Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-10T09:20:44.087Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  28 July 2022

Bruce Clarke
Affiliation:
Texas Tech University
Sébastien Dutreuil
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Lovelock, J. E. and Margulis, L. (1974). Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus, 26, 210.CrossRefGoogle Scholar
Lovelock, J. E. and Margulis, L. (1974). Homeostatic tendencies of the Earth’s atmosphere. Origins of Life, 5, 93103.Google Scholar
Margulis, L. and Lovelock, J. E. (1974). Biological modulation of the Earth’s atmosphere. Icarus, 21, 471489.Google Scholar
Margulis, L. and Lovelock, J. E. (1975). The atmosphere as circulatory system of the biosphere: the Gaia hypothesis. CoEvolution Quarterly, 6 (Summer), 3140. Partially republished as: The atmosphere, Gaia’s circulatory system, in Margulis and Sagan 2007: 157–171.Google Scholar
Margulis, L. and Lovelock, J. E. (1976). Is Mars a spaceship, too? Natural History, 85, 86-90.Google Scholar
Margulis, L. and Lovelock, J. E. (1977a). Planet Earth is our only hope. Geographical Magazine, 49, 473478.Google Scholar
Margulis, L. and Lovelock, J. E. (1977b). The view from Mars and Venus. The Sciences, 17, 1013.Google Scholar
Margulis, L. and Lovelock, J. E. (1978). The biota as ancient and modern modulator of the Earth’s atmosphere. Pure and Applied Geophysics, 116, 239-43.Google Scholar
Margulis, L. and Lovelock, J. E. (1989). Gaia and geognosy. In Rambler, M., Margulis, L., and Fester, R., eds. Global Ecology: Towards a Science of the Biosphere. Boston: Academic Press, 130.Google Scholar

Secondary Sources

Abram, D. (1985). The perceptual implications of Gaia. The Ecologist, 15(3), 96103.Google Scholar
Allaby, M. and Lovelock, J. (1983). The Great Extinction: The Solution to One of the Great Mysteries of Science, the Disappearance of the Dinosaurs, New York: Doubleday.Google Scholar
Anderson, D. L. (1984). The Earth as a planet: paradigms and paradoxes. Science, 223(4634), 347355.Google Scholar
Arènes, A., Latour, B., and Gaillardet, J. (2018). Giving depth to the surface: an exercise in the Gaia-graphy of critical zones. The Anthropocene Review, 5(2), 120135.Google Scholar
Aronowsky, L. (2018). The Planet as Self-Regulating System: Configuring the Biosphere as an Object of Knowledge, 1940–1990 (PhD thesis), Harvard University, Cambridge, MA.Google Scholar
Aronowsky, L. (2021). Gas guzzling Gaia, or: a prehistory of climate change denialism. Critical Inquiry, 47(2), 306327.Google Scholar
Aykut, S. and Dahan, A. (2015). Gouverner le Climat. Quels futurs posibles ? Vingt années de négociations internationales, Paris: Presses de Sciences Po.Google Scholar
Baldwin, I. T. and Schultz, J. C. (1983). Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science, 221(4607), 277279.Google Scholar
Ballester, A., Barghoorn, E. S., Botkin, D. B., et al. (1977a). Ecological considerations for space colonies. CoEvolution Quarterly, 12(Winter), 9697.Google Scholar
Ballester, A., Botkin, D. B., Lovelock, J., et al. (1977b). Ecological considerations for space colonies. Bulletin of the Ecological Society of America, 58, 24.Google Scholar
Barlow, C. and Volk, T. (1990). Open systems living in a closed biosphere: a new paradox for the Gaia debate. BioSystems, 23(4), 371384.Google Scholar
Barlow, C. and Volk, T. (1992). Gaia and evolutionary biology. BioScience, 42(9), 686693.Google Scholar
Barton, J. (2020). Wiring the World: A History of the Earth System Concept in the US Earth Sciences, 1982-1989 (PhD thesis), University of Toronto (Canada), Toronto.Google Scholar
Beardsley, T. (1989). Gaia: the smile remains, but the lady vanishes. Scientific American, 261, December 6, 35–36.Google Scholar
Berkner, L. V. and Marshall, L. C. (1965). On the origin and rise of oxygen concentration in the Earth’s atmosphere. Journal of the Atmospheric Sciences, 22(3), 225261.Google Scholar
Betts, R. A. (1999). Self-beneficial effects of vegetation on climate in an ocean–atmosphere general circulation model. Geophysical Research Letters, 26(10), 14571460.Google Scholar
Board, P. A. (1976). Anaerobic regulation of atmospheric oxygen. Atmospheric Environment, 10(4), 339342.Google Scholar
Bolin, B. and Cook, R. B. (1983). The Major Biogeochemical Cycles and Their Interactions, SCOPE 21.Google Scholar
Bouricius, W. G., Wittman, P. K., and Bouricius, B. (2002). Designing canopy walkways: engineering calculations for building canopy access systems with cable-supported bridges. Selbyana, 23(1), 131136.Google Scholar
Briday, R. (2014). Une histoire de la chimie atmosphérique globale. Enjeux disciplinaires et d’expertise de la couche d’ozone et du changement climatique (PhD thesis), Centre Alexandre Koyré, Paris.Google Scholar
Briday, R. and Dutreuil, S. (2019). Les multiples facettes de l’entrepreneuriat scientifique de James Lovelock dans les années 1960-70 : développement d’instruments, consultance sur les pollutions et hypothèse Gaïa. Marché et organisations, 34(1), 3360.CrossRefGoogle Scholar
Bryant, W. (2006). Whole System, Whole Earth: The Convergence of Technology and Ecology in Twentieth Century American Culture (PhD thesis), University of Iowa.Google Scholar
Bryson, R. A. (1974). A perspective on climatic change. Science, 184(4138), 753760.Google Scholar
Budyko, M. (1969). The effect of solar radiation variations on the climate of the earth. Tellus, 21(5), 611619.Google Scholar
Bunyard, P. and Goldsmith, E. (1988). Gaia: The Thesis, the Mechanisms, and the Implications, Wadebridge, Cornwall: Quintrell and Company.Google Scholar
Bunyard, P. and Goldsmith, E. (1989). Gaia and Evolution: Proceedings of the Second Annual Camelford Conference on the Implications of the Gaia Thesis, Bodmin, Cornwall: Abbey Press.Google Scholar
Butler, K. (1983). Events are the teachers. CoEvolution Quarterly, 40(Winter), 112123.Google Scholar
Calder, N. (1983). Timescale: An Atlas of the Fourth Dimension, New York: Viking.Google Scholar
Callicott, J. B. (2014). Thinking Like a Planet: The Land Ethic and the Earth Ethic, Oxford: Oxford University Press.Google Scholar
Campbell, I. H. and Taylor, S. R. (1983). No water, no granites: no oceans, no continents. Geophysical Research Letters, 10(11), 10611064.Google Scholar
Catling, D. C., Zahnle, K. J., and McKay, C. P. (2001). Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science, 293(5531), 839843.CrossRefGoogle ScholarPubMed
Challenger, F. (1951). Biological methylation. Advances in Enzymology and Related Subjects of Biochemistry, 12, 429491.Google Scholar
Chamberlain, W. M. and Marland, G. (1977). Precambrian evolution in a stratified global sea. Nature, 265(5590), 135136.Google Scholar
Charlson, R., Lovelock, J., Andreae, M., and Warren, S. (1987). Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326(6114), 655661.CrossRefGoogle Scholar
Chesselet, R., Jedwab, J., Darcourt, C., and Dehairs, F. (1976). Barite as discrete suspended particles in the Atlantic Ocean. Eos, 57, 255.Google Scholar
Chopra, A. and Lineweaver, C. H. (2016). The case for a Gaian bottleneck: the biology of habitability. Astrobiology, 16(1), 722.Google Scholar
Clarke, B. (ed.). (2015). Earth, Life and System: Evolution and Ecology on a Gaian Planet, New York: Fordham University Press.Google Scholar
Clarke, B. (2017). Rethinking Gaia: Stengers, Latour, Margulis. Theory, Culture and Society, 34(4), 326.Google Scholar
Clarke, B. (2020). Gaian Systems: Lynn Margulis, Neocybernetics, and the End of the Anthropocene, Minneapolis: University of Minnesota Press.Google Scholar
Cleveland, L. R. and Grimstone, A. V. (1964). The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms. Proceedings of the Royal Society of London. Series B. Biological Sciences, 159(977), 668686.Google Scholar
Cloud, P. (1971). Adventures in Earth History, San Francisco, CA: W. H. Freeman.Google Scholar
Cloud, P. (1988). Gaia modified. Science, 240(4860), 1716.Google Scholar
Connes, P., Connes, J., Kaplan, L. D., and Benedict, W. S. (1968). Carbon monoxide in the Venus atmosphere. The Astrophysical Journal, 152, 731.Google Scholar
Conrad, P. G. and Nealson, K. H. (2001). A non-Earthcentric approach to life detection. Astrobiology, 1(1), 1524.Google Scholar
Conway, E. M. (2008). Atmospheric Science at NASA: A History, Baltimore, MD: Johns Hopkins University Press.Google Scholar
Coulson, J., Whitfield, D., and Preston, A. L. (2003). Keeping Things Whole: Readings in Environmental Science, Chicago, IL: Great Books Foundation.Google Scholar
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408(6809), 184187.Google Scholar
Crist, E. and Rinker, B. (eds.). (2010). Gaia in Turmoil: Climate Change, Biodepletion, and Earth Ethics in an Age of Crisis, Cambridge, MA: MIT Press.Google Scholar
Crutzen, P. J. and Stoermer, E. F. (2000). The “Anthropocene.” IBGP Newsletter, 41, 1718.Google Scholar
Dalgarno, A. and McElroy, M. B. (1970). Mars: is nitrogen present? Science, 170 (3954). 167168.Google Scholar
Dawkins, R. (1976). The Selfish Gene, Oxford: Oxford University Press.Google Scholar
Dawkins, R. (1982). The Extended Phenotype: The Gene as the Unit of Selection, Oxford: Oxford University Press.Google Scholar
Dawkins, R. (1986). Creation and natural selection. New Scientist, September 25, 34–38.Google Scholar
Denbigh, K. G. (1951). The Thermodynamics of the Steady State, London: Methuen.Google Scholar
Dick, S. and Strick, J. (2004). The Living Universe: NASA and the Development of Astrobiology, New Brunswick: Rutgers University Press.Google Scholar
Dilke, F. W. W. and Gough, D. O. (1972). The solar spoon. Nature, 240(5379), 262264.CrossRefGoogle Scholar
Doolittle, W. F. (1981a). Is nature really motherly? CoEvolution Quarterly, 29, 5863.Google Scholar
Doolittle, F. W. (1981b). The endosymbiont hypothesis. Science, 213(4508), 640641.Google Scholar
Doolittle, F. W. (2014). Natural selection through survival alone, and the possibility of Gaia. Biology and Philosophy, 29(3), 415423.Google Scholar
Doolittle, W. F. (2019). Making evolutionary sense of Gaia. Trends in Ecology and Evolution, 34(10), 889894.Google Scholar
Dutreuil, S. (2014). What good are abstract and what-if models? Lessons from the Gaïa hypothesis. History and Philosophy of the Life Sciences, 36(1), 1641.Google Scholar
Dutreuil, S. (2016). Gaïa: hypothèse, programme de recherche pour le système terre, ou philosophie de la nature? (PhD thesis), Université Paris 1 Panthéon-Sorbonne, Paris.Google Scholar
Dutreuil, S. (2017). James Lovelock, Gaïa et la pollution: un scientifique entrepreneur à l’origine d’une nouvelle science et d’une philosophie politique de la nature. Zilsel, (2), 19–61.Google Scholar
Dutreuil, S. (2018a). James Lovelock’s Gaia hypothesis: “a new look at life on earth” … for the life and the earth sciences. In Harman, O. and Dietrich, M. R., eds., Dreamers, Visionaries, and Revolutionaries in the Life Sciences, Chicago: University of Chicago Press, pp. 272287.Google Scholar
Dutreuil, S. (2018b). La vie en biologie: enjeux et problèmes d’une définition, usages du terme. Philosophie, 136(1), 6794.Google Scholar
Dutreuil, S. (2019). Is the decisive issue in geoengineering debates really one of representation of nature? Gaia against (or with?) Prometheus? Carbon and Climate Law Review, 13(2), 94103.Google Scholar
Dutreuil, S. (2021). Quelle est la nature de la Terre? In Aït-touati, F. and Coccia, E., eds., Le cri de Gaïa: penser la Terre avec Bruno Latour, Paris: La Découverte, pp. 1766.Google Scholar
Dutreuil, S. and Pocheville, A. (2015). Les organismes et leur environnement : la construction de niche, l’hypothèse Gaïa et la sélection naturelle. Bulletin d’histoire et d’epistemologie des sciences de la vie, 22(1), 2756.Google Scholar
Ehrlich, P. R. and Ehrlich, A. H. (1992). The value of biodiversity. Ambio, 21(3), 219226.Google Scholar
Engelberg, J. and Boyarsky, L. L. (1979). The noncybernetic nature of ecosystems. The American Naturalist, 114(3), 317324.Google Scholar
Galison, P. (1994). The ontology of the enemy: Norbert Wiener and the cybernetic vision. Critical Inquiry, 21(1), 228266.Google Scholar
Garrels, R. M., Lerman, A., and Mackenzie, F. T. (1976). Controls of atmospheric O2 and CO2: past, present, and future. American Scientist, 64(3), 306315.Google Scholar
Garrels, R. M. and Mackenzie, F. T. (1971). Evolution of Sedimentary Rocks, New York: W.W. Norton.Google Scholar
Goldberg, E. D. (1958). The processes regulating the composition of sea water. Journal of Chemical Education, 35(3), 111119.Google Scholar
Goldberg, E. D. (1964). The oceans as a geological system. Transactions of the New York Academy of Sciences, 27(1 Series II), 719.Google Scholar
zzGoldberg, E. D. (1974). The Sea: Ideas and Observation on Progress in the Study of the Seas., Vol. 5: Marine Chemistry, New York: Wiley.Google Scholar
Goldberg, E. D. (ed.). (1982). Atmospheric Chemistry: Report of the Dahlem Workshop on Atmospheric Chemistry, Berlin 1982, May 2–7, Berlin and Heidelberg: Springer-Verlag.Google Scholar
Goody, R. (1982). Global Change: Impacts on Habitability, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California: National Aeronautics and Space Administration.Google Scholar
Goody, R. and Walker, J. C. G. (1972). Atmospheres, New Jersey: Prentice-Hall.Google Scholar
Gould, S. J. and Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B, Biological Sciences, 205(1161), 581598.Google Scholar
Gregor, B. (1992). The work group on geochemical cycles: 1972–1988. Geochimica et Cosmochimica Acta, 56(8), 29892992.Google Scholar
Grevsmühl, S. (2014). La Terre vue d’en haut: l’invention de l’environnement global, Paris: Seuil.Google Scholar
Gribbin, J. and Gribbin, M. (2009). James Lovelock: In Search of Gaia, Princeton: Princeton University Press.Google Scholar
Grimm, K. A. (1997). Biogenic sediments, geophysiology and Earth’s environmental history. PALAIOS, 12(4), 299301.Google Scholar
Grinevald, J. (1996). Sketch for the history of the idea of the biosphere. In Bunyard, P., ed., Gaia in Action: Science of the Living Earth, Edinburgh: Floris Books, pp. 3453.Google Scholar
Grinevald, J. (1998). The invisibility of the Vernadskian revolution. In Vernadsky, V., The Biosphere, New York: Copernicus, pp. 2032.Google Scholar
Grinspoon, D. (2016). Earth in Human Hands: Shaping Our Planet’s Future, New York: Grand Central Publishing.Google Scholar
Hache, E. (2012). Ecologie politique: cosmos, communautés, milieux, Paris: Editions Amsterdam.Google Scholar
Hagen, J. B. (2013). Eugene Odum and the homeostatic ecosystem: the resilience of an idea. In Arnold, D., ed., Traditions of Systems Theory, New York: Routledge, pp. 179193.Google Scholar
Hamblin, J. D. (2013). Arming Mother Nature: The Birth of Catastrophic Environmentalism, Oxford: Oxford University Press.Google Scholar
Hamilton, C. (2013). Earthmasters: Playing God with the Climate, Crows Nest, NSW, Australia: Allen & Unwin.Google Scholar
Hamilton, W. D. and Lenton, T. M. (1998). Spora and Gaia: how microbes fly with their clouds. Ethology Ecology and Evolution, 10(1), 116.Google Scholar
Hammond, A. and Margulis, L. (1981). Farewell to Newton, Einstein, Darwin. Science, 2(10), 5557.Google Scholar
Haraway, D. (2016). Staying with the Trouble: Making Kin in the Chthulucene, Durham, NC: Duke University Press.Google Scholar
Harding, S. (2006). Animate Earth: Science, Intuition and Gaia, Foxhole: Green Books.Google Scholar
Harding, S. and Lovelock, J. (1996). Exploiter-mediated coexistence and frequency-dependent selection in a numerical model of biodiversity. Journal of Theoretical Biology, 182(2), 109116.Google Scholar
Harding, S. and Margulis, L. (2010). Water Gaia: 3.5 thousand million years of wetness on planet Earth. In Crist, and Rinker, 2010: 4159.Google Scholar
Harvey, I. (2004). Homeostasis and rein control: from Daisyworld to active perception. In Pollack, J., ed., Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems, ALIFE, Vol. 9, Cambridge, MA: MIT Press, pp. 309314.Google Scholar
Heymann, M. and Dahan Dalmedico, A. (2019). Epistemology and politics in Earth system modeling: historical perspectives. Journal of Advances in Modeling Earth Systems, 11(5), 11391152.Google Scholar
Hitchcock, D. R. and Lovelock, J. (1967). Life detection by atmospheric analysis. Icarus, 7(1–3), 149159.Google Scholar
Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P. (1998). A Neoproterozoic snowball earth. Science, 281(5381), 13421346.Google Scholar
Höhler, S. (2015). Spaceship Earth in the Environmental Age, 1960–1990, London: Routledge.CrossRefGoogle Scholar
Holland, H. D. (1978). The Chemistry of the Atmosphere and Oceans, New York: John Wiley and Sons.Google Scholar
Holland, H. D. (1984). The Chemical Evolution of the Atmosphere and Oceans, Princeton, NJ: Princeton University Press.Google Scholar
Holland, H. D. and Schidlowski, M. (eds.). (1982). Mineral Deposits and the Evolution of the Biosphere: Report of the Dahlem Workshop on Biospheric Evolution and Precambrian Metallogeny Berlin 1980, September 1–5, Berlin and Heidelberg: Springer-Verlag.Google Scholar
Hsü, K. J. (1992). Is Gaia endothermic? Geological Magazine, 129(2), 129141.Google Scholar
Hull, D. (1980). Individuality and selection. Annual Review of Ecology and Systematics, 11, 311332.Google Scholar
Huneman, P. (2006). Naturalising purpose: from comparative anatomy to the “adventure of reason.” Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 37(4), 649674.Google Scholar
Hutchinson, G. E. (1954). The biochemistry of the terrestrial atmosphere. In Kuiper, G. P., ed., The Earth as a Planet, Chicago: University of Chicago Press, pp. 371433.Google Scholar
Hutchinson, G. E. (1970). The biosphere. Scientific American, 223(3), 4553.Google Scholar
Joseph, L. E. (1990). Gaia: The Growth of an Idea, New York: St. Martin’s Press.Google Scholar
Kaplan, L. D., Connes, J., and Connes, P. (1969). Carbon monoxide in the Martian atmosphere. The Astrophysical Journal, 157, L187192.Google Scholar
Kauffman, E. G. (1988). The Gaia controversy: AGU’S Chapman Conference. Eos, Transactions, American Geophysical Union, 69(31), 763764.Google Scholar
Keller, E. F. (2008). Organisms, machines, and thunderstorms: a history of self-organization, part one. Historical Studies in the Natural Sciences, 38(1), 4575.Google Scholar
Keller, E. F. (2009). Organisms, machines, and thunderstorms: a history of self-organization, part two. Complexity, emergence, and stable attractors. Historical Studies in the Natural Sciences, 39(1), 131.Google Scholar
Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L., and Martell, E. A. (1972). The sulfur cycle. Science, 175(4022), 587596.Google Scholar
Kellogg, W. W. and Mead, M. (1977). The Atmosphere: Endangered and Endangering, Washington, DC.: US Government Printing Office.Google Scholar
Kerr, B., Godfrey-Smith, P., and Feldman, M. W. (2004). What is altruism? Trends in Ecology and Evolution, 19(3), 135140.Google Scholar
Kirchner, J. (1989). The Gaia hypothesis: can it be tested? Reviews of Geophysics, 27(2), 223235.CrossRefGoogle Scholar
Kirchner, J. (2002). The Gaia hypothesis: fact, theory, and wishful thinking. Climatic Change, 52(4), 391408.Google Scholar
Kirk, A. G. (2007). Counterculture Green: The Whole Earth Catalog and American Environmentalism, Lawrence, KA: University Press of Kansas.Google Scholar
Kirschvink, J. L. (1992). Late proterozoic low-latitude global glaciation: the snowball Earth. In Schopf, W. J. and Klein, C., eds., The Proterozoic Biosphere: A Multidisciplinary Study, Cambridge: Cambridge University Press, pp. 5152.Google Scholar
Klinger, L. F., Elias, S. A., Behan-Pelletier, V. M., and Williams, N. E. (1990). The bog climax hypothesis: fossil arthropod and stratigraphic evidence in peat sections from southeast Alaska, USA. Ecography, 13(1), 7280.CrossRefGoogle Scholar
Kwa, C. (2005). Local ecologies and global science discourses and strategies of the International Geosphere–Biosphere Programme. Social Studies of Science, 35(6), 923950.Google Scholar
Kwa, C. (2006). The programming of interdisciplinary research through informal science–policy interactions. Science and Public Policy, 33(6), 457467.Google Scholar
Kwa, C. and Rector, R. (2010). A data bias in interdisciplinary cooperation in the sciences: ecology in climate change research. In Parker, J. N., Vermeulen, N., and Penders, B., eds., Collaboration in the New Life Sciences, Farnham: Ashgate, pp. 161176.Google Scholar
Latour, B. (2004). Politics of Nature: How to Bring the Sciences into Democracy, Cambridge, MA: Harvard University Press.Google Scholar
Latour, B. (2014). How to make sure Gaia is not a God of Totality? With special attention to Toby Tyrrell’s book On Gaia. Proceedings of the Rio de Janeiro meeting on “The Thousand Names of Gaia.”Google Scholar
Latour, B. (2017a). Facing Gaia: Eight Lectures on the New Climatic Regime, Cambridge: Polity.Google Scholar
Latour, B. (2017b). Why Gaia is not a god of totality. Theory, Culture and Society, 34(2–3), 6182.Google Scholar
Latour, B. and Lenton, T. M. (2019). Extending the domain of freedom, or why Gaia is so hard to understand. Critical Inquiry, 45(3), 659680.Google Scholar
Latour, B., Schaffer, S., and Gagliardi, P. (2020). A Book of the Body Politic. Connecting Biology, Politics and Social Theory, Venice: Foundation Cini.Google Scholar
Latour, B. and Strum, S. C. (1986). Human social origins: Oh please, tell us another story. Journal of Social and Biological Structures, 9(2), 169187.Google Scholar
Latour, B. and Weibel, P. (2020). Critical Zones: The Science and Politics of Landing on Earth, Karlsruhe: ZKM Center for Art and Media, and MIT Press.Google Scholar
Laudan, L. (1983). The demise of the demarcation problem. In Cohen, R. S. and Laudan, L., eds., Physics, Philosophy and Psychoanalysis, Dordrecht: Reidel, pp. 111127.Google Scholar
Lenton, T. M. (1998). Gaia and natural selection. Nature, 394(6692), 439447.Google Scholar
Lenton, T. M., Daines, S. J., Dyke, J. G., et al. (2018). Selection for Gaia across multiple scales. Trends in Ecology and Evolution, 33(8), 633645.Google Scholar
Lenton, T. M. and Dutreuil, S. (2020). Distinguishing Gaia from the Earth system(s). In Latour, and Weibel, 2020: 176179.Google Scholar
Lenton, T. M., Dutreuil, S., and Latour, B. (2020). Life on Earth is hard to spot. The Anthropocene Review, 7(3), 248272.Google Scholar
Lenton, T. M., Held, H., Kriegler, E., et al. (2008). Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences, 105(6), 17861793.CrossRefGoogle ScholarPubMed
Lenton, T. M. and Latour, B. (2018). Gaia 2.0. Science, 361(6407), 10661068.Google Scholar
Lenton, T. M. and Lovelock, J. (2001). Daisyworld revisited: quantifying biological effects on planetary self-regulation. Tellus B, 53(3), 288305.Google Scholar
Lenton, T. M. and Watson, A. (2011). Revolutions That Made the Earth, Oxford: Oxford University Press.CrossRefGoogle Scholar
Levine, J. S. and Schryer, R. (1978). Man’s Impact on the Troposphere, NASA Reference Publication 1022. NASA Scientific and Technical Information Office.Google Scholar
Levins, R. and Lewontin, R. C. (1985). The Dialectical Biologist, Cambridge, MA: Harvard University Press.Google Scholar
Lewontin, R. C. (1970). The units of selection. Annual Review of Ecology and Systematics, 1, 118.Google Scholar
Li Vigni, F. (2018). Les systèmes complexes et la digitalisation des sciences. Histoire et sociologie des instituts de la complexité aux États-Unis et en France, Paris Sciences et Lettres and École doctorale de l’École des hautes études en sciences sociales, Paris.Google Scholar
Liss, P. and Slater, P. G. (1974). Flux of gases across the air–sea interface. Nature, 247, 181184.Google Scholar
Lotka, A. J. (1925). Elements of Physical Biology, Baltimore, MD: Williams and Wilkins.Google Scholar
Lovelock, J. (1965). A physical basis for life detection experiments. Nature, 207(4997), 568570.Google Scholar
Lovelock, J. (1966). Some thoughts on the year 2000. Unpublished report for Shell, Lovelock archives, Science Museum, London.Google Scholar
Lovelock, J. (1971). Air pollution and climatic change. Atmospheric Environment, 5(6), 403411.Google Scholar
Lovelock, J. (1972). Gaia as seen through the atmosphere. Atmospheric Environment, 6, 579580.Google Scholar
Lovelock, J. (1974a). Atmospheric halocarbons and stratospheric ozone. Nature, 252, 292294.Google Scholar
Lovelock, J. (1974b). The electron capture detector: theory and practice. Journal of Chromatography A, 99, 312.Google Scholar
Lovelock, J. (1975). Natural halocarbons in the air and in the sea. Nature, 256, 193194.Google Scholar
Lovelock, J. (1977). Halogenated hydrocarbons in the atmosphere. Ecotoxicology and Environmental Safety, 1(3), 399406.Google Scholar
Lovelock, J. (1979a). Gaia: A New Look at Life on Earth, Oxford: Oxford University Press.Google Scholar
Lovelock, J. (1979b). The independent practice of science. New Scientist, September 6, 714–717.Google Scholar
Lovelock, J. (1981a). A policy for fluorocarbons. Science and Public Policy, 8(3), 203205.Google Scholar
Lovelock, J. (1981b). James Lovelock responds (reply to Doolittle). The CoEvolution Quarterly, 29, 6263.Google Scholar
Lovelock, J. (1981c). More on Gaia and the end of Gaia. CoEvolution Quarterly, 31, 3637.Google Scholar
Lovelock, J. (1983a). Comment to chapter 3. In Bolin, B. and Cook, R. B., eds., The Major Biogeochemical Cycles and Their Interactions, SCOPE 21.Google Scholar
Lovelock, J. (1983b). DaisyWorld: a cybernetic proof of the Gaia hypothesis. CoEvolution Quarterly, 38, 6672.Google Scholar
Lovelock, J. (1984a). An expedition to the days when it began. Review of Earth’s Earliest Biosphere: Its Origin and Evolution, ed. J. W. Schopf. New Scientist, April 12.Google Scholar
Lovelock, J. (1984b). The Colligative Properties of Life: A New Look at Gaia. Typescript book proposal for the Commonwealth Fund Book Award, Lynn Margulis Family Papers.Google Scholar
Lovelock, J. (1984c). The Ice Age cometh. Review of S. Schneider and R. Londer, The Coevolution of Climate and Life. New York Times, August 19, Section 7, 11.Google Scholar
Lovelock, J. (1986a). Gaia: the world as living organism. New Scientist, December 18, 25–28.Google Scholar
Lovelock, J. (1986b). Geophysiology: a new look at earth science. Bulletin of the American Meteorological Society, 67(4), 392–397.Google Scholar
Lovelock, J. (1986c). Living alternatives. Nature, 320(6063), 646.CrossRefGoogle Scholar
Lovelock, J. (1986d). Prehistory of Gaia. Review of Vladimir Vernadsky, The Biosphere. New Scientist, 51(July 17).Google Scholar
Lovelock, J. (1988). The Ages of Gaia: A Biography of Our Living Earth, Oxford: Oxford University Press.Google Scholar
Lovelock, J. (1990). Hands up for the Gaia hypothesis. Nature, 344, 100102.Google Scholar
Lovelock, J. (1991a). Gaia: The Practical Science of Planetary Medicine, London: Gaia Books.Google Scholar
Lovelock, J. (1991b). Toujours Gaia. Science, 252(5012), 1472.Google Scholar
Lovelock, J. (1992a). A numerical model for biodiversity. Philosophical Transactions: Biological Sciences, 338(1286), 383391.Google Scholar
Lovelock, J. (1992b). The Earth is not fragile. In Cartledge, B., ed., Monitoring the Environment: The Linacre Lectures 1990–1991, Oxford: Oxford University Press, pp. 105–122.Google Scholar
Lovelock, J. (1998). A book for all seasons. Science, 280(5365), 832833.Google Scholar
Lovelock, J. (2000). Homage to Gaia: The Life of an Independent Scientist, Oxford: Oxford University Press.Google Scholar
Lovelock, J. (2003a). Gaia: the living Earth. Nature, 426(6968), 769770.Google Scholar
Lovelock, J. (2003b). The recognition of Gaia. In Coulson, J., Whitfield, D., and Preston, A. L., eds., Keeping Things Whole: Readings in Environmental Science, Chicago: Great Books Foundation, pp. 201–220.Google Scholar
Lovelock, J. (2003c). Gaia and emergence: a response to Kirchner and Volk. Climatic Change, 57(1–2), 13.Google Scholar
Lovelock, J. (2004a). Archer John Porter Martin CBE. In Biographical Memoirs, The Royal Society, pp. 157170.Google Scholar
Lovelock, J. (2004b). Reflections on Gaia. In Schneider, S. H., Miller, J., Crist, E., and Boston, P., eds., Scientists Debate Gaia, Cambridge, MA: MIT Press, pp. 15.Google Scholar
Lovelock, J. (2006). The Revenge of Gaia, London: Penguin Books.Google Scholar
Lovelock, J. (2008). A geophysiologist’s thoughts on geoengineering. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1882), 38833890.Google Scholar
Lovelock, J. (2009). The Vanishing Face of Gaia, New York: Basic Books.Google Scholar
Lovelock, J. (2014). A Rough Ride to the Future, London: Penguin Books.Google Scholar
Lovelock, J. and Allaby, M. (1984). The Greening of Mars, New York: Warner Books.Google Scholar
Lovelock, J. and Epton, S. (1975). The quest for Gaia. New Scientist, February 6, 304–306.Google Scholar
Lovelock, J. and Giffin, C. E. (1969). Planetary atmospheres: compositional and other changes associated with the presence of life. Advances in the Astronautical Sciences, 25, 179193.Google Scholar
Lovelock, J. and Kaplan, I. (1975). Thermodynamics and the recognition of alien biospheres [and Discussion]. Proceedings of the Royal Society of London. Series B. Biological Sciences, 189(1095), 167181.Google Scholar
Lovelock, J. and Kump, L. R. (1994). Failure of climate regulation in a geophysiological model. Nature, 369, 732734.Google Scholar
Lovelock, J. and Lodge, J. P. (1972). Oxygen in the contemporary atmosphere. Atmospheric Environment, 6(8), 575578.Google Scholar
Lovelock, J., Maggs, R., and Rasmussen, R. (1972). Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature, 237, 452453.Google Scholar
Lovelock, J., Maggs, R., and Wade, R. (1973). Halogenated hydrocarbons in and over the Atlantic. Nature, 241, 194196.Google Scholar
Lovelock, J. and Margulis, L. (1974a). Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus, 26(1–2), 210.CrossRefGoogle Scholar
Lovelock, J., and Margulis, L. (1974b). Homeostatic tendencies of the Earth’s atmosphere. Origins of Life, 5(1), 93103.Google Scholar
Lovelock, J. and Rapley, C. G. (2007). Ocean pipes could help the Earth to cure itself. Nature, 449(7161), 403.Google Scholar
Lovelock, J. and Watson, A. (1982). The regulation of carbon dioxide and climate: Gaia or geochemistry. Planetary and Space Science, 30(8), 795802.Google Scholar
Lovelock, J. and Whitfield, M. (1981). Life span of the biosphere. CoEvolution Quarterly, 31, 3738.Google Scholar
Lovelock, J. and Whitfield, M. (1982). Life span of the biosphere. Nature, 296(5857), 561563.Google Scholar
Lovley, D. R., Stolz, J. F., Nord, G. L., and Phillips, E. J. P. (1987). Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 330(6145), 252254.Google Scholar
Mann, C. (1991). Lynn Margulis: science’s unruly Earth Mother. Science, 252(5004), 378–81.Google Scholar
Margulis, L. (1969). New phylogenies of the lower organisms: possible relation to organic deposits in Precambrian sediment. Journal of Geology, 77(5), 606617.Google Scholar
Margulis, L. (1970a). Origin of Eukaryotic Cells: Evidence and Research Implications for a Theory of the Origin and Evolution of Microbial, Plant, and Animal Cells on the Precambrian Earth, New Haven, CT: Yale University Press.Google Scholar
Margulis, L. (ed.). (1970b). Origins of Life: Proceedings of the First Conference, New York: Gordon and Breach.Google Scholar
Margulis, L. (1971a). Cytoplasmic genes: our Precambrian legacy. Stadler Genetics Symposia, 1–2, 7988.Google Scholar
Margulis, L. (1971b). Microbial evolution on the early Earth. In Buvet, R. and Ponnamperuma, C., eds., Molecular Evolution 1: Chemical Evolution and the Origin of Life, Amsterdam: North-Holland, pp. 480484.Google Scholar
Margulis, L. (ed.). (1971c). Proceedings of the Second Conference on Origins of Life: Cosmic Evolution, Abundance, and Distribution of Biologically Important Elements, New York: Gordon and Breach.Google Scholar
Margulis, L. (1971d). Symbiosis and evolution. Scientific American, 225(2), 4857.Google Scholar
Margulis, L. (1971e). Whittaker’s five kingdoms of organisms: minor revisions suggested by considerations of mitosis. Evolution, 25, 242245.Google Scholar
Margulis, L. (1972). Early cellular evolution. In Ponnamperuma, C., ed., Exobiology, Amsterdam: North-Holland, pp. 342368.Google Scholar
Margulis, L. (1974a). On the evolutionary origin and possible mechanism of colchicine-sensitive mitotic movements. BioSystems, 6(1), 1636.Google Scholar
Margulis, L. (1974b). Review of Theory and Experiment in Exobiology, vol. 2, ed. A. W. Schwartz. Quarterly Review of Biology, 49, 5556.Google Scholar
Margulis, L. (1981a). Gaia. Origins of Life, 11(3), 267268.Google Scholar
Margulis, L. (1981b). Gaia lives, has blurred boundaries (reply to Doolittle). The CoEvolution Quarterly, 29, 6365.Google Scholar
Margulis, L. (1981c). Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth, San Francisco: W. H. Freeman.Google Scholar
Margulis, L. (1985). Review of R. Shapiro: A Sceptic’s Guide to the Creation of Life on Earth. Origins of Life, 16, 172173.Google Scholar
Margulis, L. (1991). Big trouble in biology: physiological autopoiesis versus mechanistic neo-Darwinism. In Brockman, J., ed., Doing Science: The Reality Club, New York: Prentice Hall Press.Google Scholar
Margulis, L. (1993a). Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth, 2nd ed., San Francisco, CA: W. H. Freeman.Google Scholar
Margulis, L. (1993b). From Gaia to microcosm. BioSystems, 31(2), 83.Google Scholar
Margulis, L. (1993c). Gaia in Science. Science, 259(5096), 745.Google Scholar
Margulis, L. (1995). Gaia is a tough bitch. In Brockman, J., ed., The Third Culture: Beyond the Scientific Revolution, New York: Simon and Schuster, pp. 129151.Google Scholar
Margulis, L. (1998). Symbiotic Planet: A New Look at Evolution, New York: Basic Books.Google Scholar
Margulis, L. (2000). Book review: J. D. Bernal: A Life in Science and Politics. Science, Technology, and Human Values, 25(2), 252254.Google Scholar
Margulis, L. (2004). Gaia by any other name. In Schneider, S. H., Miller, J., Crist, E., and Boston, P., eds., Scientists Debate Gaia, Cambridge, MA: MIT Press, pp. 712.Google Scholar
Margulis, L. (2007). Luminous Fish: Tales of Science and Love, White River Junction, VT: Chelsea Green.Google Scholar
Margulis, L., Asikainen, C., and Krumbein, W. E. (2011). Chimeras and Consciousness: Evolution of the Sensory Self, Cambridge, MA: MIT Press.Google Scholar
Margulis, L. and Cohen, J. E. (1994). Combinatorial generation of taxonomic diversity: implication of symbiogenesis for the Proterozoic fossil record. In Bengtson, S., ed., Early Life on Earth, New York: Columbia University Press, pp. 327–333.Google Scholar
Margulis, L. and Dobb, E. (1990). Untimely requiem. Review of Bill McKibben, The End of Nature. The Sciences, 30(1), 4449.Google Scholar
Margulis, L. and Dolan, M. (2002). Early Life: Evolution on the Precambrian Earth, 2nd ed., Burlington, MA: Jones and Bartlett Learning.Google Scholar
Margulis, L. and Fester, R. (eds.). (1991). Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis, Cambridge, MA: MIT Press.Google Scholar
Margulis, L. and Hinkle, G. (1991). The biota and Gaia: 150 years of support for environmental sciences. In Schneider, S. H. and Boston, P. J., eds., Scientists on Gaia, Cambridge, MA: The MIT Press, pp. 1118.Google Scholar
Margulis, L. and Lovelock, J. (1974). Biological modulation of the Earth’s atmosphere. Icarus, 21(4), 471489.Google Scholar
Margulis, L. and Lovelock, J. (1975). The atmosphere as circulatory system of the biosphere: the Gaia hypothesis. CoEvolution Quarterly, 6 (Summer 1975), 3140.Google Scholar
Margulis, L. and Lovelock, J. (1976). Is Mars a spaceship, too? Natural History, 85(June–July), 8690.Google Scholar
Margulis, L. and Lovelock, J. (1977a). Planet Earth is our only hope. Geographical Magazine, 49, 473478.Google Scholar
Margulis, L. and Lovelock, J. (1977b). The view from Mars and Venus. The Sciences, 17(2), 1013.Google Scholar
Margulis, L. and Lovelock, J. (1978). The biota as ancient and modern modulator of the Earth’s atmosphere. Pure and Applied Geophysics, 116(2), 239243.Google Scholar
Margulis, L. and Lovelock, J. (1989). Gaia and geognosy. In Rambler, M., Margulis, L., and Fester, R., eds., Global Ecology: Towards a Science of the Biosphere, San Diego: Academic Press, pp. 130.Google Scholar
Margulis, L., Matthews, C., and Haselton, A. (2000). Environmental Evolution: Effects of the Origin and Evolution of Life on Planet Earth, 2nd ed., Cambridge, MA: MIT Press.Google Scholar
Margulis, L. and Olendzenski, L. (1992). Environment Evolution: Effects of the Origin and Evolution of Life on Planet Earth, Cambridge, MA: MIT Press.Google Scholar
Margulis, L. and Sagan, D. (1984). Evolutionary origins of sex. In Dawkins, R. and Ridley, M., eds., Oxford Surveys in Evolutionary Biology. Vol. 1, Oxford: Oxford University Press, pp. 1647.Google Scholar
Margulis, L. and Sagan, D. (1986a). Microcosmos: Four Billion Years of Microbial Evolution, New York: Summit.Google Scholar
Margulis, L. and Sagan, D. (1986b). Origins of Sex: Three Billion Years of Genetic Recombination, New Haven: Yale University Press.Google Scholar
Margulis, L. and Sagan, D. (1986c). Strange fruit on the Tree of Life. The Sciences, 26(3), 3845.Google Scholar
Margulis, L. and Sagan, D. (1991). Mystery Dance: On the Evolution of Human Sexuality, New York: Summit.Google Scholar
Margulis, L. and Sagan, D. (1995). What Is Life?, New York: Simon and Schuster.Google Scholar
Margulis, L. and Sagan, D. (1997). Slanted Truths: Essays on Gaia, Symbiosis and Evolution, New York: Copernicus.Google Scholar
Margulis, L. and Sagan, D. (2000). What is Life?, Berkeley: University of California Press.Google Scholar
Margulis, L. and Sagan, D. (2002). Acquiring Genomes: A Theory of the Origins of Species, New York: Basic Books.Google Scholar
Margulis, L. and Sagan, D. (2007). Dazzle Gradually: Reflections on the Nature of Nature, White River Junction, VT: Chelsea Green.Google Scholar
Margulis, L., Schwartz, K., and Dolan, M. (eds.). (1999). Diversity of Life: An Illustrated Guide to the Five Kingdoms, 2nd ed, Burlington, MA: Jones and Bartlett Learning.Google Scholar
Margulis, L. and Schwartz, K.V. (1982). Five Kingdoms: An Illustrated Guide to the Phyla of Life on Earth, New York: W. H. Freeman.Google Scholar
Margulis, L. and Stolz, J. F. (1983). Microbial systematics and a Gaian view of the sediments. In Westbroek, P. and De Jong, E. W., eds., Biomineralization and Biological Metal Accumulation, Dordrecht: Reidel, pp. 2754.Google Scholar
Margulis, L. and Stolz, J. F. (1990). Letter. Scientific American, 262, March 3, 12.Google Scholar
Maturana, H. R. and Varela, F. J. (1987). The Tree of Knowledge: The Biological Roots of Human Understanding, Boston: New Science Library.Google Scholar
Maxwell, J. and Briscoe, F. (1997). There’s money in the air: the CFC ban and DuPont’s regulatory strategy. Business Strategy and the Environment, 6(5), 276286.3.0.CO;2-A>CrossRefGoogle Scholar
Mayr, E. (1972). The nature of the Darwinian revolution. Science, 176(4038), 981989.Google Scholar
McDonald-Gibson, J., Dyke, J., Di Paolo, E., and Harvey, I. (2008). Environmental regulation can arise under minimal assumptions. Journal of Theoretical Biology, 251(4), 653666.Google Scholar
McElroy, M. B. and McConnell, J. C. (1971). Nitrous oxide: a natural source of stratospheric NO. Journal of the Atmospheric Sciences, 28(6), 10951098.Google Scholar
Merchant, P. (2010). Lovelock, James. An oral history of British science, British Library. Retrieved from http://sounds.bl.uk/Oral-history/Science/021M-C1379X0015XX-0001V0Google Scholar
Midgley, M. (2001). Gaia: The Next Big Idea, London: Demos.Google Scholar
Mitchell, J. G. and Silver, M. W. (1982). Modern archaeomonads indicate sea-ice environments. Nature, 296(5856), 437439.Google Scholar
Molina, M. J. and Rowland, F. S. (1974). Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature, 249(5460), 810–12.Google Scholar
Morrison, R. (1999). The Spirit in the Gene: Humanity’s Proud Illusion and the Laws of Nature, Ithaca, NY: Cornell University Press.Google Scholar
Morton, O. (2015). The Planet Remade: How Geoengineering Could Change the World, Princeton: Princeton University Press.Google Scholar
Myers, N. (1985). The Gaia Atlas of Planet Management: For Today’s Caretakers of Tomorrow’s World, London: Pan Books.Google Scholar
National Research Council. (1981). Origin and Evolution of Life: Implications for the Planets, a Scientific Strategy for the 1980s, Washington, DC: National Academies Press.Google Scholar
Nicholson, A. E., Wilkinson, D. M., Williams, H. T. P., and Lenton, T. M. (2018). Alternative mechanisms for Gaia. Journal of Theoretical Biology, 457, 249257.Google Scholar
Odling-Smee, J. F., Laland, K. N., and Feldman, M. W. (2003). Niche Construction: The Neglected Process in Evolution, Princeton, NJ: Princeton University Press.Google Scholar
Oreskes, N. and Conway, E. M. (2010). Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming, New York: Bloomsbury Press.Google Scholar
Oró, J., Miller, S. L., Ponnamperuma, C., and Young, R. S. (eds.). (1974). Cosmochemical Evolution and the Origins of Life: Proceedings of the Fourth International Conference on the Origin of Life and the First Meeting of the International Society for the Study of the Origin of Life, Barcelona, June 25-28, 1973, Dordrecht: D. Reidel.Google Scholar
Pickering, A. (2010). The Cybernetic Brain: Sketches of Another Future, Chicago: University of Chicago Press.Google Scholar
Pocheville, A. (2010). La niche écologique: concepts, modèles, applications (PhD thesis), Ecole Normale Supérieure, Ecole doctorale Frontières du Vivant.Google Scholar
Polunin, N. and Grinevald, J. (1988). Vernadsky and biospheral ecology. Environmental Conservation, 15(2), 117122.Google Scholar
Ponnamperuma, C. (1972). Exobiology, Amsterdam: North-Holland.Google Scholar
Postgate, J. (1988). Gaia gets too big for her boots. New Scientist, April 7, 60.Google Scholar
Poundstone, W. (1999). Carl Sagan: A Life in the Cosmos, New York: Henry Holt.Google Scholar
Prinn, R. G., Simmonds, P. G., Rasmussen, R. A., et al. (1983). The atmospheric lifetime experiment: 1. introduction, instrumentation, and overview. Journal of Geophysical Research: Oceans, 88(C13), 83538367.Google Scholar
Rambler, M., Margulis, L., and Fester, R. (eds.). Global Ecology: Towards a Science of the Biosphere, Boston: Academic Press.Google Scholar
Rapley, C. (2005). Global Science in the Antarctic Context: British Antarctic Survey Strategy to 2012, British Antarctic Survey.Google Scholar
Rapley, C., Bell, R. E., Allison, I., et al. (2004). A Framework for the International Polar Year, 2007–2008, Paris: International Council for Science.Google Scholar
Reider, R. (2009). Dreaming the Biosphere: The Theater of All Possibilities, Albuquerque, NM: University of New Mexico Press.Google Scholar
Riggs, D. S. (1970). Control Theory and Physiological Feedback Mechanisms, Baltimore, MD: Williams and Wilkins.Google Scholar
Rispoli, G. (2020). Genealogies of Earth System thinking. Nature Reviews Earth and Environment, 1(1), 45.Google Scholar
Rispoli, G. and Olšáková, D. (2020). Science and diplomacy around the Earth: from the Man and Biosphere Programme to the International Geosphere–Biosphere Programme. Historical Studies in the Natural Sciences, 50(4), 456481.Google Scholar
Robertson, D. and Robinson, J. M. (1998). Darwinian Daisyworld. Journal of Theoretical Biology, 195(1), 129134.Google Scholar
Robinson, E. and Robbins, R. C. (1968). Sources, Abundance, and Fate of Gaseous Atmospheric Pollutants. Final Report and Supplement, Stanford: Stanford Research Institute.Google Scholar
Rockström, J., Steffen, W. L., Noone, K., et al. (2009). Planetary boundaries: exploring the safe operating space for humanity. Nature, 461, 472475.Google Scholar
Ruse, M. (2013). The Gaia Hypothesis: Science on a Pagan Planet, Chicago: University of Chicago Press.Google Scholar
Ryan, F. (2002). Darwin’s Blind Spot: Evolution beyond Natural Selection, New York: Houghton Mifflin.Google Scholar
Sagan, C. and Mullen, G. (1971). Report 460, Center for Radiophysics and Space Research. Cornell University.Google Scholar
Sagan, C. and Mullen, G. (1972). Earth and Mars: evolution of atmospheres and surface temperatures. Science, 117, 5256.Google Scholar
Sagan, C., Thompson, W. R., Carlson, R., Gurnett, D., and Hord, C. (1993). A search for life on Earth from the Galileo spacecraft. Nature, 365(6448), 715721.Google Scholar
Sagan, D. (1990). Biospheres: Metamorphosis of Planet Earth, New York: McGraw-Hill.Google Scholar
Sagan, D. and Margulis, L. (1984). The Gaian perspective of ecology. The Ecologist, 13, 160167.Google Scholar
Sagan, D. and Margulis, L. (1987). Gaia and the evolution of machines. Whole Earth Review, 55, 1521.Google Scholar
Sagan, L. (1967). On the origin of mitosing cells. Journal of Theoretical Biology, 14(3), 225274.Google Scholar
Sahtouris, E. (1989). Gaia: The Human Journey from Chaos to Cosmos, New York: Pocket.Google Scholar
Sapp, J. (2015). On symbiosis, microbes, kingdoms and domains. In Clarke, B., ed., Earth, Life, and System, Fordham University Press, pp. 105126.Google Scholar
Saunders, P. T. (1994). Evolution without natural selection: further implications of the Daisyworld parable. Journal of Theoretical Biology, 166(4), 365373.Google Scholar
Schellnhuber, H. J. and Held, H. (2002). How fragile is the Earth system? In Briden, J. C. and Downing, T. E., eds., Managing the Earth: The Linacre Lectures 2001, Oxford: Oxford University Press, pp. 534.Google Scholar
Schneider, S. H. and Boston, P. J. (eds.). (1991). Scientists on Gaia, Cambridge, MA: The MIT Press.Google Scholar
Schneider, S. H. and Londer, R. (1984). The Coevolution of Climate and Life, San Francisco, CA: Sierra Club Books.Google Scholar
Schneider, S. H., Miller, J., Crist, E., and Boston, P. J. (eds.). (2004). Scientists Debate Gaia: The Next Century, Cambridge, MA: The MIT Press.Google Scholar
Schrödinger, E. (1944). What is Life?, Cambridge: Cambridge University Press.Google Scholar
Schwartz, A. W. (1972). Theory and Experiment in Exobiology, Volume 2, Gröningen: Woller-Noordhoff.Google Scholar
Selcer, P. (2018). The Postwar Origins of the Global Environment: How the United Nations Built Spaceship Earth, New York: Columbia University Press.Google Scholar
Shapin, S. (2008). The Scientific Life, Chicago: University of Chicago Press.Google Scholar
Sillén, L. G. (1966). Regulation of O2, N2 and CO2 in the atmosphere; thoughts of a laboratory chemist. Tellus, 18(2), 198206.Google Scholar
Simpson, G. G. (1964). This View of Life: The World of an Evolutionist. New York: Harcourt, Brace & World.Google Scholar
Slack, N. G. (2011). G. Evelyn Hutchinson and the Invention of Modern Ecology, New Haven: Yale University Press.Google Scholar
Steffen, W., Richardson, K., Rockström, J., and Lubchenco, J. (2020). The emergence and evolution of Earth system science. Nature Reviews Earth and Environment, 1(1), 5463.Google Scholar
Stengers, I. (2015a). Accepting the reality of Gaia: a fundamental shift? In Hamilton, C., Bonneuil, C., and Gemenne, F., eds., The Anthropocene and the Global Environmental Crisis, London: Routledge, pp. 134144.Google Scholar
Stengers, I. (2015b). In Catastrophic Times: Resisting the Coming Barbarism, trans. A. Goffey, Ann Arbor: Open Humanities Press.Google Scholar
Stevens, W. K. (1989). Evolving theory views earth as a living organism. New York Times, August 29, Section C, 1.Google Scholar
Stolz, J. F. (1984). Succession in a microbial mat community: a Gaian perspective. Advances in Space Research, 4(12), 203206.Google Scholar
Stolz, J. F. (1991). Biomineralization and Gaia. In Schneider, S. H. and Boston, P., eds., Scientists on Gaia, Cambridge, MA: MIT Press, pp. 346352.Google Scholar
Stolz, J. F. (2017a). Climate change and the Gaia hypothesis. In Magill, G., ed., The Urgency of Climate Change: Interdisciplinary Perspectives, Cambridge, UK: Cambridge Scholars Publishing, pp. 5072.Google Scholar
Stolz, J. F. (2017b). Gaia and her microbiome. FEMS Microbiology Ecology, 93(2). doi:10.1093/femsec/fiw247.Google Scholar
Stolz, J. F., Botkin, D., and Dastoor, M. N. (1989). The integral biosphere. In Rambler, M. and Margulis, L., eds., Global Ecology, Boston: Academic Press, pp. 3150.Google Scholar
Stolz, J. F., Chang, S.-B. R., and Kirschvink, J. L. (1986). Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments. Nature, 321(6073), 849851.Google Scholar
Strick, J. (2004). Creating a cosmic discipline: the crystallization and consolidation of exobiology, 1957–1973. Journal of the History of Biology, 37(1), 131180.Google Scholar
Teresi, D. (2011). Discover Interview: Lynn Margulis says she’s not controversial, she’s right. Discover Magazine, June 17.Google Scholar
Thomas, L. (1982). Notes of a Biology Watcher: A Film with Lewis Thomas, Paramus, New Jersey: Time-Life Video.Google Scholar
Thompson, W. I. (ed.). (1987). Gaia, a Way of Knowing: Political Implications of the New Biology, Great Barrington, MA: Lindisfarne Press.Google Scholar
Thompson, W. I. (1989). Imaginary Landscape: Making Worlds of Myth and Science, New York: St. Martins Press.Google Scholar
Thompson, W. I. (1991). Gaia 2: Emergence: The New Science of Becoming, Hudson, NY: Lindisfarne Press.Google Scholar
Thompson, W., I. (1997). Worlds Interpenetrating and Apart: Collected Poems 1959-1996, Great Barrington, MA: Lindisfarne Press.Google Scholar
Thompson, W. I. (2016). Thinking Together at the Edge of History: A Memoir of the Lindisfarne Association, Traverse City, Michigan: Lorian Press.Google Scholar
Travis, J. (1992). Reading, writing, arithmetic …and microbes? Science, 258(5086), 12991300.Google Scholar
Turner, F. (2010). From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network, and the Rise of Digital Utopianism, Chicago: University of Chicago Press.Google Scholar
Tyrrell, T. (2013). On Gaia: A Critical Investigation of the Relationship Between Life and Earth, Princeton: Princeton University Press.Google Scholar
Uhrqvist, O. (2014). Seeing and knowing the Earth as a system: an effective history of global environmental change research as scientific and political practice (PhD thesis), Linköping University.Google Scholar
Van Thienen, P., Benzerara, K., Breuer, D., et al. (2007). Water, life, and planetary geodynamical evolution. Space Science Reviews, 129(1), 167203.Google Scholar
Van Valen, L. (1971). The history and stability of atmospheric oxygen. Science, 171(3970), 439443.Google Scholar
Varela, F., Maturana, H., and Uribe, R. (1974). Autopoiesis: the organization of living systems, its characterization and a model. BioSystems, 5(4), 187196.Google Scholar
Vernadsky, V. I. (1986). The Biosphere, Oracle, AZ: Synergetic Press.Google Scholar
Vernadsky, V. I. (1998). The Biosphere, New York: Copernicus.Google Scholar
Visscher, P. T. and Stolz, J. F. (2005). Microbial mats as bioreactors: populations, processes, and products. Palaeogeography, Palaeoclimatology, Palaeoecology, 218, 87100.Google Scholar
Volk, T. (1995). Metapatterns: Across Space, Time, and Mind, New York: Columbia University Press.Google Scholar
Volk, T. (1997). Gaia’s Body: Toward a Physiology of Earth, Cambridge, MA: MIT Press.Google Scholar
Volk, T. (2002). Toward a future for Gaia theory. Climatic Change, 52(4): 423430.Google Scholar
Volk, T. (2003). Seeing deeper into Gaia theory: a reply to Lovelock’s response. Climatic Change, 57(1–2), 57.Google Scholar
Volk, T. (2006). Real concerns, false gods. Nature, 440 (7086), 869870.Google Scholar
Von Foerster, H. (1975). Gaia’s cybernetics badly expressed. CoEvolution Quarterly, 7(Fall 1975), 51.Google Scholar
Walker, J. C. G. (1977). Evolution of the Atmosphere, New York: Macmillan.Google Scholar
Walker, J. C. G., Hays, P. B., and Kasting, J. F. (1981). A negative feedback mechanism for the long-term stabilization of the Earth’s surface temperature. Journal of Geophysical Research, 86(C10), 97769782.Google Scholar
Walker, J. C. G., Margulis, L., and Mitchell, R. (1976). Reassessment of the roles of oxygen and ultraviolet light in Precambrian evolution. Nature, 264(62), 620624.Google Scholar
Watson, A. and Lovelock, J. (1983). Biological homeostasis of the global environment: the parable of Daisyworld. Tellus B, 35(4), 284289.Google Scholar
Watson, A., Lovelock, J., and Margulis, L. (1978). Methanogenesis, fires and the regulation of atmospheric oxygen. BioSystems, 10(4), 293298.Google Scholar
Westbroek, P. (1991). Life as a Geological Force: Dynamics of the Earth, New York: Norton.Google Scholar
Westbroek, P. and De Jong, E. W. (1983). Biomineralization and Biological Metal Accumulation, Dordrecht: Reidel.Google Scholar
Williams, H. T. P. and Lenton, T. M. (2008). Environmental regulation in a network of simulated microbial ecosystems. Proceedings of the National Academy of Sciences, 105(30), 1043210437.Google Scholar
Williamson, D. I. (2001). Larval transfer and the origins of larvae. Zoological Journal of the Linnean Society, 131(1), 111122.Google Scholar
Wilson, E. O. (1975). Sociobiology: The New Synthesis, Cambridge, MA: Harvard University Press.Google Scholar
Winther, R. G. (2009). Prediction in selectionist evolutionary theory. Philosophy of Science, 76(5), 889901.Google Scholar
Woese, C. R. and Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences, 74(11), 50885090.Google Scholar
Wolkomir, R. (1985). The wizard of Ooze. Omni, 7(4), 4852.Google Scholar
Wood, A. J., Ackland, G. J., Dyke, J., Williams, H. T. P., and Lenton, T. M. (2008). Daisyworld: a review. Reviews of Geophysics, 46(1).Google Scholar
Wood, A. J., Ackland, G. J., and Lenton, T. M. (2006). Mutation of albedo and growth response produces oscillations in a spatial Daisyworld. Journal of Theoretical Biology, 242, 188198.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Edited by Bruce Clarke, Texas Tech University, Sébastien Dutreuil
  • Book: Writing Gaia: The Scientific Correspondence of James Lovelock and Lynn Margulis
  • Online publication: 28 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781108966948.058
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Edited by Bruce Clarke, Texas Tech University, Sébastien Dutreuil
  • Book: Writing Gaia: The Scientific Correspondence of James Lovelock and Lynn Margulis
  • Online publication: 28 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781108966948.058
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Edited by Bruce Clarke, Texas Tech University, Sébastien Dutreuil
  • Book: Writing Gaia: The Scientific Correspondence of James Lovelock and Lynn Margulis
  • Online publication: 28 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781108966948.058
Available formats
×