Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-01T14:20:51.002Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  11 June 2021

P. A. Martin
Affiliation:
Colorado School of Mines
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abboud, T., Joly, P., Rodríguez, J. & Terrasse, I., Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains. J. Comp. Phys. 230 (2011) 5877–5907. Cited: pp. 28 & 166.Google Scholar
Åberg, I., Kristensson, G. & Wall, D.J.N., Transient waves in nonstationary media. J. Math. Phys. 37 (1996) 2229–2252. Cited: p. 6.Google Scholar
Abramowitz, M. & Stegun, I.A. (ed.), Handbook of Mathematical Functions. New York: Dover, 1965. Cited: pp. 52, 54, 55, 114 & 117.Google Scholar
Abreu, A.I., Carrer, J.A.M. & Mansur, W.J., Scalar wave propagation in 2D: a BEM formulation based on the operational quadrature method. Eng. Anal. Bound. Elem. 27 (2003) 101–105. Cited: p. 171.Google Scholar
Achenbach, J.D., Wave Propagation in Elastic Solids. Amsterdam: North-Holland, 1973. Cited: pp. 26, 176 & 187.Google Scholar
Adelman, R., Gumerov, N.A. & Duraiswami, R., Semi-analytical computation of acoustic scattering by spheroids and disks. J. Acoust. Soc. Amer. 136 (2014) L405–EL410. Cited: p. 128.Google Scholar
Adelman, R., Gumerov, N.A. & Duraiswami, R., Software for computing the spheroidal wave functions using arbitrary precision arithmetic. arXiv:1408.0074, August 2014. Cited: p. 55.Google Scholar
Ahmad, S. & Banerjee, P.K., Time-domain transient elastodynamic analysis of 3-D solids by BEM. Int. J. Numer. Meth. Eng. 26 (1988) 1709–1728. Cited: p. 177.CrossRefGoogle Scholar
Aimi, A., Diligenti, M., Frangi, A. & Guardasoni, C., Neumann exterior wave propagation problems: computational aspects of 3D energetic Galerkin BEM. Comput. Mech. 51 (2013) 475–493. Cited: p. 167.Google Scholar
Aimi, A., Diligenti, M., Guardasoni, C., Mazzieri, I. & Panizzi, S., An energy approach to space-time Galerkin BEM for wave propagation problems. Int. J. Numer. Meth. Eng. 80 (2009) 1196–1240. Cited: p. 167.Google Scholar
Akkas, N., Residual potential method in spherical coordinates and related approximations. Mechanics Research Comm. 6 (1979) 257–262. Cited: pp. 120 & 121.CrossRefGoogle Scholar
Akkaş, N. & Engin, A.E., Transient response of a spherical shell in an acoustic medium—Comparison of exact and approximate solutions. J. Sound Vib. 73 (1980) 447–460. Cited: p. 121.Google Scholar
Akkas, N. & Zakout, U., Transient response of an infinite elastic medium containing a spherical cavity with and without a shell embedment. Int. J. Eng. Sci. 35 (1997) 89–112. Cited: p. 121.CrossRefGoogle Scholar
Akkas, N., Zakout, U. & Tupholme, G.E., Propagation of waves from a spherical cavity with and without a shell embedment. Acta Mechanica 142 (2000) 1–11. Cited: p. 121.Google Scholar
Alpert, B., Greengard, L. & Hagstrom, T., Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal. 37 (2000) 1138– 1164. Cited: p. 121.Google Scholar
Alpert, B., Greengard, L. & Hagstrom, T., Nonreflecting boundary conditions for the time-dependent wave equation. J. Comp. Phys. 180 (2002) 270–296. Cited: p. 121.Google Scholar
Aly, M.S. & Wong, T.T.Y., Scattering of a transient electromagnetic wave by a dielectric sphere. IEE Proc. H: Microwaves, Antennas & Propagation 138 (1991) 192–198. Cited: p. 120.Google Scholar
Anderson, B.E., Griffa, M., Larmat, C., Ulrich, T.J. & Johnson, P.A., Time reversal. Acoustics Today 4, 1 (2008) 5–16. Cited: p. 12.Google Scholar
Anderson, T.G., Bruno, O.P. & Lyon, M., High-order, dispersionless ‘fast-hybrid’ wave equation solver. Part I: O(1) sampling cost via incident-field windowing and recentering. SIAM J. Sci. Comput. 42 (2020) A1348–A1379. Cited: pp. 98, 99, 170, 184, 185 & 186.Google Scholar
Andriulli, F.P., Cools, K., Olyslager, F. & Michielssen, E., Time domain Calderón identities and their application to the integral equation analysis of scattering by PEC objects Part II: stability. IEEE Trans. Antennas & Propag. 57 (2009) 2365–2375. Cited: p. 176.Google Scholar
Ansell, J.H. & Tupholme, G.E., Use of Clemmow functions in the study of an acoustic pulse generated by a deformable sphere. J. Sound Vib. 25 (1972) 185–195. Cited: p. 119.Google Scholar
Anselmet, F. & Mattei, P.-O., Acoustics, , Aeroacoustics and Vibrations. Hoboken, NJ: Wiley, 2016. Cited: p. 87.Google Scholar
Antes, H., A boundary element procedure for transient wave propagations in two-dimensional isotropic elastic media. Finite Elements in Analysis & Design 1 (1985) 313–322. Cited: p. 177.Google Scholar
Antes, H. & Baaran, J., Noise radiation from moving surfaces. Eng. Anal. Bound. Elem. 25 (2001) 725–740. Cited: pp. 150 & 156.CrossRefGoogle Scholar
Antman, S.S., The equations for large vibrations of strings. American Mathematical Monthly 87 (1980) 359–370. Cited: p. 12.Google Scholar
Arnaoudov, I. & Venkov, G., Scattering of electromagnetic plane waves by a spheroid uniformly moving in free space. Math. Meth. Appl. Sci. 29 (2006) 1423–1433. Cited: p. 125.Google Scholar
Arscott, F.M., Periodic Differential Equations. New York: Macmillan, 1964. Cited: pp. 54 & 55.Google Scholar
Asakura, J., Sakurai, T., Tadano, H., Ikegami, T. & Kimura, K., A numerical method for nonlinear eigenvalue problems using contour integrals. JSIAM Letters 1 (2009) 52–55. Cited: p. 135.Google Scholar
Astley, R.J. & Bain, J.G., A three-dimensional boundary element scheme for acoustic radiation in low Mach number flows. J. Sound Vib. 109 (1986) 445–465. Cited: p. 125.Google Scholar
Atiyah, M., Dunajski, M. & Mason, L.J., Twistor theory at fifty: from contour integrals to twistor strings. Proc. Roy. Soc. A 473 (2017) 20170530. Cited: p. 46.Google Scholar
Auphan, M. & Matthys, J., Reflection of a plane impulsive acoustic pressure wave by a rigid sphere. J. Sound Vib. 66 (1979) 227–237. Cited: p. 40.Google Scholar
Azizoglu, S.A., Koc, S.S. & Buyukdura, O.M., Time domain scattering of scalar waves by two spheres in free-space. SIAM J. Appl. Math. 70 (2009) 694–709. Cited: p. 36.Google Scholar
Bachelot, A. & Pujols, A., Équations intégrales espace-temps pour le système de Maxwell. C. R. Acad. Sci. Paris Sér. I Math. 314 (1992) 639–644. Cited: p. 176.Google Scholar
Bağcı, H., Yılmaz, A.E., Jin, J.-M. & Michielssen, E., Time domain adaptive integral method for surface integral equations. In: Modeling and Computations in Electromagnetics: A Volume Dedicated to Jean-Claude Nédélec (ed. H. Ammari) pp. 65–104. Lecture Notes in Computational Science and Engineering 59. Berlin: Springer, 2008. Cited: pp. 167 & 176.Google Scholar
Bahar, L.Y., The Laplace transform of the derivative of a function with finite jumps. J. Franklin Institute 288 (1969) 275–289. Cited: p. 97.Google Scholar
Bai, W. & Diebold, G.J., Moving photoacoustic sources: acoustic waveforms in one, two, and three dimensions and application to trace gas detection. J. Appl. Phys. 125 (2019) 060902. Cited: p. 85.Google Scholar
Bai, X. & Pak, R.Y.S., On the stability of direct time-domain boundary element methods for elastodynamics. Eng. Anal. Bound. Elem. 96 (2018) 138–149. Cited: p. 177.CrossRefGoogle Scholar
Baker, B.B. & Copson, E.T., The Mathematical Theory of Huygens’ Principle, 3rd edition. New York: Chelsea, 1987. Cited: pp. 143, 146, 147, 150 & 156.Google Scholar
Bal, G., Fink, M. & Pinaud, O., Time-reversal by time-dependent perturbations. SIAM J. Appl. Math. 7 9 (2019) 754–780. Cited: p. 7.Google Scholar
Baldock, G.R. & Bridgeman, T., Mathematical Theory of Wave Motion. Chichester: Ellis Horwood Ltd., 1981. Cited: pp. 13 & 15.Google Scholar
Ballani, J., Banjai, L., Sauter, S. & Veit, A., Numerical solution of exterior Maxwell problems by Galerkin BEM and Runge–Kutta convolution quadrature. Numer. Math. 123 (2013) 643–670. Cited: p. 176.CrossRefGoogle Scholar
Bamberger, A. & Ha Duong, T., Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique (I). Math. Meth. Appl. Sci. 8 (1986) 405–435. Cited: pp. 89, 91, 92 & 167.Google Scholar
Bamberger, A. & Ha Duong, T., Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide. Math. Meth. Appl. Sci. 8 (1986) 598–608. Cited: pp. 89, 92 & 167.Google Scholar
Banjai, L., Multistep and multistage convolution quadrature for the wave equation: algorithms and experiments. SIAM J. Sci. Comput. 32 (2010) 2964–2994. Cited: p. 171.CrossRefGoogle Scholar
Banjai, L. & Kachanovska, M., Fast convolution quadrature for the wave equation in three dimensions. J. Comp. Phys. 279 (2014) 103–126. Cited: p. 171.Google Scholar
Banjai, L. & Schanz, M., Wave propagation problems treated with convolution quadrature and BEM. In: Fast Boundary Element Methods in Engineering and Industrial Applications (ed. U. Langer, M. Schanz, O. Steinbach & W.L. Wendland) pp. 145–184. Lecture Notes in Applied and Computational Mechanics 63. Berlin: Springer, 2012. Cited: p. 170.CrossRefGoogle Scholar
Banz, L., Gimperlein, H., Nezhi, Z. & Stephan, E.P., Time domain BEM for sound radiation of tires. Comput. Mech. 58 (2016) 45–57. Cited: p. 167.Google Scholar
Bao, G., Gao, Y. & Li, P., Time-domain analysis of an acoustic–elastic interaction problem. Arch. Rational Mech. Anal. 229 (2018) 835–884. Cited: p. 82.Google Scholar
Barakat, R.G., Transient diffraction of scalar waves by a fixed sphere. J. Acoust. Soc. Amer. 32 (1960) 61–66. Cited: p. 119.Google Scholar
Barbone, P.E. & Crighton, D.G., Vibrational modes of submerged elastic bodies. Applied Acoustics 43 (1994) 295–317. Cited: pp. 108 & 137.CrossRefGoogle Scholar
Bardos, C., Concordel, M. & Lebeau, G., Extension de la théorie de la diffusion pour un corps élastique immergé dans un fluide. Comportement asymptotique des résonances. Journal d’Acoustique 2 (1989) 31–38. Cited: p. 73.Google Scholar
Bardos, C. & Fink, M., Mathematical foundations of the time reversal mirror. Asymptotic Analysis 29 (2002) 157–182. Cited: p. 12.Google Scholar
Barnes, C. & Anderson, D.V., The sound field from a pulsating sphere and the development of a tail in pulse propagation. J. Acoust. Soc. Amer. 24 (1952) 229. Cited: p. 108.Google Scholar
Barnett, A., Greengard, L. & Hagstrom, T., High-order discretization of a stable time-domain integral equation for 3D acoustic scattering. J. Comp. Phys. 402 (2020) 109047. Cited: p. 166.Google Scholar
Barrowes, B.E., O’Neill, K., Grzegorczyk, T.M. & Kong, J.A., On the asymptotic expansion of the spheroidal wave function and its eigenvalues for complex size parameter. Stud. Appl. Math. 113 (2004) 271–301. Cited: pp. 53, 54 & 55.Google Scholar
Barton, G., Elements of Green’s Functions and Propagation: Potentials, Diffusion and Waves. Oxford: Clarendon Press, 1989. Cited: pp. 11, 13, 56, 57, 73 & 86.Google Scholar
Batchelor, G.K., An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press, 1967. Cited: pp. 1, 2 & 9.Google Scholar
Bateman, H., The solution of partial differential equations by means of definite integrals. Proc. London Math. Soc., Ser. 2, 1 (1904) 451–458. Cited: pp. 45 & 46.Google Scholar
Bateman, H., A generalisation of the Legendre polynomial. Proc. London Math. Soc., Ser. 2, 3 (1905) 111–123. Cited: p. 51.Google Scholar
Bateman, H., The conformal transformations of a space of four dimensions and their applications to geometrical optics. Proc. London Math. Soc., Ser. 2, 7 (1909) 70–89. Cited: p. 47.Google Scholar
Bateman, H., The determination of solutions of the equation of wave motion involving an arbitrary function of three variables which satisfies a partial differential equation. Trans. Camb. Phil. Soc. 21 (1910) 257–280. Cited: pp. 47 & 51.Google Scholar
Bateman, H., The Mathematical Analysis of Electrical and Optical Wave-Motion. Cambridge: Cambridge University Press, 1915. Reprint: New York: Dover, 1955. Cited: pp. 11, 44, 45, 47, 49, 50, 55, 56, 57, 63 & 150.Google Scholar
Bateman, H., The mean value of a function of spherical polar coordinates round a circle on a sphere. Terrestrial Magnetism & Atmospheric Electricity 20 (1915) 127–129. Cited: p. 79.Google Scholar
Bateman, H., Differential Equations. London: Longmans, Green & Co., 1918. New impression, 1926. Reprint: New York: Chelsea, 1966. Cited: pp. 44 & 47.Google Scholar
Bateman, H., A solution of the wave-equation. Annals of Math., Ser. 2, 31 (1930) 158– 162. Cited: p. 79.Google Scholar
Bateman, H., Physical problems with discontinuous initial conditions. Proc. Nat. Acad. Sci. 16 (1930) 205–211. Cited: p. 79.Google Scholar
Bateman, H., Partial Differential Equations of Mathematical Physics. Cambridge: Cambridge University Press, 1932. Cited: pp. 19, 44, 45, 46, 47, 50, 51, 55, 79, 146, 149 & 150.Google Scholar
Bateman, H., A partial differential equation associated with Poisson’s work on the theory of sound. Amer. J. Math. 60 (1938) 293–296. Cited: p. 36.Google Scholar
Baum, C.E., The singularity expansion method. In: Transient Electromagnetic Fields (ed. L.B. Felsen) pp. 129–179. Topics in Applied Physics 10. Berlin: Springer, 1976. Cited: pp. 137 & 138.Google Scholar
Baum, C.E., Emerging technology for transient and broad-band analysis and synthesis of antennas and scatterers. Proc. IEEE 64 (1976) 1598–1616. Cited: pp. 137, 141 & 142.Google Scholar
Baum, C.E., Toward an engineering theory of electromagnetic scattering: the singularity and eigenmode expansion methods. In: [847], pp. 571–651. Cited: pp. 138 & 141.Google Scholar
Baum, C.E., Discrimination of buried targets via the singularity expansion. Inverse Prob. 13 (1997) 557–570. Cited: p. 138.Google Scholar
Baum, C.E. & Carin, L., Singularity expansion method, symmetry and target identification. In: Scattering (ed. R. Pike & P. Sabatier) pp. 431–447. San Diego, CA: Academic Press, 2002. Cited: pp. 138 & 142.Google Scholar
Baum, C.E., Rothwell, E.J., Chen, Y.F. & Nyquist, D.P., The singularity expansion method and its application to target identification. Proc. IEEE 79 (1991) 1481–1492. Cited: p. 138.Google Scholar
Bayliss, A. & Turkel, E., Radiation boundary conditions for wave-like equations. Comm. Pure Appl. Math. 33 (1980) 707–725. Cited: p. 32.Google Scholar
Beale, J.T., Acoustic scattering from locally reacting surfaces. Indiana Univ. Math. J. 26 (1977) 199–222. Cited: p. 81.Google Scholar
Beale, J.T. & Rosencrans, S.I., Acoustic boundary conditions. Bull. Amer. Math. Soc. 80 (1974) 1276–1278. Cited: p. 81.Google Scholar
Beals, R., Laplace transform methods for evolution equations. In: [328], pp. 1–26. Cited: p. 97.Google Scholar
Beals, R. & Greiner, P.C., Strings, waves, drums: spectra and inverse problems. Analysis & Applications 7 (2009) 131–183. Cited: p. 1.Google Scholar
Becache, E., A variational boundary integral equation method for an elastodynamic antiplane crack. Int. J. Numer. Meth. Eng. 36 (1993) 969–984. Cited: p. 187.Google Scholar
Bécache, E. & Ha Duong, T., A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem. Mathematical Modelling & Numerical Analysis 28 (1994) 141–176. Cited: p. 192.Google Scholar
Bech, H. & Leder, A., Particle sizing by ultrashort laser pulses – numerical simulation. Optik 115 (2004) 205–217. Cited: p. 120.Google Scholar
Beck, R.F., Time-domain computations for floating bodies. Appl. Ocean Res. 16 (1994) 267–282. Cited: p. 179.Google Scholar
Beck, R.F. & Liapis, S., Transient motions of floating bodies at zero forward speed. J. Ship Res. 31 (1987) 164–176. Cited: pp. 179 & 180.Google Scholar
Bedford, A. & Drumheller, D.S., Introduction to Elastic Wave Propagation. Chichester: Wiley, 1994. Cited: p. 13.Google Scholar
Bedrosian, B. & DiMaggio, F.L., Transient response of submerged spheroidal shells. Int. J. Solids Struct. 8 (1972) 111–129. Cited: p. 130.Google Scholar
Beghein, Y., Cools, K., Bagcı, H. & De Zutter, D., A space-time mixed Galerkin marching-on-in-time scheme for the time-domain combined field integral equation. IEEE Trans. Antennas & Propag. 61 (2013) 1228–1238. Cited: p. 176.Google Scholar
Beltrami, E., Sul teorema di Kirchhoff. Rendiconti della Reale Accademia dei Lincei, Ser. 5, 4, 2 semestre (1895) 51–52. Cited: p. 150.Google Scholar
Ben Amar, C. & Hazard, C., Time reversal and scattering theory for time-dependent acoustic waves in a homogeneous medium. IMA J. Appl. Math. 76 (2011) 938–955. Cited: p. 11.Google Scholar
Bennett, C.L. & Mieras, H., Time domain integral equation solution for acoustic scattering from fluid targets. J. Acoust. Soc. Amer. 69 (1981) 1261–1265. Cited: pp. 166 & 176.Google Scholar
Bennett, C.L. & Mieras, H., Time domain scattering from open thin conducting surfaces. Radio Sci. 16 (1981) 1231–1239. Cited: p. 192.Google Scholar
Bennett, C.L. & Ross, G.F., Time-domain electromagnetics and its applications. Proc. IEEE 66 (1978) 299–318. Cited: p. 176.Google Scholar
Bennett, C.L. Jr & Weeks, W.L., Transient scattering from conducting cylinders. IEEE Trans. Antennas & Propag. AP- 18 (1970) 627–633. Cited: p. 176.Google Scholar
Benzoni-Gavage, S. & Serre, D., Multidimensional Hyperbolic Partial Differential Equations. Oxford: Oxford University Press, 2007. Cited: pp. 59, 80 & 88.Google Scholar
Berger, B.S., The dynamic response of a prolate spheroidal shell submerged in an acoustical medium. J. Appl. Mech. 41 (1974) 925–929. Cited: p. 130.Google Scholar
Berger, B.S. & Klein, D., Application of the Cesaro mean to the transient interaction of a spherical acoustic wave and a spherical elastic shell. J. Appl. Mech. 39 (1972) 623–625. Cited: p. 119.Google Scholar
Bergmann, P.G., The wave equation in a medium with a variable index of refraction. J. Acoust. Soc. Amer. 17 (1946) 329–333. Cited: p. 4.Google Scholar
Betcke, T., Phillips, J. & Spence, E.A., Spectral decompositions and nonnormality of boundary integral operators in acoustic scattering. IMA J. Numer. Anal. 34 (2014) 700– 731. Cited: p. 140.Google Scholar
Betcke, T., Salles, N. & Śmigaj, W., Overresolving in the Laplace domain for convolution quadrature methods. SIAM J. Sci. Comput. 39 (2017) A188–A213. Cited: pp. 172, 173 & 174.Google Scholar
Bingham, H.B., A note on the relative efficiency of methods for computing the transient free-surface Green function. Ocean Engng. 120 (2016) 15–20. Cited: p. 181.Google Scholar
Birgisson, B., Siebrits, E. & Peirce, A.P., Elastodynamic direct boundary element methods with enhanced numerical stability properties. Int. J. Numer. Meth. Eng. 46 (1999) 871–888. Cited: p. 177.Google Scholar
Birkhoff, G., Sound waves in fluids. Appl. Numer. Math. 3 (1987) 3–24. Cited: p. 61.Google Scholar
Blackstock, D.T., Transient solution for sound radiated into a viscous fluid. J. Acoust. Soc. Amer. 41 (1967) 1312–1319. Cited: p. 19.Google Scholar
Bland, D.R., Vibrating Strings. London: Routledge & Kegan Paul, 1960. Cited: pp. 12 & 15.Google Scholar
Bleistein, N., Mathematical Methods for Wave Phenomena. San Diego, CA: Academic Press, 1984. Cited: pp. 13, 20, 61 & 73.Google Scholar
Bleistein, N. & Cohen, J.K., Nonuniqueness in the inverse source problem in acoustics and electromagnetics. J. Math. Phys. 18 (1977) 194–201. Cited: p. 88.Google Scholar
Bleistein, N. & Handelsman, R.A., Asymptotic Expansions of Integrals, revised edition. New York: Dover, 1986. Cited: p. 15.Google Scholar
Blokhintsev, D.I., Acoustics of a nonhomogeneous moving medium. National Advisory Committee for Aeronautics, Technical Memorandum 1399, 1956. Translation from Russian, 1946. Cited: pp. 10 & 57.Google Scholar
Bluck, M.J. & Walker, S.P., Analysis of three-dimensional transient acoustic wave propagation using the boundary integral equation method. Int. J. Numer. Meth. Eng. 39 (1996) 1419–1431. Cited: pp. 166 & 167.Google Scholar
Bluck, M.J. & Walker, S.P., Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems. IEEE Trans. Antennas & Propag. 45 (1997) 894–901. Cited: p. 176.Google Scholar
Bojarski, N.N., The k-space formulation of the scattering problem in the time domain. J. Acoust. Soc. Amer. 72 (1982) 570–584. Cited: p. 86.Google Scholar
Boley, B.A., Discontinuities in integral-transform solutions. Quart. Appl. Math. 19 (1962) 273–284. Cited: p. 97.Google Scholar
Bollig, G. & Langenberg, K.J., The singularity expansion method as applied to the elastodynamic scattering problem. Wave Motion 5 (1983) 331–354. Cited: p. 130.CrossRefGoogle Scholar
Bóna, A. & Slawinski, M.A., Wavefronts and Rays as Characteristics and Asymptotics, 2nd edition. Singapore: World Scientific, 2015. Cited: p. 59.Google Scholar
Boozer, A.D., A toy model of electrodynamics in (1+1) dimensions. European J. Phys. 28 (2007) 447–464. Cited: p. 13.Google Scholar
Borcea, L., Imaging with waves in random media. Notices Amer. Math. Soc. 66 (2019) 1800–1812. Cited: p. 5.Google Scholar
Borcea, L., Garnier, J. & Solna, K., Wave propagation and imaging in moving random media. Multiscale Modeling & Simulation 17 (2019) 31–67. Cited: p. 6.Google Scholar
Borden, B., Radar Imaging of Airborne Targets. Bristol: Institute of Physics Publishing, 1999. Cited: p. 138.Google Scholar
Borisov, V.V., Manankova, A.V. & Utkin, A.B., Spherical harmonic representation of the electromagnetic field produced by a moving pulse of current density. J. Phys. A: Math. & General 29 (1996) 4493–4514. Cited: p. 39.Google Scholar
Boström, A., Time-dependent scattering by a bounded obstacle in three dimensions. J. Math. Phys. 23 (1982) 1444–1450. Cited: pp. 34 & 130.Google Scholar
Bowman, J.J., Senior, T.B.A. & Uslenghi, P.L.E. (ed.), Electromagnetic and Acoustic Scattering by Simple Shapes. Amsterdam: North-Holland, 1969. Revised printing: Levittown, PA: Hemisphere, 1987. Cited: p. 228.Google Scholar
Boyd, J.P., The optimization of convergence for Chebyshev polynomial methods in an unbounded domain. J. Comp. Phys. 45 (1982) 43–79. Cited: p. 42.Google Scholar
Boyd, J.P., Chebyshev and Fourier Spectral Methods, 2nd edition. New York: Dover, 2001. Cited: p. 42.Google Scholar
Boyd, J.P. & Flyer, N., Compatibility conditions for time-dependent partial differential equations and the rate of convergence of Chebyshev and Fourier spectral methods. Comput. Meth. Appl. Mech. Eng. 175 (1999) 281309. Cited: pp. 78 & 79.Google Scholar
Brekhovskikh, L.M., Waves in Layered Media. New York: Academic Press, 1960. Cited: pp. 30 & 81.Google Scholar
Brekhovskikh, L.M. & Godin, O.A., Acoustics of Layered Media I. Berlin: Springer, 1990. Cited: pp. 30 & 81.Google Scholar
Bremmer, H., The jumps of discontinuous solutions of the wave equation. Comm. Pure Appl. Math. 4 (1951) 419–426. Cited: p. 67.Google Scholar
Brentner, K.S. & Farassat, F., Modeling aerodynamically generated sound of helicopter rotors. Prog. Aerospace Sci. 39 (2003) 83–120. Cited: p. 156.Google Scholar
Brillouin, J., Rayonnement transitoire des sources sonores et problèmes connexes. Annales des Télécommunications 5 (1950) 160–172 & 179–194. Cited: p. 119.Google Scholar
Bromwich, T.J.I’A., Normal coordinates in dynamical systems. Proc. London Math. Soc., Ser. 2, 15 (1916) 401–448. Cited: p. 81.Google Scholar
Bromwich, T.J.I’A., Electromagnetic waves. Phil. Mag., Ser. 6, 38 (1919) 143–164. Cited: pp. 39 & 40.Google Scholar
Bromwich, T.J.I’A., The scattering of plane electric waves by spheres. Phil. Trans. Roy. Soc. A 220 (1920) 175–206. Cited: p. 39.Google Scholar
Brunner, H., Volterra Integral Equations: An Introduction to Theory and Applications. Cambridge: Cambridge University Press, 2017. Cited: p. 122.Google Scholar
Bruno, O.P. & Delourme, B., Rapidly convergent two-dimensional quasi-periodic Green function throughout the spectrum—including Wood anomalies. J. Comp. Phys. 262 (2014) 262–290. Cited: p. 186.Google Scholar
Bruno, O.P., Geuzaine, C.A., Monro, J.A. Jr & Reitich, F., Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case. Phil. Trans. Roy. Soc. A 362 (2004) 629–645. Cited: p. 186.Google Scholar
Bruno, O.P. & Kunyansky, L.A., Surface scattering in three dimensions: an accelerated high-order solver. Proc. Roy. Soc. A 457 (2001) 2921–2934. Cited: p. 186.Google Scholar
Buchal, R.N., The approach to steady state of solutions of exterior boundary value problems for the wave equation. J. Math. & Mech. 12 (1963) 225–234. Cited: p. 87.Google Scholar
Buchwald, J.Z. & Yeang, C.-P., Kirchhoff’s theory for optical diffraction, its predecessor and subsequent development: the resilience of an inconsistent theory. Archive for History of Exact Sciences 70 (2016) 463–511. Cited: p. 150.Google Scholar
Burridge, R. & Alterman, Z., The elastic radiation from an expanding spherical cavity. Geophysical J. Royal Astronomical Society 30 (1972) 451–477. Cited: p. 40.Google Scholar
Buyukdura, O.M. & Koc, S.S., Two alternative expressions for the spherical wave expansion of the time domain scalar free-space Green’s function and an application: scattering by a soft sphere. J. Acoust. Soc. Amer. 101 (1997) 87–91. Cited: pp. 36 & 39.Google Scholar
Cagniard, L., Diffraction d’une onde progressive par un écran en forme de demi-plan. Journal de Physique et Le Radium 6 (1935) 310–318. Cited: p. 187.Google Scholar
Cagniard, L., Reflection and Refraction of Progressive Seismic Waves. New York: McGraw-Hill, 1962. Translated and revised edition of book originally published in French in 1939. Cited: p. 187.Google Scholar
Cakoni, F., Haddar, H. & Lechleiter, A., On the factorization method for a far field inverse scattering problem in the time domain. SIAM J. Math. Anal. 51 (2019) 854–872. Cited: p. 33.Google Scholar
Cakoni, F. & Rezac, J.D., Direct imaging of small scatterers using reduced time dependent data. J. Comp. Phys. 338 (2017) 371–387. Cited: pp. 33 & 91.Google Scholar
Campbell, W.B., Macek, J. & Morgan, T.A., Relativistic time-dependent multipole analysis for scalar, electromagnetic, and gravitational fields. Phys. Rev. D 15 (1977) 2156– 2164. Cited: pp. 39 & 40.Google Scholar
Campos, L.M.B.C., On 36 forms of the acoustic wave equation in potential flows and inhomogeneous media. Appl. Mech. Rev. 60 (2007) 149–171. Cited: pp. 6 & 7.Google Scholar
Carley, M., Fast evaluation of transient acoustic fields. J. Acoust. Soc. Amer. 139 (2016) 630–635. Cited: p. 40.Google Scholar
Carslaw, H.S. & Jaeger, J.C., Operational Methods in Applied Mathematics, 2nd edition. London: Oxford University Press, 1948. Cited: pp. 18 & 116.Google Scholar
Caviglia, G. & Morro, A., A closed-form solution for reflection and transmission of transient waves in multilayers. J. Acoust. Soc. Amer. 116 (2004) 643–654. Cited: p. 18.Google Scholar
Censor, D., Scattering by time varying obstacles. J. Sound Vib. 25 (1972) 101110. See [719]. Cited: pp. 127 & 227.Google Scholar
Censor, D., Harmonic and transient scattering from time varying obstacles. J. Acoust. Soc. Amer. 76 (1984) 1527–1534. Cited: p. 128.Google Scholar
Cermelli, P., Fried, E. & Gurtin, M.E., Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces. J. Fluid Mech. 544 (2005) 339–351. Cited: p. 156.Google Scholar
Cessenat, M., Mathematical Methods in Electromagnetism. Singapore: World Scientific, 1996. Cited: p. 73.Google Scholar
Chadwick, P., Continuum Mechanics. London: George Allen & Unwin, 1976. Cited: p. 69.Google Scholar
Chadwick, P. & Powdrill, B., Application of the Laplace transform methods to wave motions involving strong discontinuities. Proc. Camb. Phil. Soc. 60 (1964) 313–324. Cited: p. 95.Google Scholar
Chadwick, P. & Powdrill, B., Singular surfaces in linear thermoelasticity. Int. J. Eng. Sci. 3 (1965) 561–595. Cited: p. 64.Google Scholar
Chambolle, A. & Santosa, F., Control of the wave equation by time-dependent coefficient. ESAIM: Control, Optimisation & Calculus of Variations 8 (2002) 375–392. Cited: p. 6.Google Scholar
Chan, J.F.-C. & Monk, P., Time dependent electromagnetic scattering by a penetrable obstacle. BIT Numer. Math. 55 (2015) 5–31. Cited: p. 176.Google Scholar
Chapko, R. & Kress, R., On the numerical solution of initial boundary value problems by the Laguerre transformation and boundary integral equations. In: Integral and Integro-differential Equations (ed. R.P. Agarwal & D. O’Regan) pp. 55–69. Amsterdam: Gordon & Breach, 2000. Cited: p. 101.Google Scholar
Chapman, C.J., The spiral Green function in acoustics and electromagnetism. Proc. Roy. Soc. A 431 (1990) 157–167. Cited: p. 57.Google Scholar
Chapman, C.J., High Speed Flow. Cambridge: Cambridge University Press, 2000. Cited: pp. 10 & 59.Google Scholar
Chappell, D.J., A convolution quadrature Galerkin boundary element method for the exterior Neumann problem of the wave equation. Math. Meth. Appl. Sci. 32 (2009) 1585–1608. Cited: pp. 92 & 171.Google Scholar
Chappell, D.J. & Harris, P.J., On the choice of coupling parameter in the time domain Burton–Miller formulation. Quart. J. Mech. Appl. Math. 62 (2009) 431–450. Cited: p. 166.Google Scholar
Chappell, D.J., Harris, P.J., Henwood, D. & Chakrabarti, R., A stable boundary element method for modeling transient acoustic radiation. J. Acoust. Soc. Amer. 120 (2006) 74– 80. Cited: pp. 151 & 166.Google Scholar
Chazarain, J. & Piriou, A., Introduction to the Theory of Linear Partial Differential Equations. Amsterdam: North-Holland, 1982. Cited: pp. 71, 73, 88 & 89.Google Scholar
Chen, E.P. & Sih, G.C., Transient response of cracks to impact loads. In: Elastodynamic Crack Problems (ed. G.C. Sih) pp. 1–58. Leyden: Noordhoff, 1977. Cited: p. 192.Google Scholar
Chen, Q., Haddar, H., Lechleiter, A. & Monk, P., A sampling method for inverse scattering in the time domain. Inverse Prob. 26 (2010) 085001. Cited: pp. 33, 91 & 92.Google Scholar
Chen, Q. & Monk, P., Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature. SIAM J. Math. Anal. 46 (2014) 3107–3130. Cited: p. 171.Google Scholar
Chen, Q. & Monk, P., Time domain CFIEs for electromagnetic scattering problems. Appl. Numer. Math. 79 (2014) 62–78. Cited: p. 176.Google Scholar
Chen, Q., Monk, P., Wang, X. & Weile, D., Analysis of convolution quadrature applied to the time-domain electric field integral equation. Communications in Computational Physics 11 (2012) 383–399. Cited: p. 176.Google Scholar
Chen, R., Sayed, S.B., Alharthi, N., Keyes, D. & Bagci, H., An explicit marching-on-in-time scheme for solving the time domain Kirchhoff integral equation. J. Acoust. Soc. Amer. 146 (2019) 2068–2079. Cited: p. 171.Google Scholar
Chen, V.C., The Micro-Doppler Effect in Radar. Norwood, MA: Artech House, 2011. Cited: p. 125.Google Scholar
Cheney, M. & Borden, B., Fundamentals of Radar Imaging. Philadelphia: SIAM, 2009. Cited: p. 13.Google Scholar
Chertock, G., Sound radiation from prolate spheroids. J. Acoust. Soc. Amer. 33 (1961) 871–876. See [778]. Cited: pp. 55 & 230.Google Scholar
Chew, W.C., Vector potential electromagnetics with generalized gauge for inhomogeneous media: formulation. Progress in Electromagnetics Research 149 (2014) 69–84. Cited: p. 25.Google Scholar
Chew, W.C. & Weedon, W.H., A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microwave & Optical Technology Lett. 7 (1994) 599–604. Cited: p. 42.Google Scholar
Cho, H.A., Golberg, M.A., Muleshkov, A.S. & Li, X., Trefftz methods for time dependent partial differential equations. CMC: Computers, Materials & Continua 1 (2004) 1–37. Cited: p. 101.Google Scholar
Cho, S.K., Electromagnetic Scattering. New York: Springer, 1990. Cited: p. 133.Google Scholar
Chow, P.-L., Stochastic Partial Differential Equations, 2nd edition. Boca Raton, FL: CRC Press, 2015. Cited: p. 85.Google Scholar
Christoffel, E.B., Untersuchungen über die mit dem Fortbestehen linearer partieller Dif-ferentialgleichungen verträglichen Unstetigkeiten. Annali di Matematica Pura ed Applicata, Ser. 2, 8 (1877) 81–112. Cited: p. 69.Google Scholar
Chudinovich, I., Boundary equations in dynamic problems of the theory of elasticity. Acta Applicandae Mathematica 65 (2001) 169–183. Cited: p. 178.Google Scholar
Chudinovich, I.Yu., The solvability of boundary equations in mixed problems for nonstationary Maxwell’s system. Math. Meth. Appl. Sci. 20 (1997) 425–448. Cited: p. 176.Google Scholar
Chung, Y.-S., Sarkar, T.K., Jung, B.H., Salazar-Palma, M., Ji, Z., Jang, S. & Kim, K., Solution of time domain electric field integral equation using the Laguerre polynomials. IEEE Trans. Antennas & Propag. 52 (2004) 2319–2328. Cited: p. 176.Google Scholar
Cianferra, M., Ianniello, S. & Armenio, V., Assessment of methodologies for the solution of the Ffowcs Williams and Hawkings equation using LES of incompressible single-phase flow around a finite-size square cylinder. J. Sound Vib. 453 (2019) 1–24. Cited: p. 87.Google Scholar
Clément, A.H., An ordinary differential equation for the Green function of time-domain free-surface hydrodynamics. J. Engng. Math. 33 (1998) 201–217. Cited: p. 181.Google Scholar
Cohen, D.S. & Handelman, G.H., Scattering of a plane acoustical wave by a spherical obstacle. J. Acoust. Soc. Amer. 38 (1965) 827–834. Cited: p. 119.Google Scholar
Cole, D.M., Kosloff, D.D. & Minster, J.B., A numerical boundary integral equation method for elastodynamics. I. Bull. Seismological Soc. Amer. 68 (1978) 1331–1357. Cited: p. 166.Google Scholar
Collino, F. & Monk, P., The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19 (1998) 2061–2090. Cited: p. 42.Google Scholar
Colton, D. & Kress, R., Integral Equation Methods in Scattering Theory. New York: Wiley, 1983. Cited: pp. 98, 133, 173 & 175.Google Scholar
Colton, D. & Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edition. New York: Springer, 2013. Cited: pp. 45, 85 & 100.Google Scholar
Conway, A.W., The field of force due to a moving electron. Proc. London Math. Soc., Ser. 2, 1 (1903) 154–165. Cited: p. 55.Google Scholar
Conway, A.W., On an expansion of the point-potential. Proc. Roy. Soc. A 94 (1918) 436–452. Cited: p. 55.Google Scholar
Conway, J.B., A Course in Functional Analysis, 2nd edition. New York: Springer, 1990. Cited: pp. 139 & 140.Google Scholar
Cooper, J., Scattering of plane waves by a moving obstacle. Arch. Rational Mech. Anal. 71 (1979) 113–141. Cited: p. 125.Google Scholar
Cooper, J., Scattering by moving bodies: the quasi stationary approximation. Math. Meth. Appl. Sci. 2 (1980) 131–148. Cited: p. 125.Google Scholar
Copson, E.T., On the Riemann–Green function. Arch. Rational Mech. Anal. 1 (1958) 324–348. Cited: p. 39.Google Scholar
Copson, E.T., Partial Differential Equations. Cambridge: Cambridge University Press, 1975. Cited: pp. 19, 34 & 73.Google Scholar
Costabel, M., Time-dependent problems with the boundary integral equation method. In: Encyclopedia of Computational Mechanics (ed. E. Stein, R. de Borst & T.J.R. Hughes), vol. 1, pp. 703–721. New York: Wiley, 2004. See [199]. Cited: pp. 89, 151, 156, 159 & 202.Google Scholar
Costabel, M. & Sayas, F.-J., Time-dependent problems with the boundary integral equation method. In: Encyclopedia of Computational Mechanics, 2nd edition (ed. E. Stein, R. de Borst & T.J.R. Hughes), vol. 2, 24 pp. New York: Wiley, 2017. Updated version of [198]. Cited: pp. 156, 159 & 202.Google Scholar
Coulson, C.A., Waves, 5th edition. Edinburgh: Oliver & Boyd, 1949. Cited: p. 146.Google Scholar
Courant, R., Hyperbolic partial differential equations and applications. In: Modern Mathematics for the Engineer (ed. E.F. Beckenbach), pp. 92–109. New York: McGraw-Hill, 1956. Cited: p. 32.Google Scholar
Courant, R. & Hilbert, D., Methoden der Mathematischen Physik, vol. 2. Berlin: Springer, 1937. Cited: p. 65.Google Scholar
Courant, R. & Hilbert, D., Methods of Mathematical Physics, vol. 2. New York: Interscience, 1962. Cited: pp. 19, 20, 49, 58, 61, 68, 71 & 73.Google Scholar
Craig, W., A Course on Partial Differential Equations. Providence, RI: American Mathematical Society, 2018. Cited: pp. 16, 17 & 20.Google Scholar
Crighton, D.G., Basic principles of aerodynamic noise generation. Prog. Aerospace Sci. 16 (1975) 31–96. Cited: pp. 85 & 87.Google Scholar
Crighton, D.G., Scattering and diffraction of sound by moving bodies. J. Fluid Mech. 72 (1975) 209–227. Cited: p. 127.Google Scholar
Crighton, D.G., Dowling, A.P., Ffowcs Williams, J.E., Heckl, M. & Leppington, F.G., Modern Methods in Analytical Acoustics. London: Springer, 1992. Cited: pp. 1 & 205.Google Scholar
Crow, S.C., Aerodynamic sound emission as a singular perturbation problem. Stud. Appl. Math. 49 (1970) 21–44. Cited: p. 87.Google Scholar
Cruse, T.A., A direct formulation and numerical solution of the general transient elastodynamic problem. II. J. Math. Anal. Appl. 22 (1968) 341–355. Cited: p. 178.Google Scholar
Cruse, T.A. & Rizzo, F.J., A direct formulation and numerical solution of the general transient elastodynamic problem. I. J. Math. Anal. Appl. 22 (1968) 244–259. Cited: p. 178.Google Scholar
Cummins, W.E., The impulse response function and ship motions. Schiffstechnik 9 (1962) 101–109. Cited: p. 180.Google Scholar
Curle, N., The influence of solid boundaries upon aerodynamic sound. Proc. Roy. Soc. A 231 (1955) 505–514. Cited: pp. 87 & 150.Google Scholar
Dalang, R.C. & Quer-Sardanyons, L., Stochastic integrals for spde’s: a comparison. Expositiones Mathematicae 29 (2011) 67–109. Cited: p. 85.Google Scholar
D’Archangelo, J.M., Savage, P., Überall, H., Yoo, K.B., Brown, S.H. & Dickey, J.W., Complex eigenfrequencies of rigid and soft spheroids. J. Acoust. Soc. Amer. 77 (1985) 6–10. Cited: p. 130.Google Scholar
Davidon, W.C., Time-dependent multipole analysis. J. Phys. A: Math., Nuclear & General 6 (1973) 1635–1646. Cited: p. 40.Google Scholar
Davies, B., Integral Transforms and Their Applications, 2nd edition. New York: Springer, 1985. Cited: pp. 17, 21 & 116.Google Scholar
Davies, E.B., Non-self-adjoint differential operators. Bull. London Math. Soc. 34 (2002) 513–532. Cited: p. 139.Google Scholar
Davies, P.J., Numerical stability and convergence of approximations of retarded potential integral equations. SIAM J. Numer. Anal. 31 (1994) 856–875. Cited: p. 166.Google Scholar
Davies, P.J., On the stability of time-marching schemes for the general surface electric-field integral equation. IEEE Trans. Antennas & Propag. 44 (1996) 1467–1473. Cited: p. 176.Google Scholar
Davies, P.J. & Duncan, D.B., Averaging techniques for time-marching schemes for retarded potential integral equations. Appl. Numer. Math. 23 (1997) 291310. Cited: pp. 164 & 166.Google Scholar
Davies, P.J. & Duncan, D.B., Stability and convergence of collocation schemes for retarded potential integral equations. SIAM J. Numer. Anal. 42 (2004) 1167–1188. Cited: p. 166.Google Scholar
Davies, P.J. & Duncan, D.B., Convolution-in-time approximations of time domain boundary integral equations. SIAM J. Sci. Comput. 35 (2013) B43–B61. Cited: p. 167.Google Scholar
Davies, P.J. & Duncan, D.B., Convolution spline approximations for time domain boundary integral equations. J. Integ. Eqns Appl. 26 (2014) 369–410. Cited: pp. 167 & 168.Google Scholar
Debnath, L. & Bhatta, D., Integral Transforms and Their Applications, 3rd edition. Boca Raton, FL: CRC Press, 2015. Cited: p. 101.Google Scholar
de Hoop, A.T., A modification of Cagniard’s method for solving seismic pulse problems. Applied Scientific Research, Section B 8 (1960) 349–356. Cited: p. 187.Google Scholar
de Hoop, A.T., A time-domain energy theorem for scattering of plane acoustic waves in fluids. J. Acoust. Soc. Amer. 77 (1985) 11–14. Cited: p. 148.Google Scholar
de Hoop, A.T., Handbook of Radiation and Scattering of Waves. London: Academic Press, 1995. Cited: pp. 1 & 148.Google Scholar
de Hoop, A.T., Fields and waves excited by impulsive point sources in motion—the general 3D time-domain Doppler effect. Wave Motion 43 (2005) 116–122. Cited: p. 57.Google Scholar
Devaney, A.J., Mathematical Foundations of Imaging, Tomography and Wavefield Inversion. Cambridge: Cambridge University Press, 2012. Cited: pp. 85, 86 & 88.Google Scholar
Devaney, A.J. & Sherman, G.C., Plane-wave representations for scalar wave fields. SIAM Rev. 15 (1973) 765–786. Cited: pp. 45, 85 & 86.Google Scholar
Di Nezza, E., Palatucci, G. & Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces. Bulletin des Sciences Mathématiques 136 (2012) 521–573. Cited: p. 89.Google Scholar
Ding, Y., Forestier, A. & Ha Duong, T., A Galerkin scheme for the time domain integral equation of acoustic scattering from a hard surface. J. Acoust. Soc. Amer. 86 (1989) 1566–1572. Cited: p. 167.Google Scholar
Dirac, P.A.M., Classical theory of radiating electrons. Proc. Roy. Soc. A 167 (1938) 148–169. Cited: p. 57.Google Scholar
Doak, P.E., Fundamentals of aerodynamic sound theory and flow duct acoustics. J. Sound Vib. 28 (1973) 527–561. Cited: pp. 85 & 87.Google Scholar
Dodson, S.J., Walker, S.P. & Bluck, M.J., Costs and cost scaling in time-domain integral-equation analysis of electromagnetic scattering. IEEE Antennas & Propagation Magazine 40, No. 4 (1998) 12–21. Cited: p. 167.Google Scholar
Dodson, S.J., Walker, S.P. & Bluck, M.J., Implicitness and stability of time domain integral equation scattering analyses. Appl. Computational Electromagnetics Soc. J. 13 (1998) 291–301. Cited: p. 166.Google Scholar
Dohner, J.L., Shoureshi, R. & Bernhard, R.J., Transient analysis of three-dimensional wave propagation using the boundary element method. Int. J. Numer. Meth. Eng. 24 (1987) 621–634. Cited: p. 166.Google Scholar
Dolph, C.L., On some mathematical aspects of SEM, EEM and scattering. Electromagnetics 1 (1981) 375–383. The bibliography for this paper is contained in [621]. Cited: p. 140.Google Scholar
Dolph, C.L. & Cho, S.K., On the relationship between the singularity expansion method and the mathematical theory of scattering. IEEE Trans. Antennas & Propag. AP- 28 (1980) 888–897. Cited: pp. 135, 138 & 142.Google Scholar
Dolph, C.L., Komkov, V. & Scott, R.A., A critique of the singularity expansion and eigenmode expansion methods. In: Acoustic, Electromagnetic and Elastic Wave Scattering— Focus on the T-matrix Approach (ed. V.K. Varadan & V.V. Varadan) pp. 453–461. New York: Pergamon, 1980. Cited: p. 138.Google Scholar
Dolph, C.L. & Scott, R.A., Recent developments in the use of complex singularities in electromagnetic theory and elastic wave propagation. In: [847], pp. 503–570. Cited: pp. 133 & 135.Google Scholar
Dominek, A.K., Transient scattering analysis for a circular disk. IEEE Trans. Antennas & Propag. 39 (1991) 815–819. Cited: p. 192.Google Scholar
Dowling, A., Convective amplification of real simple sources. J. Fluid Mech. 74 (1976) 529–546. Cited: p. 127.Google Scholar
Dowling, A.P., Effects of motion on acoustic sources. In: [207], pp. 406–427. Cited: p. 127.Google Scholar
Dowling, A.P. & Ffowcs Williams, J.E., Sound and Sources of Sound. Chichester: Ellis Horwood, 1983. Cited: pp. 57, 85, 87 & 127.Google Scholar
Dudley, D.G. & Quintenz, J.P., Transient electromagnetic penetration of a spherical shell. J. Appl. Phys. 46 (1975) 173–177. Cited: p. 120.Google Scholar
Duff, G.F.D., Hyperbolic differential equations and waves. In: [328], pp. 27–155. Cited: pp. 13, 71 & 73.Google Scholar
Duff, G.F.D. & Naylor, D., Differential Equations of Applied Mathematics. New York: Wiley, 1966. Cited: pp. 13, 61 & 86.Google Scholar
Duhem, P., Hydrodynamique, Élasticité, Acoustique. Paris: Librairie Scientifique Hermann, 1891. Cited: p. 108.Google Scholar
Dyatlov, S. & Zworski, M., Mathematical Theory of Scattering Resonances. Providence, RI: American Mathematical Society, 2019. Cited: p. 133.Google Scholar
Dyka, C.T., Ingel, R.P. & Kirby, G.C., Stabilizing the retarded potential method for transient fluid–structure interaction problems. Int. J. Numer. Meth. Eng. 40 (1997) 37673783. Cited: p. 166.Google Scholar
Eastwood, M., Introduction to Penrose transform. In: The Penrose Transform and Analytic Cohomology in Representation Theory (ed. M. Eastwood, J. Wolf & R. Zierau) pp. 71–75. Providence, RI: American Mathematical Society, 1993. Cited: p. 46.Google Scholar
Edmunds, D.E., Fraenkel, L.E. & Pemberton, M., Frederick Gerard Friedlander. 25 December 1917–20 May 2001. Biographical Memoirs of Fellows of the Royal Society 63 (2017) 273–307. Cited: p. 77.Google Scholar
Eide, H.A., Stamnes, J.J., Stamnes, K. & Schulz, F.M., New method for computing expansion coefficients for spheroidal functions. J. Quant. Spectrosc. Radiat. Transfer 63 (1999) 191–203. Cited: p. 53.Google Scholar
Eidus, D.M., The principle of limit amplitude. Russian Math. Surveys 24 (1969) 97–167. Cited: p. 87.Google Scholar
Eller, M., Loss of derivatives for hyperbolic boundary problems with constant coefficients. Discrete & Continuous Dynamical Systems, Ser. B 23 (2018) 1347–1361. Cited: p. 88.Google Scholar
Enflo, B.O. & Hedberg, C.M., Theory of Nonlinear Acoustics in Fluids. Dordrecht: Kluwer, 2002. Cited: p. 10.Google Scholar
Engin, A.E. & Liu, Y.K., Axisymmetric response of a fluid-filled spherical shell in free vibrations. J. Biomechanics 3 (1970) 11–22. Cited: p. 83.Google Scholar
Epstein, C.L., Greengard, L. & Hagstrom, T., On the stability of time-domain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems, Ser. A 36 (2016) 4367–4382. Cited: p. 166.Google Scholar
Epstein, M., Theories of growth. In: Constitutive Modelling of Solid Continua (ed. J. Merodio & R. Ogden) pp. 257–284. Cham: Springer, 2020. Cited: p. 7.Google Scholar
Erdélyi, A., On certain discontinuous wave functions. Proc. Edinburgh Math. Soc., Ser. 3, 8 (1947) 39–42. Cited: p. 80.Google Scholar
Erdélyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F.G., Higher Transcendental Functions, vol. 3. New York: McGraw-Hill, 1955. Cited: pp. 53, 54, 55 & 169.Google Scholar
Ergin, A.A., Shanker, B. & Michielssen, E., Fast evaluation of three-dimensional transient wave fields using diagonal translation operators. J. Comp. Phys. 146 (1998) 157–180. Cited: p. 167.Google Scholar
Ergin, A.A., Shanker, B. & Michielssen, E., Analysis of transient wave scattering from rigid bodies using a Burton–Miller approach. J. Acoust. Soc. Amer. 106 (1999) 2396– 2404. Cited: pp. 163 & 166.Google Scholar
Ergin, A.A., Shanker, B. & Michielssen, E., Fast transient analysis of acoustic wave scattering from rigid bodies using a two-level plane wave time domain algorithm. J. Acoust. Soc. Amer. 106 (1999) 2405–2416. Cited: p. 167.Google Scholar
Ergin, A.A., Shanker, B. & Michielssen, E., The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena. IEEE Antennas & Propagation Magazine 41, No. 4 (1999) 39–52. Cited: p. 167.Google Scholar
Ergin, A.A., Shanker, B. & Michielssen, E., Fast analysis of transient acoustic wave scattering from rigid bodies using the multilevel plane wave time domain algorithm. J. Acoust. Soc. Amer. 107 (2000) 1168–1178. Cited: p. 167.Google Scholar
Eringen, A.C., Elasto-dynamic problem concerning the spherical cavity. Quart. J. Mech. Appl. Math. 10 (1957) 257–270. Cited: p. 120.Google Scholar
Eringen, A.C. & Şuhubi, E.S., Elastodynamics, vol. 2: Linear Theory. New York: Academic Press, 1975. Cited: pp. 120 & 176.Google Scholar
Eshelby, J.D., The elastic field of a crack extending non-uniformly under general antiplane loading. J. Mechanics & Physics of Solids 17 (1969) 177–199. Cited: p. 50.Google Scholar
Eskin, G., Lectures on Linear Partial Differential Equations. Providence, RI: American Mathematical Society, 2011. Cited: pp. 85, 86, 87, 89 & 90.Google Scholar
Estrada, R. & Kanwal, R.P., Applications of distributional derivatives to wave propagation. J. IMA 26 (1980) 39–63. Cited: p. 58.Google Scholar
Estrada, R. & Kanwal, R.P., Non-classical derivation of the transport theorems for wave fronts. J. Math. Anal. Appl. 159 (1991) 290–297. Cited: p. 58.Google Scholar
Euler, L., Eclaircissemens sur le mouvement des cordes vibrantes, 1766. This is paper E317 in the Euler Archive, eulerarchive.maa.org. Cited: p. 13.Google Scholar
Evans, L.C., Partial Differential Equations, 2nd edition. Providence, RI: American Mathematical Society, 2010. Cited: pp. 13, 17, 19, 20, 34, 59, 61, 65, 73 & 89.Google Scholar
Fahnline, J.B., Solving transient acoustic boundary value problems with equivalent sources using a lumped parameter approach. J. Acoust. Soc. Amer. 140 (2016) 4115– 4129. Cited: p. 166.Google Scholar
Fairweather, G., Karageorghis, A. & Martin, P.A., The method of fundamental solutions for scattering and radiation problems. Eng. Anal. Bound. Elem. 27 (2003) 759–769. Cited: p. 181.Google Scholar
Falletta, S., Monegato, G. & Scuderi, L., A space-time BIE method for nonhomogeneous exterior wave equation problems. The Dirichlet case. IMA J. Numer. Anal. 32 (2012) 202–226. Cited: pp. 92 & 171.Google Scholar
Falletta, S., Monegato, G. & Scuderi, L., A space-time BIE method for wave equation problems: the (two-dimensional) Neumann case. IMA J. Numer. Anal. 34 (2014) 390– 434. Cited: p. 93.Google Scholar
Falletta, S., Monegato, G. & Scuderi, L., On the discretization and application of two space-time boundary integral equations for 3D wave propagation problems in unbounded domains. Appl. Numer. Math. 124 (2018) 22–43. Cited: p. 171.Google Scholar
Falletta, S., Monegato, G. & Scuderi, L., Two boundary integral equation methods for linear elastodynamics problems on unbounded domains. Computers & Math. with Applications 78 (2019) 3841–3861. Cited: p. 178.Google Scholar
Falnes, J., On non-causal impulse response functions related to propagating water waves. Appl. Ocean Res. 17 (1995) 379–389. Cited: p. 180.Google Scholar
Farassat, F., Discontinuities in aerodynamics and aeroacoustics: the concept and applications of generalized derivatives. J. Sound Vib. 55 (1977) 165–193. Cited: p. 58.Google Scholar
Farassat, F., Acoustic radiation from rotating blades—the Kirchhoff method in aeroacoustics. J. Sound Vib. 239 (2001) 785–800. Cited: p. 156.Google Scholar
Farassat, F. & Dunn, M.H., A simple derivation of the acoustic boundary condition in the presence of flow. J. Sound Vib. 224 (1999) 384–386. Cited: p. 126.Google Scholar
Farassat, F. & Myers, M.K., Extension of Kirchhoff’s formula to radiation from moving surfaces. J. Sound Vib. 123 (1988) 451–460. Comments by D.L. Hawkings: 132 (1989) 160. Authors’ reply: 132 (1989) 511. Cited: pp. 154 & 156.Google Scholar
Farina, L., Martin, P.A. & Péron, V., Hypersingular integral equations over a disc: convergence of a spectral method and connection with Tranter’s method. J. Comp. Appl. Math. 269 (2014) 118–131. Cited: pp. 190 & 192.Google Scholar
Farn, C.L.S. & Huang, H., Transient acoustic fields generated by a body of arbitrary shape. J. Acoust. Soc. Amer. 43 (1968) 252–257. Cited: p. 166.Google Scholar
Fatone, L., Pacelli, G., Recchioni, M.C. & Zirilli, F., Optimal-control methods for two new classes of smart obstacles in time-dependent acoustic scattering. J. Engng. Math. 56 (2006) 385–413. Cited: p. 80.Google Scholar
Fedorchenko, A.T., On some fundamental flaws in present aeroacoustic theory. J. Sound Vib. 232 (2000) 719–782. Cited: p. 87.Google Scholar
Felsen, L.B., Progressing and oscillatory waves for hybrid synthesis of source excited propagation and diffraction. IEEE Trans. Antennas & Propag. AP- 32 (1984) 775–796. Cited: p. 138.Google Scholar
Felsen, L.B. & Whitman, G.M., Wave propagation in time-varying media. IEEE Trans. Antennas & Propag. AP- 18 (1970) 242–253. Cited: pp. 6 & 12.Google Scholar
Feynman, R.P., Leighton, R.B. & Sands, M., The Feynman Lectures on Physics, vol. 2, Reading, MA: Addison-Wesley, 1964. Cited: p. 57.Google Scholar
Ffowcs Williams, J.E., Aeroacoustics. J. Sound Vib. 190 (1996) 387–398. Cited: p. 87.Google Scholar
Ffowcs Williams, J.E. & Hawkings, D.L., Sound generation by turbulence and surfaces in arbitrary motion. Phil. Trans. Roy. Soc. A 264 (1969) 321342. Cited: pp. 153, 154, 155 & 156.Google Scholar
Field, S.E. & Lau, S.R., Fast evaluation of far-field signals for time-domain wave propagation. J. Scientific Computing 64 (2015) 647–669. Cited: p. 117.Google Scholar
Fink, M., Time reversed acoustics. Physics Today 50, 3 (1997) 34–40. Cited: p. 12.CrossRefGoogle Scholar
Fink, M., Cassereau, D., Derode, A., Prada, C., Roux, P., Tanter, M., Thomas, J.-L. & Wu, F., Time-reversed acoustics. Reports on Progress in Physics 63 (2000) 1933–1995. Cited: p. 12.Google Scholar
Finkelstein, A.B., The initial value problem for transient water waves. Comm. Pure Appl. Math. 10 (1957) 511–522. Cited: pp. 84 & 179.Google Scholar
Fischer, F.A., Über die Totalreflexion von ebenen Impulswellen. Annalen der Physik, 6 Folge, 2 (1948) 211–224. Cited: p. 30.Google Scholar
Flammer, C., Spheroidal Wave Functions. Stanford, CA: Stanford University Press, 1957. Cited: pp. 52 & 55.Google Scholar
Flatté, S.M. (ed.), Sound Transmission through a Fluctuating Ocean. Cambridge: Cambridge University Press, 1979. Cited: pp. 6 & 7.Google Scholar
Fouque, J.-P., Garnier, J., Papanicolaou, G. & Sølna, K., Wave Propagation and Time Reversal in Randomly Layered Media. New York: Springer, 2007. Cited: pp. 18, 59 & 85.Google Scholar
Fox, E.N., The diffraction of sound pulses by an infinitely long strip. Phil. Trans. Roy. Soc. A 241 (1948) 71–103. Cited: pp. 187 & 192.Google Scholar
Fox, E.N., The diffraction of two-dimensional sound pulses incident on an infinite uniform slit in a perfectly reflecting screen. Phil. Trans. Roy. Soc. A 242 (1949) 1–32. Cited: p. 192.Google Scholar
Franceschetti, G., A canonical problem in transient radiation—the spherical antenna. IEEE Trans. Antennas & Propag. AP- 26 (1978) 551–555. Cited: p. 120.Google Scholar
Freund, L.B., Dynamic Fracture Mechanics. Cambridge: Cambridge University Press, 1989. Cited: p. 192.Google Scholar
Friedlander, F.G., On the solutions of the wave equation with discontinuous derivatives. Proc. Camb. Phil. Soc. 38 (1942) 378–382. Cited: p. 67.Google Scholar
Friedlander, F.G., Simple progressive solutions of the wave equation. Proc. Camb. Phil. Soc. 43 (1947) 360–373. Cited: p. 30.Google Scholar
Friedlander, F.G., Sound Pulses. Cambridge: Cambridge University Press, 1958. Cited: pp. 60, 61, 64, 65, 67, 69, 70, 73, 74, 119 & 187.Google Scholar
Friedlander, F.G., On the radiation field of pulse solutions of the wave equation. Proc. Roy. Soc. A 269 (1962) 53–65. Cited: pp. 32, 33, 36, 85, 88 & 123.Google Scholar
Friedlander, F.G., On the radiation field of pulse solutions of the wave equation. II. Proc. Roy. Soc. A 279 (1964) 386–394. Cited: pp. 32 & 88.Google Scholar
Friedlander, F.G., On the radiation field of pulse solutions of the wave equation. III. Proc. Roy. Soc. A 299 (1967) 264–278. Cited: p. 32.Google Scholar
Friedlander, F.G., An inverse problem for radiation fields. Proc. London Math. Soc., Ser. 3, 27 (1973) 551–576. Cited: pp. 32 & 88.Google Scholar
Friedman, A. & Shinbrot, M., The initial value problem for the linearized equations of water waves. J. Math. & Mech. 17 (1967) 107–180. Cited: p. 84.Google Scholar
Friedman, M.B. & Shaw, R., Diffraction of pulses by cylindrical obstacles of arbitrary cross section. J. Appl. Mech. 29 (1962) 40–46. Cited: p. 165.Google Scholar
Frost, P.A. & Harper, E.Y., Acoustic radiation from surfaces oscillating at large amplitude and small Mach number. J. Acoust. Soc. Amer. 58 (1975) 318–325. Cited: pp. 10 & 127.Google Scholar
Fukuhara, M., Misawa, R., Niino, K. & Nishimura, N., Stability of boundary element methods for the two dimensional wave equation in time domain revisited. Eng. Anal. Bound. Elem. 108 (2019) 321–338. Cited: p. 166.Google Scholar
Furukawa, A., Saitoh, T. & Hirose, S., Convolution quadrature time-domain boundary element method for 2-D and 3-D elastodynamic analyses in general anisotropic elastic solids. Eng. Anal. Bound. Elem. 39 (2014) 64–74. Cited: p. 178.Google Scholar
Gal, C.G., Goldstein, G.R. & Goldstein, J.A., Oscillatory boundary conditions for acoustic wave equations. J. Evolution Equations 3 (2003) 623–635. Cited: pp. 80 & 81.Google Scholar
Gallego, R. & Domínguez, J., Hypersingular BEM for transient elastodynamics. Int. J. Numer. Meth. Eng. 39 (1996) 1681–1705. Cited: p. 192.Google Scholar
Garabedian, P.R., Partial Differential Equations. New York: Wiley, 1964. Cited: pp. 13, 41 & 59.Google Scholar
García-Sánchez, F. & Zhang, C., A comparative study of three BEM for transient dynamic crack analysis of 2-D anisotropic solids. Comput. Mech. 40 (2007) 753–769. Cited: p. 192.Google Scholar
Garding, L., Review of Wilcox [887]. Bull. London Math. Soc. 9 (1977) 122–123. Cited: p. 73.Google Scholar
Garner, T.J., Lakhtakia, A., Breakall, J.K. & Bohren, C.F., Time-domain electromagnetic scattering by a sphere in uniform translational motion. J. Opt. Soc. Amer. A 34 (2017) 270–279. Cited: p. 125.Google Scholar
Garnier, J. & Papanicolaou, G., Passive Imaging with Ambient Noise. Cambridge: Cambridge University Press, 2016. Cited: p. 5.Google Scholar
Garnir, H., Sur la transformation de Laplace des distributions. Comptes Rendus de l’Académie des Sciences, Paris 234 (1952) 583–585. Cited: p. 97.Google Scholar
Garnir, H.G. (ed.), Boundary Value Problems for Linear Evolution Partial Differential Equations. Dordrecht: Reidel, 1977. Cited: pp. 197, 205 & 235.Google Scholar
Garvin, W.W., Exact transient solution of the buried line source problem. Proc. Roy. Soc. A 234 (1956) 528–541. Cited: p. 187.Google Scholar
Gaunaurd, G.C. & Strifors, H.C., Frequency- and time-domain analysis of the transient resonance scattering resulting from the interaction of a sound pulse with submerged elastic shells. IEEE Trans. Ultrasonics, Ferroelectrics, & Frequency Control 40 (1993) 313–324. Cited: p. 119.Google Scholar
Gaunaurd, G.C. & Strifors, H.C., Transient resonance scattering and target identification. Appl. Mech. Rev. 50 (1997) 131–148. Cited: p. 119.Google Scholar
Geers, T.L., Excitation of an elastic cylindrical shell by a transient acoustic wave. J. Appl. Mech. 36 (1969) 459–469. Cited: pp. 120 & 121.Google Scholar
Geers, T.L., Residual potential and approximate methods for three-dimensional fluid– structure interaction problems. J. Acoust. Soc. Amer. 49 (1971) 1505–1510. Cited: p. 121.Google Scholar
Geers, T.L. & Sprague, M.A., A residual-potential boundary for time-dependent, infinite-domain problems in computational acoustics. J. Acoust. Soc. Amer. 127 (2010) 675–682. Cited: pp. 120 & 121.Google Scholar
Gelb, A., The resolution of the Gibbs phenomenon for spherical harmonics. Mathematics of Computation 66 (1997) 699–717. Cited: p. 119.Google Scholar
Geranmayeh, A., Ackermann, W. & Weiland, T., Temporal discretization choices for stable boundary element methods in electromagnetic scattering problems. Appl. Numer. Math. 59 (2009) 2751–2773. Cited: p. 176.Google Scholar
Gibson, P.C., The combinatorics of scattering in layered media. SIAM J. Appl. Math. 74 (2014) 919–938. Cited: p. 18.Google Scholar
Gimperlein, H., Maischak, M. & Stephan, E.P., Adaptive time domain boundary element methods with engineering applications. J. Integ. Eqns Appl. 29 (2017) 75–105. Cited: p. 167.Google Scholar
Gimperlein, H., Meyer, F., Özdemir, C., Stark, D. & Stephan, E.P., Boundary elements with mesh refinements for the wave equation. Numer. Math. 139 (2018) 867–912. Cited: p. 192.Google Scholar
Gimperlein, H., Özdemir, C., Stark, D. & Stephan, E.P., hp-version time domain boundary elements for the wave equation on quasi-uniform meshes. Comput. Meth. Appl. Mech. Eng. 356 (2019) 145–174. Cited: p. 192.Google Scholar
Gimperlein, H., Özdemir, C. & Stephan, E.P., Time domain boundary element methods for the Neumann problem: error estimates and acoustic problems. J. Comp. Math. 36 (2018) 70–89. Cited: p. 167.Google Scholar
Gimperlein, H., Özdemir, C. & Stephan, E.P., A time-dependent FEM-BEM coupling method for fluid-structure interaction in 3d. Appl. Numer. Math. 152 (2020) 49–65. Cited: p. 82.Google Scholar
Givoli, D., Numerical Methods for Problems in Infinite Domains. Amsterdam: Elsevier, 1992. Cited: pp. 32 & 42.Google Scholar
Givoli, D. & Cohen, D., Nonreflecting boundary conditions based on Kirchhoff-type formulae. J. Comp. Phys. 117 (1995) 102–113. Cited: p. 150.Google Scholar
Glegg, S. & Devenport, W., Aeroacoustics of Low Mach Number Flows. Oxford: Academic Press, 2017. Cited: pp. 87 & 154.Google Scholar
Gohberg, I.C. & Kreǐn, M.G., Introduction to the Theory of Linear Nonselfadjoint Operators. Providence, RI: American Mathematical Society, 1969. Cited: p. 140.Google Scholar
Goldstein, G.R., Derivation and physical interpretation of general boundary conditions. Advances in Differential Equations 11 (2006) 457–480. Cited: p. 80.Google Scholar
Gonzalez, J.D., Lavia, E.F. & Blanc, S., A computational method to calculate the exact solution for acoustic scattering by fluid spheroids. Acta Acustica united with Acustica 102 (2016) 1061–1071. Cited: p. 128.Google Scholar
Goriely, A., The Mathematics and Mechanics of Biological Growth. New York: Springer, 2017. Cited: pp. 7 & 9.Google Scholar
Gorshkov, A.G. & Tarlakovsky, D.V., Transient Aerohydroelasticity of Spherical Bodies. Berlin: Springer, 2001. Cited: pp. 37 & 108.Google Scholar
Gottlieb, D. & Shu, C.-W., On the Gibbs phenomenon and its resolution. SIAM Rev. 39 (1997) 644–668. Cited: p. 119.Google Scholar
Gouesbet, G. & Gréhan, G., Generic formulation of a generalized Lorenz–Mie theory for a particle illuminated by laser pulses. Particle & Particle Systems Characterization 17 (2000) 213–224. Cited: p. 120.Google Scholar
Gradshteyn, I.S. & Ryzhik, I.M., Table of Integrals, Series, and Products, 4th edition. New York: Academic Press, 1980. Cited: pp. 122 & 189.Google Scholar
Granzow, K.D., Multipole theory in the time domain. J. Math. Phys. 7 (1966) 634–640. Erratum: 7 (1966) 2280. Cited: pp. 40 & 114.Google Scholar
Granzow, K.D., Time-domain treatment of a spherical boundary-value problem. J. Appl. Phys. 39 (1968) 3435–3441. Cited: pp. 40 & 114.Google Scholar
Greengard, L., Hagstrom, T. & Jiang, S., The solution of the scalar wave equation in the exterior of a sphere. J. Comp. Phys. 274 (2014) 191–207. Cited: pp. 78, 114, 115, 117, 119 & 120.Google Scholar
Griffel, D.H., Applied Functional Analysis. Mineola, NY: Dover, 2002. Cited: p. 90.Google Scholar
Grinfeld, P., Small oscillations of a soap bubble. Stud. Appl. Math. 128 (2011) 30–39. Cited: p. 84.Google Scholar
Grob, P. & Joly, P., Conservative coupling between finite elements and retarded potentials. Application to vibroacoustics. SIAM J. Sci. Comput. 29 (2007) 1127–1159. Cited: p. 187.Google Scholar
Groenenboom, P.H.L., The application of boundary elements to steady and unsteady potential fluid flow problems in two and three dimensions. Applied Mathematical Modelling 6 (1982) 35–40. Cited: pp. 151 & 166.Google Scholar
Groenenboom, P.H.L., Wave propagation phenomena. In: Progress in Boundary Element Methods, vol. 2 (ed. C.A. Brebbia) pp. 24–52. London: Pentech Press, 1983. Cited: p. 166.Google Scholar
Groenenboom, P.H.L., Brebbia, C.A. & De Jong, J.J., New developments and engineering applications of boundary elements in the field of transient wave propagation. Engineering Analysis 3 (1986) 201–207. Cited: p. 166.Google Scholar
Grosch, C.E. & Orszag, S.A., Numerical solution of problems in unbounded regions: coordinate transforms. J. Comp. Phys. 25 (1977) 273–295. Cited: p. 42.Google Scholar
Grosswald, E., Bessel polynomials. Lect. Notes Math. 698. Berlin: Springer, 1978. Cited: p. 114.Google Scholar
Grote, M.J. & Keller, J.B., Exact nonreflecting boundary conditions for the time dependent wave equation. SIAM J. Appl. Math. 55 (1995) 280–297. Cited: p. 40.Google Scholar
Grote, M.J. & Kirsch, C., Nonreflecting boundary condition for time-dependent multiple scattering. J. Comp. Phys. 221 (2007) 41–62. Cited: p. 32.Google Scholar
Guo, Y., Monk, P. & Colton, D., Toward a time domain approach to the linear sampling method. Inverse Prob. 29 (2013) 095016. Cited: pp. 31, 33 & 89.Google Scholar
Gurtin, M.E., Fried, E. & Anand, L., The Mechanics and Thermodynamics of Continua. Cambridge: Cambridge University Press, 2010. Cited: p. 69.Google Scholar
Gustafsson, B., Kreiss, H.-O. & Oliger, J., Time-Dependent Problems and Difference Methods, 2nd edition. Hoboken, NJ: Wiley, 2013. Cited: pp. 88 & 89.Google Scholar
Güttel, S. & Tisseur, F., The nonlinear eigenvalue problem. Acta Numerica 26 (2017) 1–94. Cited: p. 135.Google Scholar
Gutzmer, A., Ueber den analytischen Ausdruck des Huygensschen Princips. Journal für die reine und angewandte Mathematik 114 (1895) 333–337. Cited: pp. 143 & 150.Google Scholar
Hackbusch, W., Kress, W. & Sauter, S.A., Sparse convolution quadrature for time domain boundary integral formulations of the wave equation. IMA J. Numer. Anal. 29 (2009) 158–179. Cited: pp. 158 & 171.Google Scholar
Hadamard, J., Leçons sur la propagation des ondes et les équations de l’hydrodynamique. Paris: Hermann, 1903. Reprint: New York, Chelsea, 1949. Cited: pp. 64 & 69.Google Scholar
Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations. New Haven, CT: Yale University Press, 1923. Cited: pp. 16, 71 & 146.Google Scholar
Haddar, H., Lechleiter, A. & Marmorat, S., An improved time domain linear sampling method for Robin and Neumann obstacles. Applicable Analysis 93 (2014) 369–390. Cited: pp. 31, 80, 91 & 93.Google Scholar
Ha-Duong, T., On the transient acoustic scattering by a flat object. Japan Journal of Applied Mathematics 7 (1990) 489–513. Cited: p. 192.Google Scholar
Ha-Duong, T., On retarded potential boundary integral equations and their discretisation. In: Topics in Computational Wave Propagation: Direct and Inverse Problems (ed. M. Ainsworth, P. Davies, D. Duncan, B. Rynne & P. Martin) pp. 301–336. Lecture Notes in Computational Science and Engineering 31. Berlin: Springer, 2003. Cited: pp. 24, 91, 147, 156, 159, 162 & 167.Google Scholar
Ha-Duong, T., Ludwig, B. & Terrasse, I., A Galerkin BEM for transient acoustic scattering by an absorbing obstacle. Int. J. Numer. Meth. Eng. 57 (2003) 1845–1882. Cited: p. 167.Google Scholar
Hagstrom, T., Radiation boundary conditions for the numerical simulation of waves. Acta Numerica 8 (1999) 47–106. Cited: pp. 32, 40, 80 & 121.Google Scholar
Hagstrom, T., New results on absorbing layers and radiation boundary conditions. In: Topics in Computational Wave Propagation: Direct and Inverse Problems (ed. M. Ainsworth, P. Davies, D. Duncan, B. Rynne & P. Martin) pp. 1–42. Lecture Notes in Computational Science and Engineering 31. Berlin: Springer, 2003. Cited: pp. 32, 40, 42 & 121.Google Scholar
Hairer, E., Nørsett, S.P. & Wanner, G., Solving Ordinary Differential Equations I, 2nd revised edition. Berlin: Springer, 1993. Cited: pp. 169, 170, 171 & 181.Google Scholar
Hamilton, J.A. & Astley, R.J., Exact solutions for transient spherical radiation. J. Acoust. Soc. Amer. 109 (2001) 1848–1858. Cited: pp. 119 & 120.Google Scholar
Hamilton, M.F. & Blackstock, D.T. (ed.), Nonlinear Acoustics. San Diego, CA: Academic Press, 1998. Cited: pp. 10 & 211.Google Scholar
Hamilton, M.F. & Morfey, C.L., Model equations. In: [383], pp. 41–63. Cited: p. 10.Google Scholar
Hanish, S., A Treatise on Acoustic Radiation, 3rd edition. Washington, DC: Naval Research Laboratory, 1989. This is volume 1 of a 5-volume set. Cited: p. 119.Google Scholar
Hansen, T.B., Spherical expansions of time-domain acoustic fields: application to nearfield scanning. J. Acoust. Soc. Amer. 98 (1995) 1204–1215. Cited: p. 115.Google Scholar
Hansen, T.B. & Yaghjian, A.D., Plane-Wave Theory of Time-Domain Fields. New York: IEEE Press, 1999. Cited: pp. 33, 88 & 148.Google Scholar
Hargreaves, J.A. & Cox, T., A transient boundary element method for acoustic scattering from mixed regular and thin rigid bodies. Acta Acustica united with Acustica 95 (2009) 678–689. Cited: p. 192.Google Scholar
Hasheminejad, S.M., Bahari, A. & Abbasion, S., Modelling and simulation of acoustic pulse interaction with a fluid-filled hollow elastic sphere through numerical Laplace inversion. Applied Mathematical Modelling 35 (2011) 22–49. Cited: p. 119.Google Scholar
Hassell, M. & Sayas, F.-J., Convolution quadrature for wave simulations. In: Numerical Simulation in Physics and Engineering (ed. I. Higueras, T. Roldán & J.J. Torrens) pp. 71–159. Cham: Springer, 2016. Cited: p. 170.Google Scholar
Hassell, M.E. & Sayas, F.-J., A fully discrete BEM–FEM scheme for transient acoustic waves. Comput. Meth. Appl. Mech. Eng. 309 (2016) 106–130. Cited: p. 171.Google Scholar
Hayek, S., Vibration of a spherical shell in an acoustic medium. J. Acoust. Soc. Amer. 40 (1966) 342–348. Cited: p. 83.Google Scholar
Hayek, S. & DiMaggio, F.L., Complex natural frequencies of vibrating submerged spheroidal shells. Int. J. Solids Struct. 6 (1970) 333–351. Cited: p. 130.Google Scholar
Hayek, S.I. & Boisvert, J.E., Vibration of prolate spheroidal shells with shear deformation and rotatory inertia: axisymmetric case. J. Acoust. Soc. Amer. 114 (2003) 2799– 2811. Cited: p. 84.Google Scholar
Hazard, C. & Lenoir, M., Determination of scattering frequencies for an elastic floating body. SIAM J. Math. Anal. 24 (1993) 1458–1514. Cited: p. 133.Google Scholar
Hazard, C. & Lenoir, M., Surface water waves. In: Scattering, vol. 1 (ed. R. Pike & P. Sabatier) pp. 618–636. London: Academic Press, 2002. 131.Google Scholar
Heaviside, O., On the extra current. Phil. Mag., Ser. 5, 2 (1876) 135–145. Also: Electrical Papers, vol. 1, pp. 53–61. New York: Chelsea, 1970. Cited: p. 19.Google Scholar
Heller, G.S., Propagation of acoustic discontinuities in an inhomogeneous moving liquid medium. J. Acoust. Soc. Amer. 25 (1953) 950–951. Cited: p. 69.Google Scholar
Herman, G.C., Scattering of transient acoustic waves by an inhomogeneous obstacle. J. Acoust. Soc. Amer. 69 (1981) 909–915. Cited: pp. 166 & 176.Google Scholar
Herman, G.C., Scattering of transient elastic waves by an inhomogeneous obstacle: contrast in volume density of mass. J. Acoust. Soc. Amer. 71 (1982) 264–272. Cited: p. 177.Google Scholar
Herman, G.C. & van den Berg, P.M., A least-square iterative technique for solving time-domain scattering problems. J. Acoust. Soc. Amer. 72 (1982) 1947–1953. Cited: p. 167.Google Scholar
Hersh, R., Mixed problems in several variables. J. Mathematics & Mechanics 12 (1963) 317–334. Cited: p. 88.Google Scholar
Heuser, H.G., Functional Analysis. Chichester: Wiley, 1982. Cited: pp. 139 & 140.Google Scholar
Heyman, E., Focus wave modes: a dilemma with causality. IEEE Trans. Antennas & Propag. 37 (1989) 1604–1608. Cited: p. 49.Google Scholar
Heyman, E. & Devaney, A.J., Time-dependent multipoles and their application for radiation from volume source distributions, J. Math. Phys. 37 (1996) 682–692. Cited: pp. 40 & 85.Google Scholar
Heyman, E. & Felsen, L.B., A wavefront interpretation of the singularity expansion method. IEEE Trans. Antennas & Propag. AP- 33 (1985) 706–718. Cited: p. 138.Google Scholar
Heyman, E. & Felsen, L.B., Comments on Hillion with author’s reply. IEEE Trans. Antennas & Propag. 42 (1994) 1668–1670. Cited: pp. 49 & 212.Google Scholar
Higdon, R.L., Initial-boundary value problems for linear hyperbolic systems. SIAM Rev. 28 (1986) 177–217. Cited: p. 71.Google Scholar
Hill, D.A. & Wait, J.R., The transient electromagnetic response of a spherical shell of arbitrary thickness. Radio Sci. 7 (1972) 931–935. Cited: p. 120.Google Scholar
Hillion, P., The Courant–Hilbert solutions of the wave equation. J. Math. Phys. 33 (1992) 2749–2753. Cited: pp. 49 & 50.Google Scholar
Hillion, P., Diffraction and Weber functions. SIAM J. Appl. Math. 57 (1997) 1702–1715. Cited: p. 46.Google Scholar
Hillion, P.T.M., Nondispersive waves: interpretation and causality. IEEE Trans. Antennas & Propag. 40 (1992) 1031–1035. See [407]. Cited: pp. 49 & 212.Google Scholar
Hirose, S., Boundary integral equation method for transient analysis of 3-D cavities and inclusions. Eng. Anal. Bound. Elem. 8 (1991) 146–154. Cited: p. 177.Google Scholar
Hirose, S. & Achenbach, J.D., BEM method to analyze the interaction of an acoustic pulse with a rigid circular disk. Wave Motion 10 (1988) 267–275. Cited: p. 192.Google Scholar
Hirose, S. & Achenbach, J.D., Time-domain boundary element analysis of elastic wave interaction with a crack. Int. J. Numer. Meth. Eng. 28 (1989) 629–644. Cited: p. 192.Google Scholar
Hodge, D.B., Eigenvalues and eigenfunctions of the spheroidal wave equation. J. Math. Phys. 11 (1970) 2308–2312. Cited: p. 53.Google Scholar
Holm, S., Waves with Power-Law Attenuation. Cham: Springer, 2019. Cited: p. 19.Google Scholar
Holm, S., Näsholm, S.P., Prieur, F. & Sinkus, R., Deriving fractional acoustic wave equations from mechanical and thermal constitutive equations. Computers & Math. with Applications 66 (2013) 621–629. Cited: p. 19.Google Scholar
Hopkins, H.G., Dynamic expansion of spherical cavities in metals. In: Progress in Solid Mechanics, vol. 1 (ed. I.N. Sneddon & R. Hill) pp. 83–164. Amsterdam: North-Holland, 1960. Cited: p. 108.Google Scholar
Howe, M., Acoustics and Aerodynamic Sound. Cambridge: Cambridge University Press, 2015. Cited: pp. 87, 153 & 154.Google Scholar
Howe, M.S., Acoustics of Fluid–Structure Interactions. Cambridge: Cambridge University Press, 1998. Cited: pp. 6, 86, 127, 154, 155 & 156.Google Scholar
Howe, M.S., Theory of Vortex Sound. Cambridge: Cambridge University Press, 2003. Cited: pp. 85, 87, 153 & 154.Google Scholar
Hsiao, G.C., Sánchez-Vizuet, T. & Sayas, F.-J., Boundary and coupled boundary–finite element methods for transient wave–structure interaction. IMA J. Numer. Anal. 37 (2017) 237–265. Cited: p. 82.Google Scholar
Hsiao, G.C., Sayas, F.-J. & Weinacht, R.J., Time-dependent fluid–structure interaction. Math. Meth. Appl. Sci. 40 (2017) 486–500. Cited: p. 82.Google Scholar
Hsiao, G.C. & Weinacht, R.J., A representation formula for the wave equation revisited. Applicable Analysis 91 (2012) 371–380. Cited: pp. 146 & 150.Google Scholar
Hsiao, G.C. & Wendland, W.L., Boundary Integral Equations. Berlin: Springer, 2008. Cited: p. 92.Google Scholar
Hu, F.Q., Pizzo, M.E. & Nark, D.M., On a time domain boundary integral equation formulation for acoustic scattering by rigid bodies in uniform mean flow. J. Acoust. Soc. Amer. 142 (2017) 3624–3636. Cited: pp. 125 & 150.Google Scholar
Hu, F.Q., Pizzo, M.E. & Nark, D.M., On the use of a Prandtl–Glauert–Lorentz transformation for acoustic scattering by rigid bodies with a uniform flow. J. Sound Vib. 443 (2019) 198–211. Cited: p. 125.Google Scholar
Hu, J.-L., Chan, C.H. & Xu, Y., A new temporal basis function for the time-domain integral equation method. IEEE Microwave & Wireless Components Lett. 11 (2001) 465–466. Cited: p. 176.Google Scholar
Huan, R. & Thompson, L.L., Accurate radiation boundary conditions for the time-dependent wave equation on unbounded domains. Int. J. Numer. Meth. Eng. 47 (2000) 1569–1603. Cited: p. 39.Google Scholar
Huang, H., Transient interaction of plane acoustic waves with a spherical elastic shell. J. Acoust. Soc. Amer. 45 (1969) 661–670. Cited: p. 119.Google Scholar
Huang, H. & Gaunaurd, G.C., Transient diffraction of a plane step pressure pulse by a hard sphere: neoclassical solution. J. Acoust. Soc. Amer. 104 (1998) 3236–3244. Cited: p. 119.Google Scholar
Huang, H., Lu, Y.P. & Wang, Y.F., Transient interaction of spherical acoustic waves and a spherical elastic shell. J. Appl. Mech. 38 (1971) 71–74. Cited: p. 119.Google Scholar
Huang, H. & Mair, H.U., Neoclassical solution of transient interaction of plane acoustic waves with a spherical elastic shell. Shock & Vibration 3 (1996) 85–98. Cited: p. 119.Google Scholar
Hunter, C. & Guerrieri, B., The eigenvalues of the angular spheroidal wave equation. Stud. Appl. Math. 66 (1982) 217–240. Cited: p. 53.Google Scholar
Inselberg, A., Cochlear dynamics: the evolution of a mathematical model. SIAM Rev. 20 (1978) 301–351. Cited: p. 81.Google Scholar
Ismail, M.E.H., Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge: Cambridge University Press, 2005. Cited: p. 114.Google Scholar
Itou, S., Transient analysis of stress waves around a rectangular crack under impact load. J. Appl. Mech. 47 (1980) 958–959. Cited: p. 192.Google Scholar
Itou, S., Transient analysis of stress waves around two coplanar Griffith cracks under impact load. Engineering Fracture Mech. 13 (1980) 349–356. Cited: p. 192.Google Scholar
Jackson, J.D., Classical Electrodynamics, 2nd edition. New York: Wiley, 1975. Cited: pp. 24, 25 & 57.Google Scholar
Jang, H.-W. & Ih, J.-G., Stabilization of time domain acoustic boundary element method for the exterior problem avoiding the nonuniqueness. J. Acoust. Soc. Amer. 133 (2013) 1237–1244. Cited: p. 166.Google Scholar
Jeffreys, H., Operational Methods in Mathematical Physics. Cambridge: Cambridge University Press, 1927. Cited: p. 94.Google Scholar
Jensen, F.B., Kuperman, W.A., Porter, M.B. & Schmidt, H., Computational Ocean Acoustics, 2nd edition. New York: Springer, 2011. Cited: pp. 78 & 98.Google Scholar
John, F., On the motion of floating bodies. I. Comm. Pure Appl. Math. 2 (1949) 13–57. Cited: pp. 27 & 84.Google Scholar
John, F., Hyperbolic and parabolic equations. Part I of Partial Differential Equations (L. Bers, F. John & M. Schechter), pp. 1–129. Providence, RI: American Mathematical Society, 1964. Cited: pp. 16, 61, 62, 78, 85, 106 & 108.Google Scholar
John, F., Partial Differential Equations, 4th edition. New York: Springer, 1982. Cited: pp. 11, 20 & 41.Google Scholar
Johnson, L.R., Scattering of elastic waves by a spheroidal inclusion. Geophys. J. Int. 212 (2018) 1829–1858. Cited: p. 128.Google Scholar
Joly, P., An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation. S⃗eMA J. 57 (2012) 5–48. Cited: pp. 19 & 42.Google Scholar
Joly, P. & Rodríguez, J., Mathematical aspects of variational boundary integral equations for time dependent wave propagation. J. Integ. Eqns Appl. 29 (2017) 137–187. Cited: pp. 92 & 167.Google Scholar
Jones, A.R., Some calculations on the scattering efficiencies of a sphere illuminated by an optical pulse. J. Phys. D: Appl. Phys. 40 (2007) 7306–7312. Cited: p. 120.Google Scholar
Jones, D.S., The Theory of Electromagnetism. Oxford: Pergamon Press, 1964. Cited: pp. 24, 25, 57, 151 & 174.Google Scholar
Jones, D.S., Generalised Functions. New York: McGraw-Hill, 1966. Cited: pp. 90, 97, 153 & 155.Google Scholar
Jones, D.S., The mathematical theory of noise shielding. Prog. Aerospace Sci. 17 (1977) 149–229. Cited: p. 156.Google Scholar
Jones, D.S., Methods in Electromagnetic Wave Propagation. Oxford: Clarendon Press, 1987. Cited: pp. 22, 112, 132, 133 & 175.Google Scholar
Jones-Oliveira, J.B., Transient analytic and numerical results for the fluid–solid interaction of prolate spheroidal shells. J. Acoust. Soc. Amer. 99 (1996) 392–407. Cited: p. 130.Google Scholar
Jones-Oliveira, J.B. & Harten, L.P., Transient fluid–solid interaction of submerged spherical shells revisited: proliferation of frequencies and acoustic radiation effects. J. Acoust. Soc. Amer. 96 (1994) 918–925. Cited: p. 119.Google Scholar
Junger, M.C. & Feit, D., Sound, Structures, and Their Interaction, 2nd edition. New York: Acoustical Society of America, 1993. Cited: p. 83.Google Scholar
Junger, M.C. & Thompson, W. Jr, Oscillatory acoustic transients radiated by impulsively accelerated bodies. J. Acoust. Soc. Amer. 38 (1965) 978–986. Cited: p. 119.Google Scholar
Jury, E.I., Theory and Application of the z-Transform Method. New York: Wiley, 1964. Cited: p. 169.Google Scholar
Kager, B. & Schanz, M., Fast and data sparse time domain BEM for elastodynamics. Eng. Anal. Bound. Elem. 50 (2015) 212–223. Cited: p. 178.Google Scholar
Kailath, T., Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980. Cited: p. 24.Google Scholar
Kalnins, E.G. & Miller, W. Jr, Lie theory and the wave equation in space-time. 5. R-separable solutions of the wave equation ψtt 3 ψ = 0. J. Math. Phys. 19 (1978) 1247–1257. Cited: p. 47.Google Scholar
Kaouri, K., Allwright, D.J., Chapman, C.J. & Ockendon, J.R., Singularities of wavefields and sonic boom. Wave Motion 45 (2008) 217–237. Cited: p. 57.Google Scholar
Karabalis, D.L. & Beskos, D.E., Dynamic response of 3-D rigid surface foundations by time domain boundary element method. Earthquake Engineering & Structural Dynamics 12 (1984) 73–93. Cited: p. 177.Google Scholar
Karlsson, A. & Kristensson, G., Wave splitting in the time domain for a radially symmetric geometry. Wave Motion 12 (1990) 197–211. Cited: p. 123.Google Scholar
Kawai, Y. & Terai, T., A numerical method for the calculation of transient acoustic scattering from thin rigid plates. J. Sound Vib. 141 (1990) 83–96. Cited: p. 192.Google Scholar
Kawashita, M., Kawashita, W. & Soga, H., Relation between scattering theories of the Wilcox and Lax–Phillips types and a concrete construction of the translation representation. Comm. Partial Diff. Eqns. 28 (2003) 1437–1470. Cited: p. 73.Google Scholar
Keener, J. & Sneyd, J., Mathematical Physiology, 2nd edition. New York: Springer, 2009. Cited: p. 81.Google Scholar
Keilson, J. & Nunn, W.R., Laguerre transformation as a tool for the numerical solution of integral equations of convolution type. Appl. Math. & Computation 5 (1979) 313–359. Cited: p. 101.Google Scholar
Keller, J.B., Geometrical acoustics. I. The theory of weak shock waves. J. Appl. Phys. 25 (1954) 938–947. Cited: p. 69.Google Scholar
Keller, J.B. & Blank, A., Diffraction and reflection of pulses by wedges and corners. Comm. Pure Appl. Math. 4 (1951) 75–94. Cited: p. 187.Google Scholar
Keller, J.B. & Kolodner, I.I., Damping of underwater explosion bubble oscillations. J. Appl. Phys. 27 (1956) 1152–1161. Cited: p. 108.Google Scholar
Keller, J.B. & Miksis, M., Bubble oscillations of large amplitude. J. Acoust. Soc. Amer. 68 (1980) 628–633. Cited: p. 108.Google Scholar
Kellogg, O.D., Foundations of Potential Theory. Berlin: Springer, 1929. Cited: pp. 47 & 157.Google Scholar
Kennaugh, E.M., The scattering of short electromagnetic pulses by a conducting sphere. Proc. IRE 49 (1961) 380. Cited: p. 120.Google Scholar
Kennaugh, E.M. & Moffatt, D.L., Transient and impulse response approximations. Proc. IEEE 53 (1965) 893–901. Cited: p. 120.Google Scholar
Khromov, V.A., Generalization of Kirchhoff’s theorem for the case of a surface moving in an arbitrary way. Soviet Physics-Acoustics 9 (1963) 68–71. Cited: p. 156.Google Scholar
Kielhorn, L. & Schanz, M., Convolution quadrature method-based symmetric Galerkin boundary element method for 3-d elastodynamics. Int. J. Numer. Meth. Eng. 76 (2008) 1724–1746. Cited: p. 178.Google Scholar
Kingston, J.G., One-way waves. SIAM Rev. 30 (1988) 645–649. Cited: p. 20.Google Scholar
Kirby, P., Calculation of spheroidal wave functions. Computer Phys. Comm. 175 (2006) 465–472. Cited: p. 55.Google Scholar
Kirby, P., Calculation of radial prolate spheroidal wave functions of the second kind. Computer Phys. Comm. 181 (2010) 514–519. Cited: p. 55.Google Scholar
Kirchhoff, G., Zur Theorie der Lichtstrahlen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1882) 641–669. Cited: pp. 149, 150 & 216.Google Scholar
Kirchhoff, G., Zur Theorie der Lichtstrahlen. Annalen der Physik und Chemie 18 (1883) 663–695. Cited: p. 149.Google Scholar
Kirchhoff, G., Vorlesungen über Mathematische Physik, vol. 2: Mathematische Optik. Leipzig: Teubner, 1891. Cited: p. 150.Google Scholar
Kirchhoff, G., On the ray theory of light. Translation of [482]. In: Classical and Modern Diffraction Theory (ed. K. Klem-Musatov, H.C. Hoeber, T.J. Moser & M.A. Pelissier) pp. 191–203. SEG Geophysics Reprint Ser. No. 29. Tulsa, OK: Society of Exploration Geophysicists, 2016. Cited: p. 150.Google Scholar
Kiselev, A.P. & Perel, M.V., Highly localized solutions of the wave equation. J. Math. Phys. 41 (2000) 1934–1955. Cited: p. 49.Google Scholar
Klaseboer, E., Sepehrirahnama, S. & Chan, D.Y.C., Space-time domain solutions of the wave equation by a non-singular boundary integral method and Fourier transform. J. Acoust. Soc. Amer. 142 (2017) 697–707. Cited: pp. 98 & 183.Google Scholar
Klaseboer, E., Sun, Q. & Chan, D.Y.C., Field-only integral equation method for time domain scattering of electromagnetic pulses. Appl. Optics 56 (2017) 9377–9383. Cited: p. 176.Google Scholar
Knab, J.J., Interpolation of band-limited functions using the approximate prolate series. IEEE Trans. Information Theory IT- 25 (1979) 717–720. Cited: pp. 167 & 176.Google Scholar
Knopoff, L., Diffraction of elastic waves. J. Acoust. Soc. Amer. 28 (1956) 217–229. Cited: p. 178.Google Scholar
Ko, W.L. & Karlsson, T., Application of Kirchhoff’s integral equation formulation to an elastic wave scattering problem. J. Appl. Mech. 34 (1967) 921–930. Discussion and errata: 35 (1968) 428–430. Cited: p. 178.Google Scholar
Kobayashi, S., Elastodynamics. In: Boundary Element Methods in Mechanics (ed. D.E. Beskos) pp. 191–255. Amsterdam: North-Holland, 1987. Cited: pp. 176 & 178.Google Scholar
Kobayashi, S. & Nishimura, N., Transient stress analysis of tunnels and caverns of arbitrary shape due to travelling waves. In: Developments in Boundary Element Methods— 2 (ed. P.K. Banerjee & R.P. Shaw) pp. 177–210. Barking: Applied Science Publishers, 1982. Cited: p. 178.Google Scholar
Kosiński, W., Field Singularities and Wave Analysis in Continuum Mechanics. Chichester: Ellis Horwood Ltd., 1986. Cited: p. 58.Google Scholar
Kotsis, A.D. & Roumeliotis, J.A., Acoustic scattering by a penetrable spheroid. Acoustical Physics 54 (2008) 153–167. Cited: p. 128.Google Scholar
Kozina, O.G., Makarov, G.I. & Shaposhnikov, N.N., Transient processes in the acoustic fields generated by a vibrating spherical segment. Soviet Physics-Acoustics 8 (1962) 53–57. Cited: p. 119.Google Scholar
Kranyš, M., Causal theories of evolution and wave propagation in mathematical physics. Appl. Mech. Rev. 42 (1989) 305–322. Cited: p. 22.Google Scholar
Kraus, H., Thin Elastic Shells. New York: Wiley, 1967. Cited: p. 82.Google Scholar
Kreiss, H.-O., Initial boundary value problems for hyperbolic systems. Comm. Pure Appl. Math. 23 (1970) 277–298. Cited: p. 88.Google Scholar
Kreiss, H.-O., Ortiz, O.E. & Petersson, N.A., Initial-boundary value problems for second order systems of partial differential equations. ESAIM: Mathematical Modelling & Numerical Analysis 46 (2012) 559–593. Cited: p. 89.Google Scholar
Kress, R., Linear Integral Equations, 3rd edition. New York: Springer, 2014. Cited: pp. 139, 140 & 141.Google Scholar
Kriegsmann, G.A., Exploiting the limiting amplitude principle to numerically solve scattering problems. Wave Motion 4 (1982) 371–380. Cited: p. 87.Google Scholar
Kriegsmann, G.A., Norris, A. & Reiss, E.L., Acoustic scattering by baffled membranes. J. Acoust. Soc. Amer. 75 (1984) 685–694. Cited: p. 82.Google Scholar
Kriegsmann, G.A., Norris, A.N. & Reiss, E.L., Acoustic pulse scattering by baffled membranes. J. Acoust. Soc. Amer. 79 (1986) 1–8. Cited: p. 82.Google Scholar
Kristensson, G., Natural frequencies of circular disks. IEEE Trans. Antennas & Propag. AP- 32 (1984) 442–448. Cited: pp. 130 & 133.Google Scholar
Kristensson, G., Scattering of Electromagnetic Waves by Obstacles. Edison, NJ: SciTech, 2016. Cited: pp. 24 & 74.Google Scholar
Kropp, W. & Svensson, P.U., Application of the time domain formulation of the method of equivalent sources to radiation and scattering problems. Acustica 81 (1995) 528–543. Cited: p. 183.Google Scholar
Kropp, W. & Svensson, P.U., Time domain formulation of the method of equivalent sources. Acta Acustica 3 (1995) 67–73. Cited: p. 183.Google Scholar
Kuo, K.A., Hunt, H.E.M. & Lister, J.R., Small oscillations of a pressurized, elastic, spherical shell: model and experiments. J. Sound Vib. 359 (2015) 168–178. Cited: p. 84.Google Scholar
Kupets, Ya.I., Diffraction of an acoustic pulse on a soft sphere with a hole. J. Mathematical Sciences 96 (1999) 2864–2867. Cited: p. 119.Google Scholar
Ladyzhenskaya, O.A., The Boundary Value Problems of Mathematical Physics. New York: Springer, 1985. Cited: pp. 61, 73 & 78.Google Scholar
Lalanne, P., Yan, W.. Vynck, K., Sauvan, C. & Hugonin, J.-P., Light interaction with photonic and plasmonic resonances. Laser & Photonics Reviews 12 (2018) 1700113. Cited: pp. 131, 133, 135 & 136.Google Scholar
Laliena, A.R. & Sayas, F.-J., A distributional version of Kirchhoff’s formula. J. Math. Anal. Appl. 359 (2009) 197–208. Cited: pp. 146 & 149.Google Scholar
Lamb, H., On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium. Proc. London Math. Soc., Ser. 1, 32 (1900) 208–211. Cited: pp. 14 & 135.Google Scholar
Lamb, H., On the diffraction of a solitary wave. Proc. London Math. Soc., Ser. 2, 8 (1910) 422–437. Cited: pp. 50 & 187.Google Scholar
Lamb, H., Hydrodynamics, 6th edition. Cambridge: Cambridge University Press, 1932. Cited: pp. 4, 27, 31, 34, 40, 73, 84, 87, 108 & 192.Google Scholar
Lamb, H., The Dynamical Theory of Sound, 2nd edition. New York: Dover, 1960. Reprint of 1925 edition. Cited: p. 12.Google Scholar
Landau, L.D. & Lifshitz, E.M., Fluid Mechanics, 2nd edition. Oxford: Pergamon Press, 1987. Cited: pp. 4, 5, 61 & 73.Google Scholar
Larmor, J., On the mathematical expression of the principle of Huygens. Proc. London Math. Soc., Ser. 2, 1 (1904) 1–13. Cited: p. 156.Google Scholar
Lasiecka, I. & Triggiani, R., Recent advances in regularity of second-order hyperbolic mixed problems, and applications. In: Dynamics Reported: Expositions in Dynamical Systems, new series, vol. 3 (ed. C.K.R.T. Jones, U. Kirchgraber & H.-O. Walther) pp. 104–162. Berlin: Springer, 1994. Cited: pp. 89, 91 & 92.Google Scholar
Lassas, M., Salo, M. & Uhlmann, G., Wave phenomena. In: Handbook of Mathematical Methods in Imaging, 2nd edition (ed. O. Scherzer) pp. 1205–1252. New York: Springer, 2015. Cited: p. 5.Google Scholar
Lauvstad, V.R., Transient scattering of a monochromatic acoustical wave by a scatterer fixed in space. J. Acoust. Soc. Amer. 38 (1963) 35–46. Cited: pp. 87 & 130.Google Scholar
Laven, P., Time domain analysis of scattering by a water droplet. Appl. Optics 50 (2011) F29–F38. Cited: p. 120.Google Scholar
Lax, P.D., Hyperbolic Partial Differential Equations. Providence, RI: American Mathematical Society, 2006. Cited: pp. 47, 59, 65 & 71.Google Scholar
Lax, P.D., Morawetz, C.S. & Phillips, R.S., Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle. Comm. Pure Appl. Math. 16 (1963) 477–486. Cited: p. 77.Google Scholar
Lax, P.D. & Phillips, R.S., The wave equation in exterior domains. Bull. Amer. Math. Soc. 68 (1962) 47–49. Cited: p. 76.Google Scholar
Lax, P.D. & Phillips, R.S., Scattering Theory. New York: Academic Press, 1967. Cited: pp. 47, 73, 132 & 138.Google Scholar
Lax, P.D. & Phillips, R.S., Decaying modes for the wave equation in the exterior of an obstacle. Comm. Pure Appl. Math. 22 (1969) 737–787. Cited: p. 138.Google Scholar
Lax, P.D. & Phillips, R.S., Scattering theory. Rocky Mountain J. Math. 1 (1971) 173– 224. Cited: p. 138.Google Scholar
Lax, P.D. & Phillips, R.S., On the scattering frequencies of the Laplace operator for exterior domains. Comm. Pure Appl. Math. 25 (1972) 85–101. Cited: p. 133.Google Scholar
Lax, P.D. & Phillips, R.S., Scattering theory for dissipative hyperbolic systems. J. Functional Anal. 14 (1973) 172–235. Cited: p. 80.Google Scholar
Lax, P.D. & Phillips, R.S., Scattering Theory, revised edition. San Diego, CA: Academic Press, 1989. Cited: pp. 47, 77 & 138.Google Scholar
Le Bellac, M., The Poincaré group. In: The Scientific Legacy of Poincaré (ed. É. Charpentier, É. Ghys & A. Lesne) pp. 351–371. Providence, RI: American Mathematical Society, 2010. Cited: p. 23.Google Scholar
LeBlond, P.H. & Mysak, L.A., Waves in the Ocean. Amsterdam: Elsevier, 1978. Cited: p. 84.Google Scholar
Lechleiter, A. & Monk, P., The time-domain Lippmann–Schwinger equation and convolution quadrature. Numerical Methods for Partial Differential Equations 31 (2015) 517–540. Cited: p. 171.Google Scholar
Lee, S., Review: the use of equivalent source method in computational acoustics. J. Computational Acoustics 25 (2017) 1630001. Cited: p. 183.Google Scholar
Lee, S., Brentner, K.S. & Morris, P.J., Acoustic scattering in the time domain using an equivalent source method. AIAA J. 48 (2010) 2772–2780. Cited: p. 183.Google Scholar
Lee, S., Brentner, K.S. & Morris, P.J., Assessment of time-domain equivalent source method for acoustic scattering. AIAA J. 49 (2011) 1897–1906. Cited: p. 183.Google Scholar
Lee, Y.W. & Lee, D.J., Derivation and implementation of the boundary integral formula for the convective acoustic wave equation in time domain. J. Acoust. Soc. Amer. 136 (2014) 2959–2967. Cited: pp. 125 & 150.Google Scholar
Leis, R., Variations on the wave equation. Math. Meth. Appl. Sci. 24 (2001) 339–367. Cited: pp. 1 & 13.Google Scholar
Leis, R., Initial Boundary Value Problems in Mathematical Physics. New York: Dover, 2013. Cited: pp. 86 & 88.Google Scholar
Lekner, J., Theory of Reflection, 2nd edition. Cham: Springer, 2016. Cited: p. 46.Google Scholar
Lenoir, M., Vullierme-Ledard, M. & Hazard, C., Variational formulations for the determination of resonant states in scattering problems. SIAM J. Math. Anal. 23 (1992) 579–608. Cited: pp. 133 & 135.Google Scholar
Leppington, F.G. & Levine, H., The sound field of a pulsating sphere in unsteady rectilinear motion. Proc. Roy. Soc. A 412 (1987) 199–221. Cited: pp. 10, 126 & 127.Google Scholar
Lesser, M.B. & Berkley, D.A., Fluid mechanics of the cochlea. Part 1. J. Fluid Mech. 51 (1972) 497–512. Cited: p. 81.Google Scholar
Levine, H., Unidirectional Wave Motions. Amsterdam: North-Holland, 1978. Cited: pp. 13, 15, 16 & 17.Google Scholar
Levine, H. & Gaunaurd, G.C., Energy radiation from point sources whose duration of accelerated motion is finite. J. Acoust. Soc. Amer. 110 (2001) 31–36. Cited: p. 57.Google Scholar
Levine, H. & Leppington, F.G., The acoustic power from moving and pulsating spheres. J. Sound Vib. 146 (1991) 199–210. Cited: p. 126.Google Scholar
Li, J., Dault, D. & Shanker, B., A quasianalytical time domain solution for scattering from a homogeneous sphere. J. Acoust. Soc. Amer. 135 (2014) 1676–1685. Cited: p. 39.Google Scholar
Li, J., Monk, P. & Weile, D., Time domain integral equation methods in computational electromagnetism. In: Computational Electromagnetism (ed. A. Bermúdez de Castro & A. Valli) pp. 111–189. Lect. Notes Math. 2148. Cham: Springer, 2015. Cited: p. 176.Google Scholar
Li, J. & Shanker, B., Time-dependent Debye–Mie series solutions for electromagnetic scattering. IEEE Trans. Antennas & Propag. 63 (2015) 3644–3653. Cited: p. 39.Google Scholar
Li, J. & Weile, D.S., Integral accuracy and the stability of two methods for the solution of time-domain integral equations for scattering from perfect conductors. IEEE Trans. Antennas & Propag. 67 (2019) 4924–4929. Cited: p. 176.Google Scholar
Li, L.-W., Kang, X.-K. & Leong, M.-S., Spheroidal Wave Functions in Electromagnetic Theory. New York: Wiley, 2002. Cited: p. 128.Google Scholar
Li, L.-W., Leong, M.-S., Yeo, T.-S., Kooi, P.-S. & Tan, K.-Y., Computations of spheroidal harmonics with complex arguments: a review with an algorithm. Phys. Rev. E 58 (1998) 6792–6806. Erratum: 71 (2005) 069901. Cited: p. 53.Google Scholar
Li, P. & Zhang, L., Analysis of transient acoustic scattering by an elastic obstacle. Communications in Mathematical Sciences 17 (2019) 1671–1698. Cited: p. 82.Google Scholar
Li, T., Burdisso, R. & Sandu, C., Literature review of models on tire–pavement interaction noise. J. Sound Vib. 420 (2018) 357–445. Cited: p. 167.Google Scholar
Licht, C., Évolution d’un système fluide-flotteur. Journal de Mécanique Théorique et Appliquée 1 (1982) 211–235. Cited: p. 84.Google Scholar
Liénard, A., Champ électrique et magnétique produit par une charge électrique concentrée en un point et animée d’un mouvement quelconque. L’Éclairage Électrique 16 (1898) 5–14, 53–59 & 106–112. Cited: p. 55.Google Scholar
Lighthill, J., Waves in Fluids. Cambridge: Cambridge University Press, 1978. Cited: pp. 5, 18, 73, 108 & 127.Google Scholar
Lighthill, M.J., On sound generated aerodynamically I. General theory. Proc. Roy. Soc. A 211 (1952) 564–587. Cited: p. 87.Google Scholar
Lighthill, M.J., Viscosity effects in sound waves of finite amplitude. In: Surveys in Mechanics (ed. G.K. Batchelor & R.M. Davies) pp. 250–351. Cambridge: Cambridge University Press, 1956. Cited: p. 18.Google Scholar
Lighthill, M.J., An Introduction to Fourier Analysis and Generalised Functions. Cambridge: Cambridge University Press, 1958. Cited: p. 90.Google Scholar
Lighthill, M.J., Sound generated aerodynamically. Proc. Roy. Soc. A 267 (1962) 147– 182. Cited: p. 87.Google Scholar
Lim, P.H. & Ozard, J.M., On the underwater acoustic field of a moving point source. I. Range-independent environment. J. Acoust. Soc. Amer. 95 (1994) 131–137. Cited: p. 57.Google Scholar
Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M. & Karniadakis, G.E., What is the fractional Laplacian? A comparative review with new results. J. Comp. Phys. 404 (2020) 109009. Cited: p. 19.Google Scholar
Litynskyy, S., Muzychuk, Y. & Muzychuk, A., On the numerical solution of the initial-boundary value problem with Neumann condition for the wave equation by the use of the Laguerre transform and boundary elements method. Acta Mechanica et Automatica 10 (2016) 285–290. Cited: p. 167.Google Scholar
Lock, J.A. & Laven, P., Mie scattering in the time domain. Part 1. The role of surface waves. J. Opt. Soc. Amer. A 28 (2011) 1086–1095. Cited: p. 120.Google Scholar
Lock, J.A. & Laven, P., Mie scattering in the time domain. Part II. The role of diffraction. J. Opt. Soc. Amer. A 28 (2011) 1096–1106. Cited: p. 120.Google Scholar
Longhorn, A.L., The unsteady, subsonic motion of a sphere in a compressible inviscid fluid. Quart. J. Mech. Appl. Math. 5 (1952) 64–81. Cited: pp. 10 & 119.Google Scholar
Lopez-Fernandez, M. & Sauter, S., Generalized convolution quadrature with variable time stepping. IMA J. Numer. Anal. 33 (2013) 1156–1175. Cited: p. 171.Google Scholar
Lorentz, H.A., The Theory of Electrons, 2nd edition. New York: Dover, 1952. This edition was first published in 1916. Cited: pp. 11 & 150.Google Scholar
Love, A.E.H., Wave-motions with discontinuities at wave-fronts. Proc. London Math. Soc., Ser. 2, 1 (1904) 37–62. Cited: pp. 63, 68, 108, 146, 149 & 150.Google Scholar
Love, A.E.H., The propagation of wave-motion in an isotropic elastic solid medium. Proc. London Math. Soc., Ser. 2, 1 (1904) 291–344. Cited: p. 176.Google Scholar
Love, A.E.H., Some illustrations of modes of decay of vibratory motions. Proc. London Math. Soc., Ser. 2, 2 (1905) 88–113. Cited: pp. 64, 69, 80, 108 & 135.Google Scholar
Lowson, M.V., The sound field for singularities in motion. Proc. Roy. Soc. A 286 (1965) 559–572. Cited: pp. 57 & 155.Google Scholar
Lu, J.-y. & Greenleaf, J.F., Nondiffracting X waves—exact solutions to free-space scalar wave equation and their finite aperture realizations. IEEE Trans. Ultrasonics, Ferroelectrics, & Frequency Control 39 (1992) 19–31. Cited: p. 51.Google Scholar
Lubich, C., Convolution quadrature and discretized operational calculus. I. Numer. Math. 52 (1988) 129–145. Cited: pp. 167 & 168.Google Scholar
Lubich, Ch., On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67 (1994) 365–389. Cited: pp. 89, 92, 93, 167 & 170.Google Scholar
Lubich, C., Convolution quadrature revisited, BIT Numer. Math. 44 (2004) 503–514. Cited: p. 170.Google Scholar
Luke, D.R. & Potthast, R., The point source method for inverse scattering in the time domain. Math. Meth. Appl. Sci. 29 (2006) 1501–1521. Cited: pp. 33 & 99.Google Scholar
Luneburg, R.K., Mathematical Theory of Optics. Berkeley: University of California Press, 1964. Reproduced from mimeographed notes issued by Brown University in 1944. Luneburg died in 1949. Cited: pp. 61 & 67.Google Scholar
Lurie, K.A., An Introduction to the Mathematical Theory of Dynamic Materials, 2nd edition. Cham: Springer, 2017. Cited: p. 6.Google Scholar
Lyrintzis, A.S., Review: the use of Kirchhoff’s method in computational aeroacoustics. J. Fluids Engineering 116 (1994) 665–676. Cited: p. 156.Google Scholar
Mabrouk, M. & Helali, Z., The scattering theory of C. Wilcox in elasticity. Math. Meth. Appl. Sci. 25 (2002) 997–1044. Cited: p. 73.Google Scholar
Maestre, F. & Pedregal, P., Dynamic materials for an optimal design problem under the two-dimensional wave equation. Discrete & Continuous Dynamical Systems, Ser. A 23 (2009) 973–990. Cited: p. 6.Google Scholar
Majda, G. & Wei, M., Relationships between a potential and its scattering frequencies. SIAM J. Appl. Math. 55 (1995) 1094–1116. Cited: p. 133.Google Scholar
Mäkitalo, J., Kauranen, M. & Suuriniemi, S., Modes and resonances of plasmonic scatterers. Phys. Rev. B 89 (2014) 165429. Cited: p. 135.Google Scholar
Mann-Nachbar, P., The interaction of an acoustic wave and an elastic spherical shell. Quart. Appl. Math. 15 (1957) 83–93. Cited: p. 119.Google Scholar
Manolis, G.D., A comparative study on three boundary element method approaches to problems in elastodynamics. Int. J. Numer. Meth. Eng. 19 (1983) 73–91. Cited: pp. 177 & 178.Google Scholar
Mansur, W.J. & Brebbia, C.A., Transient elastodynamics using a time-stepping technique. In: Boundary Elements (ed. C.A. Brebbia, T. Futagami & M. Tanaka) pp. 677– 698. Berlin: Springer, 1983. Cited: p. 177.Google Scholar
Mariani, F., Recchioni, M.C. & Zirilli, F., The use of the Pontryagin maximum principle in a furtivity problem in time-dependent acoustic obstacle scattering. Waves in Random Media 11 (2001) 549–575. Cited: pp. 80 & 100.Google Scholar
Marin, L., Natural-mode representation of transient scattered fields. IEEE Trans. Antennas & Propag. AP- 21 (1973) 809–818. Cited: p. 137.Google Scholar
Marin, L., Natural-mode representation of transient scattering from rotationally symmetric bodies. IEEE Trans. Antennas & Propag. AP- 22 (1974) 266–274. Cited: p. 130.Google Scholar
Marin, L., Transient acoustic scattering from a finite body. Acustica 31 (1974) 230–237. Cited: p. 137.Google Scholar
Marin, L., Major results and unresolved issues in singularity expansion method. Electromagnetics 1 (1981) 361–373. Cited: p. 130.Google Scholar
Marin, L. & Latham, R.W., Representation of transient scattered fields in terms of free oscillations of bodies. Proc. IEEE 60 (1972) 640–641. Cited: p. 137.Google Scholar
Marks, R.B., The singular function expansion in time-dependent scattering. IEEE Trans. Antennas & Propag. 37 (1989) 1559–1565. Cited: pp. 133 & 142.Google Scholar
Marsden, J.E. & Hughes, T.J.R., Mathematical Foundations of Elasticity. New York: Dover, 1994. Cited: p. 143.Google Scholar
Martin, P.A., Multiple Scattering. Cambridge: Cambridge University Press, 2006. Cited: pp. 33, 40, 85, 98, 128, 130, 133, 134, 140, 147, 161, 166, 174, 177 & 190.Google Scholar
Martin, P.A., Acoustic scattering by a sphere in the time domain. Wave Motion 67 (2016) 68–80. Cited: pp. 112, 117 & 121.Google Scholar
Martin, P.A., The pulsating orb: solving the wave equation outside a ball. Proc. Roy. Soc. A 472 (2016) 20160037. Cited: pp. 58, 94 & 108.Google Scholar
Martin, P.A., Asymptotic approximations for radial spheroidal wavefunctions with complex size parameter. Stud. Appl. Math. 140 (2018) 255–269. Cited: p. 130.Google Scholar
Martin, P.A., On in-out splitting of incident fields and the far-field behaviour of Herglotz wavefunctions. Math. Meth. Appl. Sci. 41 (2018) 2961–2970. Cited: p. 100.Google Scholar
Martin, P.A., Acoustics and dynamic materials. Mechanics Research Comm. 105 (2020) 103502. Cited: p. 9.Google Scholar
Maruyama, T., Saitoh, T., Bui, T.Q. & Hirose, S., Transient elastic wave analysis of 3-D large-scale cavities by fast multipole BEM using implicit Runge–Kutta convolution quadrature. Comput. Meth. Appl. Mech. Eng. 303 (2016) 231–259. Cited: p. 178.Google Scholar
Marx, E., Electromagnetic pulse scattered by a sphere. IEEE Trans. Antennas & Propag. 35 (1987) 412–417. Cited: p. 120.Google Scholar
Mavaleix-Marchessoux, D., Bonnet, M., Chaillat, S. & Leblé, B., A fast boundary element method using the Z-transform and high-frequency approximations for large-scale three-dimensional transient wave problems. Int. J. Numer. Meth. Eng. 121 (2020) 4734–4767. Cited: pp. 108 & 171.Google Scholar
McCully, J., The Laguerre transform. SIAM Rev. 2 (1960) 185–191. Cited: p. 101.Google Scholar
McIver, M. & McIver, P., Water waves in the time domain. J. Engng. Math. 70 (2011) 111–128. Cited: p. 84.Google Scholar
Mecocci, E., Misici, L., Recchioni, M.C. & Zirilli, F., A new formalism for time-dependent wave scattering from a bounded obstacle. J. Acoust. Soc. Amer. 107 (2000) 1825–1840. Cited: pp. 98 & 100.Google Scholar
Mees, L., Gouesbet, G. & Gréhan, G., Scattering of laser pulses (plane wave and focused Gaussian beam) by spheres. Appl. Optics 40 (2001) 2546–2550. Cited: p. 120.Google Scholar
Meixner, J. & Schäfke, F.W., Mathieusche Funktionen und Sphäroidfunktionen. Berlin: Springer, 1954. Cited: p. 55.Google Scholar
Meixner, J., Schäfke, F.W. & Wolf, G., Mathieu Functions and Spheroidal Functions and Their Mathematical Foundations: Further Studies. Lect. Notes Math. 837. Berlin: Springer, 1980. Cited: p. 53.Google Scholar
Melrose, R.B., Geometric Scattering Theory. Cambridge: Cambridge University Press, 1995. Cited: p. 132.Google Scholar
Merchant, B.L., Moser, P.J., Nagl, A. & Überall, H., Complex pole patterns of the scattering amplitude for conducting spheroids and finite-length cylinders. IEEE Trans. Antennas & Propag. 36 (1988) 1769–1778. Cited: p. 130.Google Scholar
Merchant, B.L., Nagl, A. & Überall, H., Resonance frequencies of conducting spheroids and the phase matching of surface waves. IEEE Trans. Antennas & Propag. AP- 34 (1986) 1464–1467. Cited: p. 136.Google Scholar
Merchant, B.L., Nagl, A. & Überall, H., A method for calculating eigenfrequencies of arbitrarily shaped convex targets: eigenfrequencies of conducting spheroids and their relation to helicoidal surface wave paths. IEEE Trans. Antennas & Propag. 37 (1989) 629–634. Cited: p. 136.Google Scholar
Messner, M. & Schanz, M., An accelerated symmetric time-domain boundary element formulation for elasticity. Eng. Anal. Bound. Elem. 34 (2010) 944–955. Cited: p. 178.Google Scholar
Meylan, M.H. & Fitzgerald, C.J., The singularity expansion method and near-trapping of linear water waves. J. Fluid Mech. 755 (2014) 230–250. Cited: p. 133.Google Scholar
Meylan, M.H. & Fitzgerald, C., Computation of long lived resonant modes and the poles of the S-matrix in water wave scattering. J. Fluids & Struct. 76 (2018) 153–165. Cited: p. 133.Google Scholar
Michalski, K.A., Bibliography of the singularity expansion method and related topics. Electromagnetics 1 (1981) 493–511. Cited: p. 204.Google Scholar
Michielsen, B.L., Herman, G.C., de Hoop, A.T. & de Zutter, D., Three-dimensional relativistic scattering of electromagnetic waves by an object in uniform translational motion. J. Math. Phys. 22 (1981) 2716–2722. Cited: p. 125.Google Scholar
Miklowitz, J., Modern corner, edge, and crack problems in linear elastodynamics involving transient waves. Advances in Applied Mechanics 25 (1987) 47–181. Cited: p. 120.Google Scholar
Milenkovic, V. & Raynor, S., Reflection of a plane acoustic step wave from an elastic spherical membrane. J. Acoust. Soc. Amer. 39 (1966) 556–563. Cited: p. 119.Google Scholar
Miller, K., Stabilized numerical analytic prolongation with poles. SIAM J. Appl. Math. 18 (1970) 346–363. Cited: p. 133.Google Scholar
Miloh, T., A note on impulsive sphere motion beneath a free-surface. J. Engng. Math. 41 (2001) 1–11. Cited: p. 84.Google Scholar
Misawa, R., Niino, K. & Nishimura, N., Boundary integral equations for calculating complex eigenvalues of transmission problems. SIAM J. Appl. Math. 77 (2017) 770–788. Cited: pp. 134 & 135.Google Scholar
Mittra, R., Integral equation methods for transient scattering. In: Transient Electromagnetic Fields (ed. L.B. Felsen) pp. 73–128. Topics in Applied Physics 10. Berlin: Springer, 1976. Cited: pp. 175 & 176.Google Scholar
Mitzner, K.M., Numerical solution for transient scattering from a hard surface of arbitrary shape—retarded potential technique. J. Acoust. Soc. Amer. 42 (1967) 391–397. Comments by R.P. Shaw: [761]. Cited: pp. 165 & 229.Google Scholar
Monegato, G., Scuderi, L. & Stanić, M.P., Lubich convolution quadratures and their application to problems described by space-time BIEs. Numerical Algorithms 56 (2011) 405–436. Cited: pp. 168, 170 & 171.Google Scholar
Morawetz, C.S., The limiting amplitude principle. Comm. Pure Appl. Math. 15 (1962) 349–361. Cited: p. 87.Google Scholar
Morawetz, C.S., The limiting amplitude principle for arbitrary finite bodies. Comm. Pure Appl. Math. 18 (1965) 183–189. Cited: p. 87.Google Scholar
Morawetz, C.S., Exponential decay of solutions of the wave equation. Comm. Pure Appl. Math. 19 (1966) 439–444. Cited: pp. 47 & 77.Google Scholar
Morawetz, C.S., Energy flow: wave motion and geometrical optics. Bull. Amer. Math. Soc. 76 (1970) 661–674. Cited: pp. 47, 73 & 77.Google Scholar
Morawetz, C.S., Notes on Time Decay and Scattering for Some Hyperbolic Problems. Philadelphia: SIAM, 1975. Cited: pp. 24, 73 & 108.Google Scholar
Morawetz, C.S., Ralston, J.V. & Strauss, W.A., Decay of solutions of the wave equation outside nontrapping obstacles. Comm. Pure Appl. Math. 30 (1977) 447–508. Cited: p. 77.Google Scholar
Morfey, C.L., Rotating blades and aerodynamic sound. J. Sound Vib. 28 (1973) 587– 617. Cited: p. 87.Google Scholar
Morgan, M.A., Singularity expansion representations of fields and currents in transient scattering. IEEE Trans. Antennas & Propag. AP- 32 (1984) 466–473. Cited: p. 138.Google Scholar
Morgans, W.R., The Kirchhoff formula extended to a moving surface. Phil. Mag., Ser. 7, 9 (1930) 141–161. Cited: p. 156.Google Scholar
Morino, L., Bharadvaj, B.K., Freedman, M.I. & Tseng, K., Boundary integral equation for wave equation with moving boundary and applications to compressible potential aerodynamics of airplanes and helicopters. Comput. Mech. 4 (1989) 231–243. Cited: p. 156.Google Scholar
Morley, T., A simple proof that the world is three-dimensional. SIAM Rev. 27 (1985) 69–71. Errata: 28 (1986) 229. Cited: p. 32.Google Scholar
Morse, P.M., Vibration and Sound. New York: McGraw-Hill, 1936. Cited: p. 108.Google Scholar
Morse, P.M. & Feshbach, H., Methods of Theoretical Physics. New York: McGraw-Hill, 1953. Cited: pp. 11, 12, 19, 55, 86, 151 & 158.Google Scholar
Morse, P.M. & Ingard, K.U., Theoretical Acoustics. New York: McGraw-Hill, 1968. Reprint: Princeton, NJ: Princeton University Press, 1986. Cited: pp. 1, 4, 5, 12, 19, 57 & 81.Google Scholar
Moses, H.E., The time-dependent inverse source problem for the acoustic and electromagnetic equations in the one- and three-dimensional cases. J. Math. Phys. 25 (1984) 1905–1923. Cited: p. 88.Google Scholar
Moses, H.E. & Prosser, R.T., Propagation of an electromagnetic field through a planar slab. SIAM Rev. 35 (1993) 610–620. Cited: p. 18.Google Scholar
Mow, C.C., Transient response of a rigid spherical inclusion in an elastic medium. J. Appl. Mech. 32 (1965) 637–642. Cited: p. 120.Google Scholar
Mujica, N., Wunenburger, R. & Fauve, S., Scattering of a sound wave by a vibrating surface. European Physical Journal B–Condensed Matter & Complex Systems 33 (2003) 209–213. Cited: p. 128.Google Scholar
Myers, M.K., On the acoustic boundary condition in the presence of flow. J. Sound Vib. 71 (1980) 429–434. Cited: p. 126.Google Scholar
Myers, M.K. & Hausmann, J.S., Computation of acoustic scattering from a moving rigid surface. J. Acoust. Soc. Amer. 91 (1992) 2594-2605. Cited: p. 125.Google Scholar
Najafi-Yazdi, A., Brès, G.A. & Mongeau, L., An acoustic analogy formulation for moving sources in uniformly moving media. Proc. Roy. Soc. A 467 (2011) 144–165. Cited: p. 154.Google Scholar
Nannen, L. & Wess, M., Computing scattering resonances using perfectly matched layers with frequency dependent scaling functions. BIT Numer. Math. 58 (2018) 373–395. Cited: p. 133.Google Scholar
Natterer, F., Sonic imaging. In: Handbook of Mathematical Methods in Imaging, 2nd edition (ed. O. Scherzer) pp. 1253–1278. New York: Springer, 2015. Cited: p. 5.Google Scholar
Neilson, H.C., Lu, Y.P. & Wang, Y.F., Transient scattering by arbitrary axisymmetric surfaces. J. Acoust. Soc. Amer. 63 (1978) 1719–1726. Cited: p. 166.Google Scholar
Neubert, J.A. & Lumley, J.L., Derivation of the stochastic Helmholtz equation for sound propagation in a turbulent fluid. J. Acoust. Soc. Amer. 48 (1970) 1212–1218. Cited: p. 5.Google Scholar
Newman, J.N., A simplified derivation of the ordinary differential equations for the free-surface Green functions. Appl. Ocean Res. 94 (2020) 101973. Cited: p. 181.Google Scholar
Newton, R.G., Analytic properties of radial wave functions. J. Math. Phys. 1 (1960) 319–347. Cited: p. 133.Google Scholar
Newton, R.G., Scattering Theory of Waves and Particles, 2nd edition. New York: Springer, 1982. Cited: p. 133.Google Scholar
Ni, G., Elliott, S.J., Ayat, M. & Teal, P.D., Modelling cochlear mechanics. BioMed Research Int. 2014 (2014) 150637. Cited: p. 81.Google Scholar
Nisbet, A., Electromagnetic potentials in a heterogeneous non-conducting medium. Proc. Roy. Soc. A 240 (1957) 375–381. Cited: p. 25.Google Scholar
NIST Digital Library of Mathematical Functions, dlmf.nist.gov. Cited: pp. 34, 35, 36, 44, 51, 52, 53, 54, 55, 101, 114, 116, 117, 118, 133, 167, 171 & 172.Google Scholar
Niwa, Y., Fukui, T., Kato, S. & Fujiki, K., An application of the integral equation method to two-dimensional elastodynamics. Theoretical and Applied Mechanics: Proc. 28th Japan National Congress for Applied Mechanics, 1978, pp. 281–290. Tokyo: University of Tokyo Press, 1980. Cited: p. 177.Google Scholar
Niwa, Y., Hirose, S. & Kitahara, M., Application of the boundary integral equation (BIE) method to transient response analysis of inclusions in a half space. Wave Motion 8 (1986) 77–91. Cited: p. 178.Google Scholar
Norris, A.N., Acoustic integrated extinction. Proc. Roy. Soc. A 471 (2015) 20150008. Cited: p. 23.Google Scholar
Norris, A.N. & Rebinsky, D.A., Acoustic coupling to membrane waves on elastic shells. J. Acoust. Soc. Amer. 95 (1994) 1809–1829. Cited: p. 82.Google Scholar
Norris, A.N. & Rebinsky, D.A., Membrane and flexural waves on thin shells. J. Vibration & Acoustics 116 (1994) 457–467. Cited: p. 82.Google Scholar
Norton, J.D., Is there an independent principle of causality in physics? British J. Philosophy of Science 60 (2009) 475–486. Cited: p. 22.Google Scholar
Norwood, F.R. & Miklowitz, J., Diffraction of transient elastic waves by a spherical cavity. J. Appl. Mech. 34 (1967) 735–744. Cited: p. 120.Google Scholar
Numrich, S.K. & Überall, H., Scattering of sound pulses and the ringing of target resonances. Physical Acoustics 21 (1992) 235–318. Cited: p. 138.Google Scholar
Nussenzveig, H.M., Causality and Dispersion Relations. New York: Academic Press, 1972. Cited: pp. 22, 23 & 135.Google Scholar
Oestreicher, H.L., Field of a spatially extended moving sound source. J. Acoust. Soc. Amer. 29 (1957) 1223–1232. Cited: p. 125.Google Scholar
Oguchi, T., Eigenvalues of spheroidal wave functions and their branch points for complex values of propagation constants. Radio Sci. 5 (1970) 1207–1214. Cited: p. 53.Google Scholar
Olver, F.W.J., The asymptotic expansion of Bessel functions of large order. Phil. Trans. Roy. Soc. A 247 (1954) 328–368. Cited: p. 114.Google Scholar
Osipov, A., Rokhlin, V. & Xiao, H., Prolate Spheroidal Wave Functions of Order Zero: Mathematical Tools for Bandlimited Approximation. New York: Springer, 2013. Cited: p. 54.Google Scholar
Ostashev, V.E., Acoustics in Moving Inhomogeneous Media. London: Spon, 1997. Cited: pp. 1 & 6.Google Scholar
Osting, B. & Weinstein, M.I., Long-lived scattering resonances and Bragg structures. SIAM J. Appl. Math. 73 (2013) 827–852. Cited: p. 136.Google Scholar
Page, L. & Adams, N.I. Jr, The electrical oscillations of a prolate spheroid. Paper I. Phys. Rev. 53 (1938) 819–831. Cited: p. 130.Google Scholar
Pak, R.Y.S. & Bai, X., A regularized boundary element formulation with weighted-collocation and higher-order projection for 3D time-domain elastodynamics. Eng. Anal. Bound. Elem. 93 (2018) 135–142. Cited: p. 177.Google Scholar
Panagiotopoulos, C.G. & Manolis, G.D., Three-dimensional BEM for transient elastodynamics based on the velocity reciprocal theorem. Eng. Anal. Bound. Elem. 35 (2011) 507–516. Cited: p. 177.Google Scholar
Panofsky, W.K.H. & Phillips, M., Classical Electricity and Magnetism, 2nd edition. Reading, MA: Addison-Wesley, 1962. Cited: pp. 49 & 57.Google Scholar
Pao, Y.-H. & Mow, C.-C., Diffraction of Elastic Waves and Dynamic Stress Concentrations. New York: Crane, Russak & Co., 1973. Cited: p. 120.Google Scholar
Pao, Y.-H. & Varatharajulu, V., Huygens’ principle, radiation conditions, and integral formulas for the scattering of elastic waves. J. Acoust. Soc. Amer. 59 (1976) 1361– 1371. Cited: pp. 176 & 178.Google Scholar
Parmar, M., Haselbacher, A. & Balachandar, S., On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow. Phil. Trans. Roy. Soc. A 366 (2008) 2161–2175. Cited: p. 10.Google Scholar
Parot, J.-M., Thirard, C. & Puillet, C., Elimination of a non-oscillatory instability in a retarded potential integral equation. Eng. Anal. Bound. Elem. 31 (2007) 133–151. Cited: p. 192.Google Scholar
Parton, V.Z. & Boriskovsky, V.G., Dynamic Fracture Mechanics, vol. 1: Stationary Cracks, revised edition. New York: Hemisphere, 1989. Cited: p. 192.Google Scholar
Pearson, L.W., Present thinking on the use of the singularity expansion in electromagnetic scattering computation. Wave Motion 5 (1983) 355–368. Cited: p. 138.Google Scholar
Pearson, L.W., A note on the representation of scattered fields as a singularity expansion. IEEE Trans. Antennas & Propag. AP- 32 (1984) 520–524. Cited: p. 138.Google Scholar
Peirce, A. & Siebrits, E., Stability analysis and design of time-stepping schemes for general elastodynamic boundary element models. Int. J. Numer. Meth. Eng. 40 (1997) 319–342. Cited: p. 177.Google Scholar
Peng, Z., Lim, K.-H. & Lee, J.-F., A discontinuous Galerkin surface integral equation method for electromagnetic wave scattering from nonpenetrable targets. IEEE Trans. Antennas & Propag. 61 (2013) 3617–3628. Cited: p. 176.Google Scholar
Penrose, R., Solutions of the zero-rest-mass equations. J. Math. Phys. 10 (1969) 38–39. Cited: p. 46.Google Scholar
Penrose, R., On the origins of twistor theory. In: Gravitation and Geometry (ed. W. Rindler & A. Trautman) pp. 341–361. Naples: Bibliopolis, 1987. Cited: p. 46.Google Scholar
Peterson, B.A., Varadan, V.V. & Varadan, V.K., T -matrix approach to study the vibration frequencies of elastic bodies in fluids. J. Acoust. Soc. Amer. 74 (1983) 1051–1056. Cited: p. 130.Google Scholar
Petropavlovsky, S., Tsynkov, S. & Turkel, E., A method of boundary equations for unsteady hyperbolic problems in 3D. J. Comp. Phys. 365 (2018) 294–323. Cited: p. 151.Google Scholar
Petropavlovsky, S.V. & Tsynkov, S.V., Method of difference potentials for evolution equations with lacunas. Computational Math. & Math. Phys. 60 (2020) 711–722. Cited: p. 151.Google Scholar
Petropoulos, P.G., Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell equations in rectangular, cylindrical, and spherical coordinates. SIAM J. Appl. Math. 60 (2000) 1037–1058. Cited: p. 42.Google Scholar
Pierce, A.D., Acoustics. New York: Acoustical Society of America, 1989. Cited: pp. 1, 2, 5, 7, 9, 31, 73, 81, 108 & 119.Google Scholar
Pierce, A.D., Wave equation for sound in fluids with unsteady inhomogeneous flow. J. Acoust. Soc. Amer. 87 (1990) 2292–2299. Cited: pp. 1, 6 & 7.Google Scholar
Piquette, J.C. & Van Buren, A.L., Nonlinear scattering of acoustic waves by vibrating surfaces. J. Acoust. Soc. Amer. 76 (1984) 880–889. Cited: p. 128.Google Scholar
Piquette, J.C., Van Buren, A.L. & Rogers, P.H., Censor’s acoustical Doppler effect analysis—Is it a valid method? J. Acoust. Soc. Amer. 83 (1988) 1681–1682. Cited: p. 128.Google Scholar
Poggio, A.J. & Miller, E.K., Integral equation solution of three-dimensional scattering problems. In: Computer Techniques for Electromagnetics (ed. R. Mittra) pp. 159–264. Oxford: Pergamon Press, 1973. Cited: pp. 174, 175 & 176.Google Scholar
Poincaré, H., Électricité et optique, 2nd edition. Paris: Gauthier-Villars, 1901. Cited: p. 11.Google Scholar
Pölz, D. & Schanz, M., Space-time discretized retarded potential boundary integral operators: quadrature for collocation methods. SIAM J. Sci. Comput. 41 (2019) A3860– A3886. Cited: p. 167.Google Scholar
Pray, A.J., Beghein, Y., Nair, N.V., Cools, K., Baǧcı, H. & Shanker, B., A higher order space-time Galerkin scheme for time domain integral equations. IEEE Trans. Antennas & Propag. 62 (2014) 6183–6191. Cited: p. 176.Google Scholar
Prieur, J. & Rahier, G., Aeroacoustic integral methods, formulation and efficient numerical implementation. Aerospace Science & Technology 5 (2001) 457–468. Addendum: 6 (2002) 323. Cited: p. 156.Google Scholar
Prunty, A.C. & Snieder, R.K., Theory of the linear sampling method for time-dependent fields. Inverse Prob. 35 (2019) 055003. Cited: p. 31.Google Scholar
Qiu, T. & Sayas, F.J., The Costabel–Stephan system of boundary integral equations in the time domain. Mathematics of Computation 85 (2016) 2341–2364. Cited: p. 171.Google Scholar
Ramm, A.G., Mathematical foundations of the singularity and eigenmode expansion methods (SEM and EEM). J. Math. Anal. Appl. 86 (1982) 562–591. Cited: pp. 137, 138 & 140.Google Scholar
Rao, S.M. & Wilton, D.R., Transient scattering by conducting surfaces of arbitrary shape. IEEE Trans. Antennas & Propag. 39 (1991) 56–61. Cited: p. 176.Google Scholar
Rauch, J., Hyperbolic Partial Differential Equations and Geometric Optics. Providence, RI: American Mathematical Society, 2012. Cited: pp. 17, 59 & 61.Google Scholar
Rauch, J.B. & Massey III, F.J., Differentiability of solutions to hyperbolic initial-boundary value problems. Trans. Amer. Math. Soc. 189 (1974) 303–318. Cited: p. 78.Google Scholar
Rayleigh, Lord (J.W. Strutt), The Theory of Sound, vol. 2, 2nd edition. London: Macmillan & Co., 1896. Reprint: New York: Dover, 1945. Cited: pp. 1, 18, 31, 87 & 108.Google Scholar
Reed, M. & Simon, B., Methods of Modern Mathematical Physics, vol. 1: Functional Analysis. New York: Academic Press, 1972. Cited: pp. 135 & 139.Google Scholar
Restrick, R.C., III, Electromagnetic scattering by a moving conducting sphere. Radio Sci. 3 (1968) 1144–1154. Cited: p. 125.Google Scholar
Rhaouti, L., Chaigne, A. & Joly, P., Time-domain modeling and numerical simulation of a kettledrum. J. Acoust. Soc. Amer. 105 (1999) 3545–3562. Cited: p. 82.Google Scholar
Rheinstein, J., Backscatter from spheres: a short pulse view. IEEE Trans. Antennas & Propag. AP-16 (1968) 89–97. Cited: p. 120.Google Scholar
Rizos, D.C. & Karabalis, D.L., An advanced direct time domain BEM formulation for general 3-D elastodynamic problems. Comput. Mech. 15 (1994) 249–269. Cited: p. 177.Google Scholar
Rizos, D.C. & Zhou, S., An advanced direct time domain BEM for 3-D wave propagation in acoustic media. J. Sound Vib. 293 (2006) 196–212. Cited: p. 167.Google Scholar
Roach, G.F., Wave Scattering by Time-Dependent Perturbations. Princeton, NJ: Princeton University Press, 2007. Cited: pp. 13 & 24.Google Scholar
Rogers, P.H., Comments on Censor and author’s reply. J. Sound Vib. 28 (1973) 764–768. Cited: pp. 128 & 200.Google Scholar
Rose, J.H., Phase retrieval for the variable velocity classical wave equation. Inverse Prob. 2 (1986) 219–228. Cited: p. 5.Google Scholar
Roth, T.E. & Chew, W.C., Development of stable A-Φ time-domain integral equations for multiscale electromagnetics. IEEE J. Multiscale & Multiphysics Computational Techniques 3 (2018) 255–265. Cited: p. 176.Google Scholar
Roth, T.E. & Chew, W.C., Stability analysis and discretization of A-Φ time domain integral equations for multiscale electromagnetics. J. Comp. Phys. 408 (2020) 109102. Cited: pp. 91 & 176.Google Scholar
Rousseau, M., Maugin, G.A. & Berezovski, M., Elements of study on dynamic materials. Archive of Applied Mechanics 81 (2011) 925–942. Cited: pp. 6 & 7.Google Scholar
Rudgers, A.J., Acoustic pulses scattered by a rigid sphere immersed in a fluid. J. Acoust. Soc. Amer. 45 (1969) 900–910. Cited: p. 119.Google Scholar
Rudgers, A.J., Separation and analysis of the acoustic field scattered by a rigid sphere. J. Acoust. Soc. Amer. 52 (1972) 234–246. Cited: p. 119.Google Scholar
Russell, B., On the notion of cause. In: Mysticism and Logic and Other Essays, pp. 180– 208. London: George Allen & Unwin Ltd., 1917. Cited: p. 22.Google Scholar
Rynne, B.P., Stability and convergence of time marching methods in scattering problems. IMA J. Appl. Math. 35 (1985) 297–310. Cited: p. 166.Google Scholar
Rynne, B.P., Instabilities in time marching methods for scattering problems. Electromagnetics 6 (1986) 129–144. Cited: p. 166.Google Scholar
Rynne, B.P., The well-posedness of the electric field integral equation for transient scattering from a perfectly conducting body. Math. Meth. Appl. Sci. 22 (1999) 619–631. Cited: pp. 175 & 176.Google Scholar
Rynne, B.P. & Smith, P.D., Stability of time marching algorithms for the electric field integral equation. J. Electro. Waves Appl. 4 (1990) 1181–1205. Cited: p. 176.Google Scholar
Sadigh, A. & Arvas, E., Treating the instabilities in marching-on-in-time method from a different perspective. IEEE Trans. Antennas & Propag. 41 (1993) 1695–1702. Cited: p. 176.Google Scholar
Saitoh, T. & Hirose, S., Parallelized fast multipole BEM based on the convolution quadrature method for 3-D wave propagation problems in time-domain. IOP Conference Series: Materials Science and Engineering 10 (2010) 012242. Cited: p. 171.Google Scholar
Sakamoto, R., Mixed problems for hyperbolic equations. II. Existence theorems with zero initial datas and energy inequalities with initial datas. Journal of Mathematics of Kyoto University 10 (1970) 403–417. Cited: p. 88.Google Scholar
Sakamoto, R., Hyperbolic Boundary Value Problems. Cambridge: Cambridge University Press, 1982. Cited: pp. 16, 78 & 88.Google Scholar
Sakurai, T. & Sugiura, H., A projection method for generalized eigenvalue problems using numerical integration. J. Comp. Appl. Math. 159 (2003) 119–128. Cited: p. 135.Google Scholar
Salo, J., Fagerholm, J., Friberg, A.T. & Salomaa, M.M., Unified description of nondiffracting X and Y waves. Phys. Rev. E 62 (2000) 4261–4275. Cited: p. 51.Google Scholar
Sandberg, K. & Beylkin, G., Full-wave-equation depth extrapolation for migration. Geophysics 74 (2009) WCA121–WCA128. Cited: p. 5.Google Scholar
Sauter, S.A. & Schanz, M., Convolution quadrature for the wave equation with impedance boundary conditions. J. Comp. Phys. 334 (2017) 442–459. Cited: p. 171.Google Scholar
Sauter, S. & Veit, A., A Galerkin method for retarded boundary integral equations with smooth and compactly supported temporal basis functions. Numer. Math. 123 (2013) 145–176. Cited: p. 167.Google Scholar
Sauter, S. & Veit, A., Retarded boundary integral equations on the sphere: exact and numerical solution. IMA J. Numer. Anal. 34 (2014) 675–699. Cited: p. 167.Google Scholar
Sauter, S. & Veit, A., Adaptive time discretization for retarded potentials. Numer. Math. 132 (2016) 569–595. Cited: p. 167.Google Scholar
Sayas, F.-J., Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map. Cham: Springer, 2016. Cited: pp. 24, 89, 91, 156, 159, 168, 170 & 176.Google Scholar
Schanz, M., Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach. Berlin: Springer, 2001. Cited: pp. 168 & 178.Google Scholar
Schanz, M. & Antes, H., Application of ‘operational quadrature methods’ in time domain boundary element methods. Meccanica 32 (1997) 179–186. Cited: p. 168.Google Scholar
Schlemmer, E., Rucker, W.M. & Richter, K.R., Boundary element computations of 3D transient scattering from lossy dielectric objects. IEEE Trans. Magnetics 29 (1993) 1524–1527. Cited: p. 176.Google Scholar
Schmidt, E., Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Mathematische Annalen 63 (1907) 433–476. Cited: p. 140.Google Scholar
Schmidt, G., Spectral and scattering theory for Maxwell’s equations in an exterior domain. Arch. Rational Mech. Anal. 28 (1968) 284–322. Cited: p. 73.Google Scholar
Schott, G.A., Electromagnetic Radiation. Cambridge: Cambridge University Press, 1912. Cited: p. 57.Google Scholar
Schulman, L.S., Time’s Arrows and Quantum Measurement. Cambridge: Cambridge University Press, 1997. Cited: pp. 22 & 24.Google Scholar
Schwartz, L., Mathematics for the Physical Sciences. Reading, MA: Addison-Wesley, 1966. Cited: pp. 90, 97 & 152.Google Scholar
Schwinger, J., On the classical radiation of accelerated electrons. Phys. Rev. 75 (1949) 1912–1925. Cited: p. 57.Google Scholar
Senior, T.B.A. & Uslenghi, P.L.E., The prolate spheroid. Chapter 11 (pp. 416–471) in [121]. Cited: p. 128.Google Scholar
Senior, T.B.A. & Uslenghi, P.L.E., The oblate spheroid. Chapter 13 (pp. 503–527) in [121]. Cited: p. 52.Google Scholar
Sesma, d, A naive procedure for computing angular spheroidal functions. arXiv: 1606.00149, April 2018. Cited: pp. 53 & 55.Google Scholar
Seymour, B. & Varley, E., Exact representations for acoustical waves when the sound speed varies in space and time. Stud. Appl. Math. 76 (1987) 1–35. Cited: pp. 6 & 12.Google Scholar
Shaarawi, A.M., Ziolkowski, R.W. & Besieris, I.M., On the evanescent fields and the causality of the focus wave modes. J. Math. Phys. 36 (1995) 5565–5587. Cited: p. 49.Google Scholar
Shanker, B., Ergin, A.A., Aygün, K. & Michielssen, E., Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm. IEEE Trans. Antennas & Propag. 48 (2000) 510–523. Errata: 49 (2001) 1243. Cited: p. 176.Google Scholar
Shanker, B., Ergin, A.A., Aygün, K. & Michielssen, E., Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation. IEEE Trans. Antennas & Propag. 48 (2000) 1064–1074. Cited: p. 176.Google Scholar
Shanker, B., Ergin, A.A., Lu, M. & Michielssen, E., Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm. IEEE Trans. Antennas & Propag. 51 (2003) 628–641. Cited: p. 176.Google Scholar
Shaw, R.P., Diffraction of acoustic pulses by obstacles of arbitrary shape with a Robin boundary condition. J. Acoust. Soc. Amer. 41 (1967) 855–859. Cited: p. 165.Google Scholar
R.P. Shaw, , Comments on Mitzner [629]. J. Acoust. Soc. Amer. 43 (1968) 638–639. Cited: pp. 165 & 223.Google Scholar
Shaw, R.P., Retarded potential approach to the scattering of elastic pulses by rigid obstacles of arbitrary shape. J. Acoust. Soc. Amer. 44 (1968) 745–748. Cited: p. 178.Google Scholar
Shaw, R.P., Diffraction of plane acoustic pulses by obstacles of arbitrary cross section with an impedance boundary condition. J. Acoust. Soc. Amer. 44 (1968) 1062–1068. Cited: p. 165.Google Scholar
Shaw, R.P., Integral equation formulation of dynamic acoustic fluid–elastic solid interaction problems. J. Acoust. Soc. Amer. 53 (1973) 514–520. Cited: p. 165.Google Scholar
Shaw, R.P., A history of boundary elements. In: Boundary Elements XV (ed. C.A. Brebbia & J.J. Rencis) pp. 265–280. Southampton: Computational Mechanics Publications Ltd., 1993. Cited: p. 165.Google Scholar
Shaw, R.P. & English, J.A., Transient acoustic scattering by a free (pressure release) sphere. J. Sound Vib. 20 (1972) 321–331. Cited: p. 165.Google Scholar
Shaw, R.P. & Friedman, M.B., Diffraction of pulses by deformable cylindrical obstacles of arbitrary cross section. Proc. 4th U.S. National Congress of Applied Mechanics, vol. 1, pp. 371–379. New York: ASME, 1962. Cited: p. 165.Google Scholar
Shi, Y., Bağcı, H. & Lu, M., On the internal resonant modes in marching-on-in-time solution of the time domain electric field integral equation. IEEE Trans. Antennas & Propag. 61 (2013) 4389–4392. Cited: p. 166.Google Scholar
Shibata, Y. & Soga, H., Scattering theory for the elastic wave equation. Publications of the Research Institute for Mathematical Sciences, Kyoto University 25 (1989) 861–887. Cited: p. 73.Google Scholar
Shifrin, K.S. & Zolotov, I.G., Quasi-stationary scattering of electromagnetic pulses by spherical particles. Appl. Optics 33 (1994) 7798–7804. Cited: p. 120.Google Scholar
Shindo, Y., Axisymmetric elastodynamic response of a flat annular crack to normal impact waves. Engineering Fracture Mech. 19 (1984) 837–848. Cited: p. 192.Google Scholar
Shiozawa, T., Electromagnetic scattering by a moving small particle. J. Appl. Phys. 39 (1968) 2993–2997. Cited: p. 125.Google Scholar
Shlivinski, A., Heyman, E. & Devaney, A.J., Time domain radiation by scalar sources: plane wave to multipole transform. J. Math. Phys. 42 (2001) 5915–5919. Cited: p. 36.Google Scholar
Sidman, R.D., Scattering of acoustical waves by a prolate spheroidal obstacle. J. Acoust. Soc. Amer. 52 (1972) 879–883. Cited: p. 130.Google Scholar
Siegert, A.J.F., On the derivation of the dispersion formula for nuclear reactions. Phys. Rev. 56 (1939) 750–752. Cited: p. 133.Google Scholar
Sih, G.C. & Embley, G.T., Sudden twisting of a penny-shaped crack. J. Appl. Mech. 39 (1972) 395–400. Cited: p. 192.Google Scholar
Sih, G.C., Embley, G.T. & Ravera, R.S., Impact response of a finite crack in plane extension. Int. J. Solids Struct. 8 (1972) 977–993. Cited: p. 192.Google Scholar
Silbiger, A., Comments on Chertock and author’s reply. J. Acoust. Soc. Amer. 33 (1961) 1630. Cited: pp. 55 & 201.Google Scholar
Sitenko, A.G., Scattering Theory. Berlin: Springer, 1991. Cited: p. 133.Google Scholar
Skorokhodov, S.L. & Khristoforov, D.V., Calculation of the branch points of the eigenfunctions corresponding to wave spheroidal functions. Computational Math. & Math. Phys. 46 (2006) 1132–1146. Cited: p. 53.Google Scholar
Smale, S., Smooth solutions of the heat and wave equations. Commentarii Mathematici Helvetici 55 (1980) 1–12. Cited: p. 78.Google Scholar
Smirnov, V.I., La solution d’un problème aux limites pour l’équation des ondes dans le cas du cercle et de la sphère. Comptes Rendus (Doklady) de l’Académie des Sciences de l’URSS, New Series, 14 (1937) 13–16. Cited: p. 37.Google Scholar
Smith, P.D., Instabilities in time marching methods for scattering: cause and rectification. Electromagnetics 10 (1990) 439–451. Cited: pp. 166, 175 & 176.Google Scholar
Smithies, F., Integral Equations. Cambridge: Cambridge University Press, 1958. Cited: pp. 139 & 140.Google Scholar
Sneddon, I.N., Fourier Transforms. New York: McGraw-Hill, 1951. Cited: pp. 13, 84 & 99.Google Scholar
Sobczyk, K., Stochastic Wave Propagation. Amsterdam: Elsevier, 1985. Cited: p. 5.Google Scholar
Sohl, C., Gustafsson, M. & Kristensson, G., The integrated extinction for broadband scattering of acoustic waves. J. Acoust. Soc. Amer. 122 (2007) 3206–3210. Cited: p. 23.Google Scholar
Sommerfeld, A., Theoretisches über die Beugung der Röntgenstrahlen. Zeitschrift für Mathematik und Physik 46 (1901) 11–97. Cited: p. 187.Google Scholar
Sommerfeld, A., Optics. New York: Academic Press, 1954. Cited: p. 136.Google Scholar
Steele, C.R., Behavior of the basilar membrane with pure-tone excitation. J. Acoust. Soc. Amer. 55 (1974) 148–162. Cited: p. 81.Google Scholar
Stefanov, P.D., Inverse scattering problem for moving obstacles. Mathematische Zeitschrift 207 (1991) 461–480. Cited: p. 125.Google Scholar
Steinbach, O. & Unger, G., Combined boundary integral equations for acoustic scattering-resonance problems. Math. Meth. Appl. Sci. 40 (2017) 1516–1530. Cited: pp. 134 & 135.Google Scholar
Steinberg, S., Meromorphic families of compact operators. Arch. Rational Mech. Anal. 31 (1968) 372–379. Cited: p. 135.Google Scholar
Stewart, G.W., On the early history of the singular value decomposition. SIAM Rev. 35 (1993) 551–566. Cited: p. 140.Google Scholar
Stoker, J.J., Water Waves. New York: Interscience, 1957. Cited: pp. 27 & 84.Google Scholar
Stokes, G.G., On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Transactions of the Cambridge Philosophical Society 8 (1849) 287–319. Also: Mathematical and Physical Papers, vol. 1, pp. 75–129. Cambridge: Cambridge University Press, 1880. Cited: p. 18.Google Scholar
Stolt, R.H. & Weglein, A.B., Seismic Imaging and Inversion. Cambridge: Cambridge University Press, 2012. Cited: pp. 4 & 5.Google Scholar
Strasberg, M., Gas bubbles as sources of sound in liquids. J. Acoust. Soc. Amer. 28 (1956) 20–26. Cited: p. 127.Google Scholar
Stratton, J.A., Electromagnetic Theory. New York: McGraw-Hill, 1941. Cited: pp. 19, 24, 25, 57, 137, 146 & 150.Google Scholar
Strifors, H.C., Gaunaurd, G.C., Brusmark, B. & Abrahamson, S., Transient interactions of an EM pulse with a dielectric spherical shell. IEEE Trans. Antennas & Propag. 42 (1994) 453–462. Cited: p. 120.Google Scholar
Struik, D.J. (ed.), A Source Book in Mathematics, 1200–1800. Cambridge: Harvard University Press, 1969. Cited: p. 12.Google Scholar
Struik, D.J., Lectures on Classical Differential Geometry, 2nd edition. New York: Dover, 1988. Reprint of 1961 edition. Cited: p. 136.Google Scholar
Su, Y., Sheng, W. & Han, Y., An accurate time-domain algorithm using high-order spatial basis functions for bodies of revolution. J. Electro. Waves Appl. 29 (2015) 574–588. Cited: p. 176.Google Scholar
Sym, A., Solitons of wave equation. J. Nonlinear Math. Phys. 12 (2005) 648–659. Cited: pp. 30 & 47.Google Scholar
Synge, J.L., Hamilton’s method in geometrical optics. J. Opt. Soc. Amer. 27 (1937) 75– 82. Cited: p. 61.Google Scholar
Tada, T., Boundary integral equation method for earthquake rupture dynamics. International Geophysics 94 (2009) 217–267. Cited: p. 192.Google Scholar
Tada, T., Fukuyama, E. & Madariaga, R., Non-hypersingular boundary integral equations for 3-D non-planar crack dynamics. Comput. Mech. 25 (2000) 613–626. Cited: p. 192.Google Scholar
Tada, T. & Madariaga, R., Dynamic modelling of the flat 2-D crack by a semi-analytic BIEM scheme. Int. J. Numer. Meth. Eng. 50 (2001) 227–251. Cited: p. 192.Google Scholar
Tagirdzhanov, A.M. & Kiselev, A.P., Complexified spherical waves and their sources. A review. Optics & Spectroscopy 119 (2015) 257–267. Cited: p. 49.Google Scholar
Takahashi, T., An interpolation-based fast-multipole accelerated boundary integral equation method for the three-dimensional wave equation. J. Comp. Phys. 258 (2014) 809–832. Cited: pp. 166 & 167.Google Scholar
Takahashi, T., Nishimura, N. & Kobayashi, S., A fast BIEM for three-dimensional elastodynamics in time domain. Eng. Anal. Bound. Elem. 28 (2004) 165–180. Cited: p. 177.Google Scholar
Tang, S.-C. & Yen, D.H.Y., Interaction of a plane acoustic wave with an elastic spherical shell. J. Acoust. Soc. Amer. 47 (1970) 1325–1333. Cited: p. 119.Google Scholar
Tardy, I., Piau, G.-P., Chabrat, P. & Rouch, J., Computational and experimental analysis of the scattering by rotating fans. IEEE Trans. Antennas & Propag. 44 (1996) 1414–1421. Cited: p. 125.Google Scholar
Tatarski, V.I., Wave Propagation in a Turbulent Medium. New York: McGraw-Hill, 1961. Cited: p. 6.Google Scholar
Taylor, J.R., Scattering Theory: The Quantum Theory on Nonrelativistic Collisions. New York: Wiley, 1972. Cited: p. 133.Google Scholar
Taylor, K., Acoustic generation by vibrating bodies in homentropic potential flow at low Mach number. J. Sound Vib. 65 (1979) 125–136. Cited: pp. 125 & 127.Google Scholar
Taylor, M.E., Partial Differential Equations II: Qualitative Studies of Linear Equations, 2nd edition. New York: Springer, 2011. Cited: pp. 73, 132 & 135.Google Scholar
Teixeira, F.L. & Chew, W.C., PML-FDTD in cylindrical and spherical grids. IEEE Microwave & Guided Wave Lett. 7 (1997) 285–287. Cited: p. 42.Google Scholar
Temam, R., Suitable initial conditions. J. Comp. Phys. 218 (2006) 443–450. Cited: p. 78.Google Scholar
Thau, S.A. & Lu, T.-H., Diffraction of transient horizontal shear waves by a finite crack and a finite rigid ribbon. Int. J. Eng. Sci. 8 (1970) 857–874. Cited: p. 187.Google Scholar
Thau, S.A. & Lu, T.-H., Transient stress intensity factors for a finite crack in an elastic solid caused by a dilatational wave. Int. J. Solids Struct. 7 (1971) 731–750. Cited: p. 192.Google Scholar
Thompson, J.H., Closed solutions for wedge diffraction. SIAM J. Appl. Math. 22 (1972) 300–306. Cited: p. 187.Google Scholar
Thomson, J.J., On electrical oscillations and the effects produced by the motion of an electrified sphere. Proc. London Math. Soc., Ser. 1, 15 (1884) 197–218. Cited: p. 135.Google Scholar
Tijhuis, A.G., Toward a stable marching-on-in-time method for two-dimensional transient electromagnetic scattering problems. Radio Sci. 19 (1984) 1311–1317. Cited: p. 176.Google Scholar
Tijhuis, A.G., Electromagnetic Inverse Profiling. Utrecht: VNU Science Press, 1987. Cited: p. 166.Google Scholar
Ting, L. & Miksis, M.J., Exact boundary conditions for scattering problems. J. Acoust. Soc. Amer. 80 (1986) 1825–1827. Cited: p. 150.Google Scholar
Tokita, T., Exponential decay of solutions for the wave equation in the exterior domain with spherical boundary. Journal of Mathematics of Kyoto University 12 (1972) 413– 430. Cited: p. 120.Google Scholar
Toll, J.S., Causality and the dispersion relation: logical foundations. Phys. Rev. 104 (1956) 1760–1770. Cited: p. 22.Google Scholar
Treeby, B.E., Budisky, J., Wise, E.S., Jaros, J. & Cox, B.T., Rapid calculation of acoustic fields from arbitrary continuous-wave sources. J. Acoust. Soc. Amer. 143 (2018) 529– 537. Cited: p. 86.Google Scholar
Treeby, B.E. & Cox, B.T., Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Amer. 127 (2010) 2741– 2748. Erratum: 130 (2011) 610. Cited: p. 19.Google Scholar
Trefethen, L.N., Pseudospectra of matrices. In: Numerical Analysis 1991 (ed. D.F. Griffiths & G.A. Watson) pp. 234–266. Harlow: Longman Scientific & Technical, 1992. Cited: p. 140.Google Scholar
Trefethen, L.N. & Embree, M., Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators. Princeton, NJ: Princeton University Press, 2005. Cited: p. 140.Google Scholar
Treves, F., Basic Linear Partial Differential Equations. New York: Academic Press, 1975. Cited: pp. 29, 89, 90, 91 & 97.Google Scholar
Truesdell, C., Outline of the history of flexible or elastic bodies to 1788. J. Acoust. Soc. Amer. 32 (1960) 1647–1656. Cited: p. 12.Google Scholar
Truesdell, C. & Toupin, R., The classical field theories. In: Handbuch der Physik, vol. III/1 (ed. S. Flügge) pp. 226–858. Berlin: Springer, 1960. Cited: p. 69.Google Scholar
Tu, L.W., An Introduction to Manifolds, 2nd edition. New York: Springer, 2011. Cited: pp. 186 & 187.Google Scholar
Tupholme, G.E., Generation of an axisymmetrical acoustic pulse by a deformable sphere. Proc. Camb. Phil. Soc. 63 (1967) 1285–1308. Cited: p. 119.Google Scholar
Tupholme, G.E., Elastic pulse generation by tractions applied to a spherical cavity. Applied Scientific Research 40 (1983) 299–325. Cited: p. 120.Google Scholar
Tygel, M. & Hubral, P., Transient Waves in Layered Media. Amsterdam: Elsevier, 1987. Cited: pp. 24 & 45.Google Scholar
Überall, H., Delsanto, P.P., Alemar, J.D., Rosario, E. & Nagl, A., Application of the singularity expansion method to elastic wave scattering. Appl. Mech. Rev. 43 (1990) 235– 249. Cited: p. 138.Google Scholar
Überall, H., Dragonette, L.R. & Flax, L., Relation between creeping waves and normal modes of vibration of a curved body. J. Acoust. Soc. Amer. 61 (1977) 711–715. Cited: p. 136.Google Scholar
Überall, H., Gaunaurd, G.C. & Tanglis, E., Interior and exterior resonances in acoustic scattering. II. – Targets of arbitrary shape (T -matrix approach). Il Nuovo Cimento B 77 (1983) 73–86. Cited: p. 136.Google Scholar
Überall, H. & Huang, H., Acoustical response of submerged elastic structures obtained through integral transforms. Physical Acoustics 12 (1976) 217–275. Cited: p. 119.Google Scholar
Überall, H., Moser, P.J., Merchant, B.L., Nagl, A., Yoo, K.B., Brown, S.H., Dickey, J.W. & D’Archangelo, J.M., Complex acoustic and electromagnetic resonance frequencies of prolate spheroids and related elongated objects and their physical interpretation. J. Appl. Phys. 58 (1985) 2109–2124. Cited: p. 130.Google Scholar
Ülkü, H.A., Bağcı, H. & Michielssen, E., Marching on-in-time solution of the time domain magnetic field integral equation using a predictor-corrector scheme. IEEE Trans. Antennas & Propag. 61 (2013) 4120–4131. Cited: pp. 171 & 175.Google Scholar
Unger, G., Trügler, A. & Hohenester, U., Novel modal approximation scheme for plasmonic transmission problems. Phys. Rev. Lett. 121 (2018) 246802. Cited: p. 135.Google Scholar
Uslenghi, P.L.E. (ed.), Electromagnetic Scattering. New York: Academic Press, 1978. Cited: pp. 196 & 204.Google Scholar
Van Bladel, J., Relativity and Engineering. Berlin: Springer, 1984. Cited: pp. 49 & 125.Google Scholar
Van Buren, A.L., Prolate spheroidal functions for complex c. www.mathieuandspheroidalwavefunctions.com Cited: p. 55.Google Scholar
van’t Wout, E., van der Heul, D.R., van der Ven, H. & Vuik, C., Design of temporal basis functions for time domain integral equation methods with predefined accuracy and smoothness. IEEE Trans. Antennas & Propag. 61 (2013) 271–280. Cited: p. 176.Google Scholar
van’t Wout, E., van der Heul, D.R., van der Ven, H. & Vuik, C., Stability analysis of the marching-on-in-time boundary element method for electromagnetics. J. Comp. Appl. Math. 294 (2016) 358–371. Cited: p. 176.Google Scholar
Vechinski, D.A. & Rao, S.M., A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape. IEEE Trans. Antennas & Propag. 40 (1992) 661–665. Comments by B.P. Rynne and authors’ reply: 41 (1993) 517–520. Cited: p. 176.Google Scholar
Vechinski, S.R. & Shumpert, T.H., Natural resonances of conducting bodies of revolution. IEEE Trans. Antennas & Propag. 38 (1990) 1133–1136. Cited: p. 135.Google Scholar
Veit, A., Merta, M., Zapletal, J. & Lukáš, D., Efficient solution of time-domain boundary integral equations arising in sound-hard scattering. Int. J. Numer. Meth. Eng. 107 (2016) 430–449. Cited: p. 167.Google Scholar
Venås, J.V. & Jenserud, T., Exact 3D scattering solutions for spherical symmetric scatterers. J. Sound Vib. 440 (2019) 439–479. Corrigendum: 474 (2020) 115270. Cited: p. 119.Google Scholar
Ventsel, E. & Krauthammer, T., Thin Plates and Shells. New York: Marcel Dekker, 2001. Cited: p. 82.Google Scholar
Venttsel’, A.D., On boundary conditions for multidimensional diffusion processes. Theory of Probability & Its Applications 4 (1959) 164–177. Cited: p. 80.Google Scholar
Victor, J.D., Temporal impulse responses from flicker sensitivities: causality, linearity, and amplitude data do not determine phase. J. Opt. Soc. Amer. A 6 (1989) 1302–1303. Cited: p. 24.Google Scholar
Volterra, V., Sur la théorie des ondes liquides et la méthode de Green. Journal de Mathématiques Pures et Appliquées, Ser. 9, 13 (1934) 1–18. Cited: pp. 26 & 180.Google Scholar
von Estorff, O. & Antes, H., On FEM–BEM coupling for fluid–structure interaction analyses in the time domain. Int. J. Numer. Meth. Eng. 31 (1991) 1151–1168. Cited: p. 82.Google Scholar
Wait, J.R., Diffraction of a spherical wave pulse by a half-plane screen. Canadian J. Phys. 35 (1957) 693–696. Cited: p. 187.Google Scholar
Walker, S.P., Bluck, M.J. & Chatzis, I., The stability of integral equation time-domain computations for three-dimensional scattering; similarities and differences between electrodynamic and elastodynamic computations. Int. J. Numerical Modelling: Electronic Networks, Devices & Fields 15 (2002) 459–474. Cited: pp. 176 & 177.Google Scholar
Wan, G.C. & Tong, M.S., Refining transient electromagnetic scattering analysis: a new approach based on the magnetic field integral equation. IEEE Antennas & Propagation Magazine 59, No. 1 (2017) 66–73. Cited: p. 176.Google Scholar
Wang, H., Henwood, D.J., Harris, P.J. & Chakrabarti, R., Concerning the cause of instability in time-stepping boundary element methods applied to the exterior acoustic problem. J. Sound Vib. 305 (2007) 289–297. Cited: p. 166.Google Scholar
Wang, M., Freund, J.B. & Lele, S.K., Computational prediction of flow-generated sound. Ann. Rev. Fluid Mech. 38 (2006) 483–512. Cited: pp. 87 & 156.Google Scholar
Wang, X., Wildman, R.A., Weile, D.S. & Monk, P., A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetics. IEEE Trans. Antennas & Propag. 56 (2008) 2442–2452. Cited: pp. 171 & 176.Google Scholar
Wang, Z.-H., Rienstra, S.W., Bi, C.-X. & Koren, B., An accurate and efficient computational method for time-domain aeroacoustic scattering. J. Comp. Phys. 412 (2020) 109442. Cited: p. 183.Google Scholar
Watanabe, K., Integral Transform Techniques for Green’s Function, 2nd edition. Cham: Springer, 2015. Cited: p. 187.Google Scholar
Watson, E.J., Laplace Transforms and Applications. New York: Van Nostrand Reinhold, 1981. Cited: pp. 17, 21 & 116.Google Scholar
Wawa, J.C. & DiMaggio, F.L., Dynamic response of a submerged prolate spheroidal shell to a longitudinal shock wave. Computers & Struct. 20 (1985) 975–989. Cited: p. 130.Google Scholar
Webster, A.G., Partial Differential Equations of Mathematical Physics, 2nd edition. New York: Dover, 1955. Cited: pp. 12, 85 & 146.Google Scholar
Wehausen, J.V., Initial-value problem for the motion in an undulating sea of a body with fixed equilibrium position. J. Engng. Math. 1 (1967) 1–17. Cited: pp. 84 & 180.Google Scholar
Wehausen, J.V., The motion of floating bodies. Ann. Rev. Fluid Mech. 3 (1971) 237–268. Cited: pp. 27, 84 & 180.Google Scholar
Wehausen, J.V., Causality and the radiation condition. J. Engng. Math. 26 (1992) 153– 158. Cited: p. 180.Google Scholar
Wei, M., Majda, G. & Strauss, W., Numerical computation of the scattering frequencies for acoustic wave equations. J. Comp. Phys. 75 (1988) 345–358. Cited: p. 133.Google Scholar
Weile, D.S., Pisharody, G., Chen, N.-W., Shanker, B. & Michielssen, E., A novel scheme for the solution of the time-domain integral equations of electromagnetics. IEEE Trans. Antennas & Propag. 52 (2004) 283–295. Cited: p. 176.Google Scholar
Westervelt, P.J., Scattering of sound by sound. J. Acoust. Soc. Amer. 29 (1957) 199–203. Cited: p. 88.Google Scholar
Weston, V.H., Pulse return from a sphere. IRE Trans. Antennas & Propagation 7 (1959) S43–S51. Cited: pp. 114 & 120.Google Scholar
Wheeler, G.F. & Crummett, W.P., The vibrating string controversy. Amer. J. Phys. 55 (1987) 33–37. Cited: pp. 12 & 13.Google Scholar
Wheeler, L.T. & Sternberg, E., Some theorems in classical elastodynamics. Arch. Rational Mech. Anal. 31 (1968) 51–90. Cited: p. 176.Google Scholar
Whitham, G.B., Linear and Nonlinear Waves. New York: Wiley, 1974. Cited: pp. 31, 59, 73 & 108.Google Scholar
Whittaker, E.T., On the partial differential equations of mathematical physics. Mathematische Annalen 57 (1903) 333–355. Cited: p. 45.Google Scholar
Wiechert, E., Elektrodynamische Elementargesetze. Archives Néerlandaises des Sciences Exactes et Naturelles, Ser. 2, 5 (1900) 549–573. Also: Annalen der Physik, 4 Folge, 4 (1901) 667–689. Cited: p. 55.Google Scholar
Wijeyewickrema, A.C. & Keer, L.M., Transient elastic wave scattering by a rigid spherical inclusion. J. Acoust. Soc. Amer. 86 (1989) 802–809. Cited: p. 120.Google Scholar
Wilcox, C.H., The initial-boundary value problem for the wave equation in an exterior domain with spherical boundary. Notices Amer. Math. Soc. 6 (1959) 869–870. Cited: pp. 115 & 119.Google Scholar
Wilcox, C.H., Initial-boundary value problems for linear hyperbolic partial differential equations of the second order. Arch. Rational Mech. Anal. 10 (1962) 361–400. Cited: p. 73.Google Scholar
Wilcox, C.H., Scattering theory for the d’Alembert equation in exterior domains. Lect. Notes Math. 442. Berlin: Springer, 1975. Cited: pp. 73, 74 & 208.Google Scholar
Wilcox, C.H., Spectral and asymptotic analysis of acoustic wave propagation. In: [328], pp. 385–473. Cited: p. 73.Google Scholar
Wildman, R.A., Pisharody, G., Weile, D.S., Balasubramaniam, S. & Michielssen, E., An accurate scheme for the solution of the time-domain integral equations of electromagnetics using higher order vector bases and bandlimited extrapolation. IEEE Trans. Antennas & Propag. 52 (2004) 2973–2984. Cited: p. 176.Google Scholar
Wilson, E.B. & Lewis, G.N., The space-time manifold of relativity. The non-Euclidean geometry of mechanics and electromagnetics. Proc. American Academy of Arts & Sciences 48 (1912) 389–507. Cited: p. 11.Google Scholar
Wright, D.W. & Cobbold, R.S.C., Acoustic wave transmission in time-varying phononic crystals. Smart Materials & Structures 18 (2009) 015008. Cited: p. 6.Google Scholar
Wu, S.F., The Helmholtz Equation Least Squares Method. New York: Springer, 2015. Cited: p. 120.Google Scholar
Wu, S.F., Lu, H. & Bajwa, M.S., Reconstruction of transient acoustic radiation from a sphere. J. Acoust. Soc. Amer. 117 (2005) 2065–2077. Cited: p. 120.Google Scholar
Wu, X.-F. & Akay, A., Sound radiation from vibrating bodies in motion. J. Acoust. Soc. Amer. 91 (1992) 2544–2555. Cited: p. 156.Google Scholar
Wunenburger, R., Mujica, N. & Fauve, S., Experimental study of the Doppler shift generated by a vibrating scatterer. J. Acoust. Soc. Amer. 115 (2004) 507–514. Cited: p. 128.Google Scholar
Xia, M.Y., Zhang, G.H., Dai, G.L. & Chan, C.H., Stable solution of time domain integral equation methods using quadratic B-spline temporal basis functions. J. Comp. Math. 25 (2007) 374–384. Cited: p. 176.Google Scholar
Yang, P., Li, J., Gu, X. & Wu, D., Application of the 3D time-domain Green’s function for finite water depth in hydroelastic mechanics. Ocean Engng. 189 (2019) 106386. Cited: p. 179.Google Scholar
Yazdani, M., Mautz, J.R., Lee, J.K. & Arvas, E., Transient electromagnetic scattering by a radially uniaxial dielectric sphere: the generalized Debye and Mie series solutions. IEEE Trans. Antennas & Propag. 64 (2016) 1039–1046. Cited: p. 120.Google Scholar
Yılmaz, A.E., Jin, J.-M. & Michielssen, E., Time domain adaptive integral method for surface integral equations. IEEE Trans. Antennas & Propag. 52 (2004) 2692–2708. Cited: p. 167.Google Scholar
Yu, G., Mansur, W.J., Carrer, J.A.M. & Gong, L., Stability of Galerkin and collocation time domain boundary element methods as applied to the scalar wave equation. Computers & Struct. 74 (2000) 495–506. Cited: p. 166.Google Scholar
Zemanian, A.H., Distribution Theory and Transform Analysis. New York: McGraw-Hill, 1965. Cited: pp. 90 & 97.Google Scholar
Zemell, S.H., New derivation of the exact solution for the diffraction of a cylindrical or spherical pulse by a wedge. Int. J. Eng. Sci. 14 (1976) 845–851. Cited: p. 187.Google Scholar
Zenginoğlu, A., Hyperboloidal layers for hyperbolic equations on unbounded domains. J. Comp. Phys. 230 (2011) 2286–2302. Cited: pp. 42 & 44.Google Scholar
Zhang, Ch. & Gross, D., A non-hypersingular time-domain BIEM for 3-D transient elastodynamic crack analysis. Int. J. Numer. Meth. Eng. 36 (1993) 2997–3017. Cited: p. 192.Google Scholar
Zhang, H.L., Sha, Y.X., Guo, X.Y., Xia, M.Y. & Chan, C.H., Efficient analysis of scattering by multiple moving objects using a tailored MLFMA. IEEE Trans. Antennas & Propag. 67 (2019) 2023–2027. Cited: p. 125.Google Scholar
Zhang, P. & Geers, T.L., Excitation of a fluid-filled, submerged spherical shell by a transient acoustic wave. J. Acoust. Soc. Amer. 93 (1993) 696–705. Cited: pp. 119, 120 & 121.Google Scholar
Zhao, Y., Ding, D. & Chen, R., A discontinuous Galerkin time-domain integral equation method for electromagnetic scattering from PEC objects. IEEE Trans. Antennas & Propag. 64 (2016) 2410–2417. Cited: p. 176.Google Scholar
Zhu, M.-D., Sarkar, T.K. & Chen, H., A stabilized marching-on-in-degree scheme for the transient solution of the electric field integral equation. IEEE Trans. Antennas & Propag. 67 (2019) 3232–3240. Cited: p. 176.Google Scholar
Zhu, M.-D., Sarkar, T.K., Chen, H. & Wu, Y., On the stability of time-domain magnetic field integral equation using Laguerre functions. IEEE Trans. Antennas & Propag. 67 (2019) 3939–3947. Cited: p. 176.Google Scholar
Zworski, M., Resonances in physics and geometry. Notices Amer. Math. Soc. 46 (1999) 319–328. Cited: pp. 28 & 133.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • P. A. Martin, Colorado School of Mines
  • Book: Time-Domain Scattering
  • Online publication: 11 June 2021
  • Chapter DOI: https://doi.org/10.1017/9781108891066.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • P. A. Martin, Colorado School of Mines
  • Book: Time-Domain Scattering
  • Online publication: 11 June 2021
  • Chapter DOI: https://doi.org/10.1017/9781108891066.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • P. A. Martin, Colorado School of Mines
  • Book: Time-Domain Scattering
  • Online publication: 11 June 2021
  • Chapter DOI: https://doi.org/10.1017/9781108891066.012
Available formats
×