Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T01:28:20.818Z Has data issue: false hasContentIssue false

Chapter 6 - Inherited Metabolic Diseases Affecting the Kidney

from Section 2 - Glomerular Diseases

Published online by Cambridge University Press:  10 August 2023

Helen Liapis
Affiliation:
Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
Get access

Summary

This chapter addresses the clinicopathologic features of kidney diseases in various categories of inherited metabolic diseases or inborn errors of metabolism, most often secondary to a systemic disease in the pediatric population. Considering the rarity of these diseases, renal involvement may be silent, purely functional and/or manifest parenchymal alterations with organ dysfunction. They may affect the glomerular, tubulo-interstitial or rarely vascular compartments, although they are not mutually exclusive in a given disease. The major groups of diseases include various forms of lipid, protein/lipoprotein, glycogen disorders and other organic substances, as a result of specific cellular organelle dysfunction or an inherited enzyme deficiency, allowing for accumulation of abnormal metabolites or substrates that cells are unable to eliminate effectively. The clinical manifestations may appear during the neonatal period or develop later during childhood with progressive organ dysfunction with a wide spectrum of signs and symptoms, having an acute, subacute or chronic presentation. The age of onset and disease severity may depend on the inheritance patterns and the type of gene mutations, as well as environmental influences. A detailed family history and genetic studies are often useful, along with clinical and laboratory findings at the time of presentation, to make a definitive diagnosis. Although the kidney is rarely a target organ, when affected, a renal biopsy is valuable in establishing a diagnosis and also in further delineating specific entities, based on their unique clinical, pathological, histochemical, ultrastructural and molecular/genetic characteristics.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Grabowski, G. A., Desnick, R. J., Ludman, M. D., Kafonek, S. D., Kwiterovich, P. O., Bernstein, J.. The kidney in metabolic disorders. In Edelmann, CM, Bernstein, J, Meadow, SR eds. Pediatric Kidney Disease. 2nd ed. Little, Brown; 1992. P. 1599–623.Google Scholar
Emma, F., van’t Hoff, W. G., Dionisi Vici, C.. Renal manifestations of metabolic disorders in children. In Avner, E, Harmon, W, Niaudet, P, Yoshikawa, N, Emma, F, Goldstein, S eds. Pediatric Nephrology. Springer, Berlin, Heidelberg; 2016. P 1569–607.Google Scholar
Groth, C. G., Ringdén, O. Transplantation in relation to the treatment of inherited disease. Transplantation. 1984;38:31927.Google Scholar
Kayler, L. K., Merion, R. M., Lee, S., Sung, R. S., Punch, J. D., Rudich, S. M., et al. Long-term survival after liver transplantation in children with metabolic disorders. Pediatr Transplant. 2002;6:295300.CrossRefGoogle ScholarPubMed
Sirac, C., Bridoux, F., Essig, M., Devuyst, O., Touchard, G., Cogné, M.. Toward understanding renal Fanconi syndrome: Step by step advances through experimental models. Contrib Nephrol. 2011;169:247–61.Google Scholar
Finn, L. S.. Renal disease caused by inborn errors of metabolism, storage diseases, and hemoglobinopathies. In: Jennette, JC, D’Agati, VD, Olson, JL, Silva, FG eds. Heptinstall’s Pathology of the Kidney. 7th ed. Wolters Kluwer Health; 2015. P 1223–78.Google Scholar
Ferreira, C. R., Gahl, W. A.. Lysosomal storage diseases. Transl Sci Rare Dis. 2017;2:171.Google Scholar
Faraggiana, T., Churg, J.. Renal lipidoses: A review. Hum Pathol. 1987;18:661–79.Google Scholar
Hicks, J., Wartchow, E., Mierau, G.. Glycogen storage diseases: A brief review and update on clinical features, genetic abnormalities, pathologic features, and treatment. Ultrastruct Pathol. 2011;35:183–96.Google Scholar
Eikrem, Ø., Skrunes, R., Tøndel, C., Leh, S., Houge, G., Svarstad, E., et al. Pathomechanisms of renal Fabry disease. Cell Tissue Res. 2017;369:5362.Google Scholar
Tondel, C., Bostad, L., Hirth, A., Svarstad, E.. Renal biopsy findings in children and adolescents with Fabry disease and minimal albuminuria. Am J Kidney Dis. 2008;51:767–76.Google Scholar
Laney, D. A., Peck, D. S., Atherton, A. M., Manwaring, L. P., Christensen, K. M., Shankar, S. P., et al. Fabry disease in infancy and early childhood: A systematic literature review. Genet Med. 2015;17:323–30.Google Scholar
Nowak, A., Mechtler, T. P., Hornemann, T., Gawinecka, J., Theswet, E., Hilz, M. J., et al. Genotype, phenotype and disease severity reflected by serum LysoGb3 levels in patients with Fabry disease. Mol Genet Metab. 2018;123:148–53.CrossRefGoogle ScholarPubMed
Najafian, B., Svarstad, E., Bostad, L., Gubler, M. C., Tondel, C., Whitley, C., et al. Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. Kidney Int. 2011;79:663–70.Google Scholar
Chimenz, R., Chirico, V., Cuppari, C., Ceravolo, G., Concolino, D., Monardo, P., et al. Fabry disease and kidney involvement: Starting from childhood to understand the future. Pediatr Nephrol. 2022;37:95103.CrossRefGoogle ScholarPubMed
Thurberg, B. L., Rennke, H., Colvin, R. B., Dikman, S., Gordon, R. E., Collins, A. B., et al. Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int. 2002;62:1933–46.Google Scholar
Barisoni, L., Jennette, J. C., Colvin, R., Sitaraman, S., Bragat, A., Castelli, J., et al. Novel quantitative method to evaluate globotriaosylceramide inclusions in renal peritubular capillaries by virtual microscopy in patients with fabry disease. Arch Pathol Lab Med. 2012;136:816–24.Google Scholar
Fogo, A. B., Bostad, L., Svarstad, E., Cook, W. J., Moll, S., Barbey, F., et al. Scoring system for renal pathology in Fabry disease: Report of the International Study Group of Fabry Nephropathy (ISGFN). Nephrol Dial Transplant. 2010;25:2168–77.Google Scholar
Skrunes, R., Tondel, C., Leh, S., Larsen, K. K., Houge, G., Davidsen, E. S., et al. Long-term dose-dependent agalsidase effects on kidney histology in Fabry disease. Clin J Am Soc Nephrol. 2017;12:1470–9.CrossRefGoogle ScholarPubMed
Bracamonte, E. R., Kowalewska, J., Starr, J., Gitomer, J., Alpers, C. E.. Iatrogenic phospholipidosis mimicking Fabry disease. Am J Kidney Dis. 2006;48:844–50.Google Scholar
Lei, L., Oh, G., Sutherland, S., Abra, G., Higgins, J., Sibley, R., et al. Myelin bodies in LMX1B-associated nephropath: potential for misdiagnosis. Pediatr Nephrol. 2020;35:1647–57.Google Scholar
Spada, M., Baron, R., Elliott, P. M., Falissard, B., Hilz, M. J., Monserrat, L., et al. The effect of enzyme replacement therapy on clinical outcomes in paediatric patients with Fabry disease: A systematic literature review by a European panel of experts. Mol Genet Metab. 2019;126:212–23.CrossRefGoogle ScholarPubMed
McGovern, M. M., Wasserstein, M. P., Giugliani, R., Bembi, B., Vanier, M. T., Mengel, E., et al. A prospective, cross-sectional survey study of the natural history of Niemann-Pick disease type B. Pediatrics. 2008;122:e3419.CrossRefGoogle ScholarPubMed
Takebayashi, S., von Bassewitz, D. B., Themann, H.. Ultrastructural alterations of the kidney in generalized gangliosidosis GM1. Virchows Arch B Cell Pathol. 1970;5:301–13.Google Scholar
Annunziata, I., d’Azzo, A.. Galactosialidosis: Historic aspects and overview of investigated and emerging treatment options. Expert Opin Orphan Drugs. 2017;5:131–41.Google Scholar
Majno, G., Joris, I.. Cells, Tissues, and Disease: Principles of General Pathology. 2nd ed. Oxford University Press: New York; 2004. P. 145–54.Google Scholar
Olkkonen, V. M., Ikonen, E.. Genetic defects of intracellular-membrane transport. N Engl J Med. 2000;343:1095–104.Google Scholar
Plante, M., Claveau, S., Lepage, P., Lavoi, E. M., Brunet, S., Roquis, D., et al. Mucolipidosis II: A single causal mutation in the N-acetylglucosamine-1-phosphotransferase gene (GNPTAB) in a French Canadian founder population. Clin Genet. 2008;73:236–44.Google Scholar
Okada, S., Owada, M., Sakiyama, T., Yutaka, T., Ogawa, M.. I-cell disease: Clinical studies of 21 Japanese cases. Clin Genet. 1985;28:207–15.Google Scholar
Khan, S. A., Tomatsu, S. C.. Mucolipidoses overview: Past, present, and future. Int J Mol Sci. 2020;21(18).Google Scholar
Renwick, N., Nasr, S. H., Chung, W. K., Garvin, J., Markowitz, G. S., Marboe, C., et al. Foamy podocytes. Am J Kidney Dis. 2003;41(4):891–6.Google Scholar
Tüysüz, B., Ercan-Sencicek, A. G., Canpolat, N., Koparır, A., Yılmaz, S., Kılıçaslan, I., et al. Renal involvement in patients with mucolipidosis IIIalpha/beta: Causal relation or co-occurrence? Am J Med Genet A. 2016;170a:1187–95.Google ScholarPubMed
Hu, J., Lu, J. Y., Wong, A. M., Hynan, L. S., Birnbaum, S. G., Yilmaz, D. S., et al. Intravenous high-dose enzyme replacement therapy with recombinant palmitoyl-protein thioesterase reduces visceral lysosomal storage and modestly prolongs survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. Mol Genet Metab. 2012;107:213–21.CrossRefGoogle Scholar
Meng, Y., Sohar, I., Wang, L., Sleat, D. E., Lobel, P.. Systemic administration of tripeptidyl peptidase I in a mouse model of late infantile neuronal ceroid lipofuscinosis: Effect of glycan modification. PLoS ONE. 2012;7:e40509.Google Scholar
Järvelä, I., Lehtovirta, M., Tikkanen, R., Kyttälä, A., Jalanko, A.. Defective intracellular transport of CLN3 is the molecular basis of Batten disease (JNCL). Hum Mol Genet. 1999;8:1091–8.Google Scholar
Golubek, A. A., Kida, E., Walus, M., Kaczmarski, W., Wujek, P., Wisniewski, K.. CLN3 disease process: Missense point mutations and protein depletion in vitro. Eur J Paediatr Neurol. 2001;5 (Suppl A):81–8.Google Scholar
Saito, T., Matsunaga, A., Fukunaga, M., Nagahama, K., Hara, S., Muso, E.. Apolipoprotein E-related glomerular disorders. Kidney Int. 2020;97:279–88.CrossRefGoogle ScholarPubMed
Kawanishi, K., Sawada, A., Ochi, A., Moriyama, T., Mitobe, M., Mochizuki, T., et al. Glomerulopathy with homozygous apolipoprotein e2: A report of three cases and review of the literature. Case Rep Nephrol Urol. 2013;3:12835.Google Scholar
Saito, T., Sato, H., Kudo, K., Oikawa, S., Shibata, T., Hara, Y., et al. Lipoprotein glomerulopathy: Glomerular lipoprotein thrombi in a patient with hyperlipoproteinemia. Am J Kidney Dis. 1989;13:148–53.CrossRefGoogle Scholar
Hu, Z., Huang, S., Wu, Y., Liu, Y., Liu, X., Su, D., et al. Hereditary features, treatment, and prognosis of the lipoprotein glomerulopathy in patients with the APOE Kyoto mutation. Kidney Int. 2014;85:416–24.CrossRefGoogle ScholarPubMed
Saito, T., Oikawa, S., Sato, H., Sato, T., Ito, S., Sasaki, J.. Lipoprotein glomerulopathy: Significance of lipoprotein and ultrastructural features. Kidney Int Suppl. 1999;71:S37–41.Google Scholar
Norum, K. R., Remaley, A. T., Miettinen, H. E., Strøm, E. H., Balbo, B. E. P., Sampaio, C., et al. Lecithin:cholesterol acyltransferase: Symposium on 50 years of biomedical research from its discovery to latest findings. J Lipid Res. 2020;61:1142–9.CrossRefGoogle ScholarPubMed
Ossoli, A., Neufeld, E. B., Thacker, S. G., Vaisman, B., Pryor, M., Freeman, L. A., et al. Lipoprotein X causes renal disease in LCAT deficiency. PLoS ONE. 2016;11:e0150083.Google Scholar
Holleboom, A. G., Kuivenhoven, J. A., van Olden, C. C., Peter, J., Schimmel, A. W., Levels, J. H., et al. Proteinuria in early childhood due to familial LCAT deficiency caused by loss of a disulfide bond in lecithin:cholesterol acyl transferase. Atherosclerosis. 2011;216:161–5.Google Scholar
Saeedi, R., Li, M., Frohlich, J.. A review on lecithin:cholesterol acyltransferase deficiency. Clin Biochem. 2015;48:472–5.CrossRefGoogle ScholarPubMed
Pavanello, C., Ossoli, A., Arca, M., D’Erasmo, L., Boscutti, G., Gesualdo, L., et al. Progression of chronic kidney disease in familial LCAT deficiency: A follow-up of the Italian cohort. J Lipid Res. 2020;61:1784–8.Google Scholar
Strøm, E. H., Sund, S., Reier-Nilsen, M., Dørje, C, Leren, T. P.. Lecithin:cholesterol acyltransferase (LCAT) deficiency: Renal lesions with early graft recurrence. Ultrastruct Pathol. 2011;35:139–45.Google Scholar
Kamath, B. M., Podkameni, G., Hutchinson, A. L., Leonard, L. D., Gerfen, J., Krantz, I. D., et al. Renal anomalies in Alagille syndrome: A disease-defining feature. Am J Med Genet A. 2012;158a:85–9.CrossRefGoogle ScholarPubMed
Bissonnette, M. L. Z., Lane, J. C., Chang, A.. Extreme renal pathology in Alagille syndrome. Kidney Int Rep. 2016;2:493–7.Google Scholar
Franceschetti, S., Canafoglia, L.. Sialidoses. Epileptic Disord. 2016;18(S2):8993.Google Scholar
Maroofian, R., Schuele, I., Najafi, M., Bakey, Z., Rad, A., Antony, D., et al. Parental whole-exome sequencing enables sialidosis type II diagnosis due to an NEU1 missense mutation as an underlying cause of nephrotic syndrome in the child. Kidney Int Rep. 2018;3:1454–63.Google Scholar
Khan, A., Sergi, C.. Sialidosis: A review of morphology and molecular biology of a rare pediatric disorder. Diagnostics (Basel). 2018;8:9.Google Scholar
Chen, W., Yang, S., Shi, H., Guan, W., Dong, Y., Wang, Y., et al. Histological studies of renal biopsy in a boy with nephrosialidosis. Ultrastruct Pathol. 2011;35:168–71.CrossRefGoogle Scholar
Sláma, T., Garbade, S. F., Kölker, S., Hoffmann, G. F., Ries, M.. Quantitative natural history characterization in a cohort of 142 published cases of patients with galactosialidosis-A cross-sectional study. J Inherit Metab Dis. 2019;42:295302.CrossRefGoogle Scholar
Ketterer, S., Gomez-Auli, A., Hillebrand, L. E., Petrera, A., Ketscher, A., Reinheckel, T.. Inherited diseases caused by mutations in cathepsin protease genes. FEBS J. 2017;284:1437–54.Google Scholar
Hicks, J., Wartchow, E., Mierau, G.. Glycogen storage diseases: A brief review and update on clinical features, genetic abnormalities, pathologic features, and treatment. Ultrastruct Pathol. 2011;35:183–96.CrossRefGoogle ScholarPubMed
Martens, D. H., Rake, J. P., Navis, G., Fidler, V., van Dael, C. M., Smit, G. P.. Renal function in glycogen storage disease type I, natural course, and renopreservative effects of ACE inhibition. Clin J Am Soc Nephrol. 2009;4:1741–6.Google Scholar
Chen, Y. T.. Type I glycogen storage disease: Kidney involvement, pathogenesis and its treatment. Pediatr Nephrol. 1991;5:71–6.Google Scholar
de Lonlay, P., Seta, N., Barrot, S., Chabrol, B., Drouin, V., Gabriel, B. M., et al. A broad spectrum of clinical presentations in congenital disorders of glycosylation I: A series of 26 cases. J Med Genet. 2001;38(1):1419.Google Scholar
Sinha, M. D., Horsfield, C., Komaromy, D., Booth, C. J., Champion, M. P.. Congenital disorders of glycosylation: A rare cause of nephrotic syndrome. Nephrol Dial Transplant. 2009;24:2591–4.Google Scholar
Marcovecchia, M. L., Chiarelli, F.. Diabetic nephropathy in children. In Avner, E, Harmon, W, Niaudet, P, Yoshikawa, N, Emma, F, Goldstein, S eds. Pediatric Nephrology. Springer, Berlin, Heidelberg; 2016. P1545–68.Google Scholar
Reinehr, T.. Type 2 diabetes mellitus in children and adolescents. World J Diabetes. 2013;4:270–81.Google Scholar
Dabelea, D., Mayer-Davis, E. J., Saydah, S., Imperatore, G., Linder, B., Divers, J., et al. Prevance of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311:1778–86.CrossRefGoogle Scholar
Gross, J. L., de Azevedo, M. J., Silviero, S. P., Canani, L. H., Caramori, M. L., Zelmanowitz, T.. Diabetic nephropathy: Diagnosis, prevention and treatment. Diabetes Care. 2005;28:164–76.CrossRefGoogle ScholarPubMed
Mokha, J. S., Srinivasan, S. R., Dasmahapatra, P., Fernandez, C., Chen, W., Xu, J., et al. Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa Heart Study. BMC Pediatr. 2010;10:73.Google Scholar
Ford, E. S., Li, C.. Defining the metabolic syndrome in children and adolescents. J Pediatr. 2008;152:160–4.Google Scholar
Lee, S., Bacha, F., Gungo, N., Arslanian, S.. Comparison of different definitions of pediatric metabolic syndrome: Relation to abdominal adiposity, insulin resistance, adiponectin, and inflammatory biomarkers. J Pediatr. 2008;152:177–84.Google Scholar
Sanad, M., Gharib, A.. Evaluation of microalbuminuria in obese children and its relation to metabolic syndrome. Pediatr Nephrol. 2011;26:2193–9.Google Scholar
Baumgartner, M. R., Horster, F., Dionosi-Vici, C., Haliloglu, G., Karall, D., Chapman, K. A., et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.Google Scholar
Cosson, M. A., Benoist, J. F., Touati, G., Déchaux, M., Royer, N., Grandin, L., et al. Long-term outcome in methylmalonic aciduria: A series of 30 French patients. Mol Genet Metab. 2009;97:172–8.CrossRefGoogle ScholarPubMed
Ha, T. S., Lee, J. S., Hing, E. J.. Delay of renal progression in methylmalonic acidurias using angiotensin II inhibitors: A case report. J Nephrol. 2008;21:793–6.Google Scholar
Gaines, J. J.. The pathology of alkaptonuric ochronosis. Hum Pathol. 1989;20:406.Google Scholar
Venkataseshan, V. S., Chandra, B., Graziano, V., Steinlauf, P., Marquet, E., Irmiere, V., et al. Alkaptonuria and renal failure: A case report and review of literature. Mod Pathol. 1992;5:464–71.Google Scholar
Malowany, J. I., Butany, J.. Pathology of sickle cell disease. Semin Diagn Pathol. 2012;29:4955.Google Scholar
Modell, B., Darlison, M.. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86:480–7.Google Scholar
Pham, P. T., Pham, P. C., Wilkinson, A. H., Lew, S. Q.. Renal abnormalities in sickle cell disease. Kidney Int. 2000;57:18.Google Scholar
Wigfall, D. R., Ware, R. E., Burchinal, M. R., Kinney, T. R., Foreman, J. W.. Prevalence and clinical correlates of glomerulopathy in children with sickle cell disease. J Pediatr. 2000;136:74953.Google Scholar
McPherson Yee, M., Jabbar, S. F., Osunkwo, I., Clement, L., Lane, P. A., Eckman, J. R., et al. Chronic kidney disease and albuminuria in children with sickle cell disease. Clin J Am Soc Nephrol. 2011;6:2628–33.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×