi, A. (1959). On random graphs. Public. Mathem. 6, 290297.Google Scholar
Evans, K. E. & Gibson, A. G. (1986). Prediction of the maximum packing fraction achievable in randomly oriented short fiber composites. Compos. Sci. Technol. 25, 149162.Google Scholar
Falconer, K. (2003). Fractal geometry: Mathematical foundations and applications. Wiley, Chichester, UK.Google Scholar
Fedorov, E. S. (1891). The symmetry of regular systems of figures, Proc. Imperial St. Petersburg Mineral. Soc. 28, 1146.Google Scholar
Feng, X., Deng, Y., Henk, W. & Blote, J. (2008). Percolation transitions in two dimensions. Phys. Rev. E 78, 031136.Google Scholar
Flory, P. J. (1941). Molecular size distribution in three dimensional polymers. I. Gelation. J. Amer. Chem. Soc. 63, 30833090.Google Scholar
de Gennes, P. G. (1979). Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY.Google Scholar
Gneiting, T. & Schlather, M. (2004). Stochastic models that separate fractal dimension and the Hurst effect. SIAM Review 46, 269282.Google Scholar
Hovi, J. P. & Aharony, A. (1996). Scaling and universality in the spanning probability for percolation. Phys. Rev. E 53, 235253.Google Scholar
Jacobsen, J. L. (2014). High-precision percolation thresholds and Potts-model critical manifolds from graph polynomials. J. Phys. A 47, 135001.Google Scholar
Kallmes, O. J. & Corte, H. (1960). The structure of paper – The statistical geometry of an ideal two dimensional fiber network. Tappi J. 43, 737752.Google Scholar
Komori, T. & Makishima, K. (1977). Number of fiber-to-fiber contacts in general fiber assemblies. Textile Res. J. 47, 1317.CrossRefGoogle Scholar
Kumar, S., Kurtz, S. K., Banavar, J. R. & Sharma, M. G. (1992). Properties of a 3D Poisson-Voronoi tesselation: A Monte Carlo study. J. Stat. Phys. 67, 523551.Google Scholar
Lazar, E. A., Mason, J. K., MacPherson, R. D. & Srolovitz, D. J. (2013). Statistical topology of 3D Poisson-Voronoi cells and cell boundary networks. Phys. Rev. E 88, 063309.CrossRefGoogle Scholar
Lewis, F. T. (1928). The correlation between cell division and the shapes and sizes of prismatic cells in the epidermis of cucumis. Anatomical Record. 38, 341376.Google Scholar
Li, J. & Zhang, S.-L. (2009). Finite-size scaling in stick percolation. Phys. Rev. E. 80, 040104(R).Google Scholar
Macosko, C. W. & Miller, D. R. (1976). A new derivation of average molecular weights of nonlinear polymers. Macromolecules 9, 199206.CrossRefGoogle ScholarPubMed
Meijering, J. L. (1953). Interface area, edge length and number of vertices in crystal aggregates with random nucleation. Philips Res. Rep. 8, 270290.Google Scholar
Mertens, S. & Moore, C. (2012). Continuum percolation thresholds in two dimensions. Phys. Rev. E 86, 061109.CrossRefGoogle ScholarPubMed
Miles, R. E. (1964). Random polygons defined by random lines in plane. Proc. Nat. Acad. Sci. 52, 901907.Google Scholar
de Molina, P. M., Lad, S. & Helgeson, M. E. (2015). Heterogeneity and its influence on the properties of difunctional poly(ethylene glycol) hydrogels: Structure and mechanics. Macromolecules 48, 54025411.CrossRefGoogle Scholar
Nardin, M., Papirer, E. & Schultz, J. (1985). Contribution a l’etude de l’empilements au hazard de fibres et/ou des particules spheriques. Powder Technol. 44, 131140.Google Scholar
Neckar, B. & Das, D. (2012). Theory of structure and mechanics of fibrous assemblies. WPI Press, New Delhi.Google Scholar
Negi, V. & Picu, R. C. (2019). Mechanical behavior of nonwoven non-crosslinked fibrous mats with adhesion and friction. Soft Matter 15, 59515964.Google Scholar
Newman, M. (2018). Networks. Oxford University Press, Oxford.Google Scholar
Novellani, M., Santini, R. & Tadrist, L. (2000). Experimental study of the porosity of loose stacks of stiff cylindrical fibers: Influence of the aspect ratio of fibers. Eur. Phys. J. B 13, 571578.Google Scholar
Okabe, A., Boots, B. N., Sugihara, K. & Chiu, S. N. (1992). Spatial tessellations: Concepts and applications of Voronoi Diagrams. Wiley, Chichester, UK.Google Scholar
Pan, N. (1993). A modified analysis of the microstructural characteristics of general fiber assemblies. Textile Res. J. 63, 336345.Google Scholar
Panyukov, S. & Rabin, Y. (1996). Polymer gels: Frozen inhomogeneities and density fluctuations. Macromolecules 29, 79607975.Google Scholar
Parkhouse, J. G. & Kelly, A. (1995). The random packing of fibers in three dimensions. Proc. R. Soc. London A 451, 737746.Google Scholar
Philipse, A. P. (1996). The random contact equation and its implications for (colloidal) rods packings, suspension and anisotropic powders. Langmuir 12, 11271135.Google Scholar
Philipse, A. P. & Kluijtmans, S. G. J. M. (1999). Sphere caging by a random fiber network. Physica A 274, 516524.Google Scholar
Picu, R. C. & Hatami-Marbini, H. (2010). Long-range correlations of elastic fields in semi-flexible fiber networks. Comput. Mech. 46, 635640.Google Scholar
Provatas, N., Haataja, M., Asikainen, J., et al. (2000). Fiber deposition models in two and three spatial dimensions. Coll. Surf. A 165, 209229.Google Scholar
Quinn, K. P. & Winkelstein, B. A. (2008). Altered collagen fiber kinematics define the onset of localized ligament damage during loading. J. Appl. Physiol. 105, 18811888.Google Scholar
Sampson, W. W. (2009). Modelling stochastic fibrous materials with Mathematica. Springer, London.Google Scholar
Stockmayer, W. H. (1943). Theory of molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys. 11, 4552.Google Scholar
Tarasevich, Y. Y. & Eserkepov, A. V. (2018). Percolation of sticks: Effect of stick alignment and length dispersity. Phys. Rev. E 98, 062142.CrossRefGoogle Scholar
Toll, S. (1993). On the tube model for fiber suspensions. J. Rheol. 37, 123125.Google Scholar
Venkataraman, S. K., Coyne, L., Chambon, F., Gottlieb, M. & Winter, H. H. (1989). Critical extent of reaction of polydimethylsiloxane polymer network. Polymer 30, 22222226.Google Scholar
Williams, S. R. & Philipse, A. P. (2003). Random packings of spheres and spherocylinders simulated by mechanical contraction. Phys. Rev. E 67, 051301.Google Scholar
Xu, W., Su, X. & Jiao, Y. (2016). Continuum percolation of congruent overlapping spherocylinders. Phys. Rev. E. 93, 032122.Google Scholar
Yi, Y. B., Berhan, L. & Sastry, A. M. (2004). Statistical geometry of random fibrous networks, revisited: Waviness, dimensionality and percolation. J. Appl. Phys. 96, 13181327.Google Scholar
Zagar, G., Onck, P. R. & van der Giessen, E. (2011). Elasticity of rigidly crosslinked networks of athermal filaments. Macromolecules 44, 70267033.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×