Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T17:42:04.787Z Has data issue: false hasContentIssue false

10 - Ceasing Arrogance

Published online by Cambridge University Press:  22 June 2023

Laurence L. Delina
Affiliation:
Hong Kong University of Science and Technology
Get access

Summary

Humans assume they are superior to nature. There is no better place to see this arrogance than in the affluent societies of the Minority World. The COVID-19 pandemic ignored arbitrarily defined geographical borders and the fantasy of fake prosperity was shattered as the coronavirus raged. Never again will we resort to this myth created on the backs of people in the Majority World and propped up by environmental plunder. The arrogance of control and superiority have to cease.

Type
Chapter
Information
COVID and Climate Emergencies in the Majority World
Confronting Cascading Crises in the Age of Consequences
, pp. 93 - 100
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, P., Brown, C., Arneth, A., Finnigan, J., Moran, D., & Rounsevell, M. D. (2017). Losses, inefficiencies and waste in the global food system. Agricultural Systems, 153, 190200.Google Scholar
Balasubramanian, M. (2018). Climate change, famine, and low-income communities challenge Sustainable Development Goals. The Lancet Planetary Health, 2(10), e421422.CrossRefGoogle ScholarPubMed
Ben-Arye, T., & Levenberg, S. (2019). Tissue engineering for clean meat production. Frontiers in Sustainable Food Systems, 3, Art. 46.Google Scholar
Bhandari, H., & Mishra, A. K. (2018). Impact of demographic transformation on future rice farming in Asia. Outlook on Agriculture, 47(2), 125132.Google Scholar
Blackwell, M. S. A., Darch, T., & Haslam, R. P. (2019). Phosphorus use efficiency and fertilizers: Future opportunities for improvements. Frontiers of Agricultural Science and Engineering, 6(4), 332340.Google Scholar
Bollyky, T. J., & Bown, C. P. (2020). The tragedy of vaccine nationalism: Only cooperation can end the pandemic. Foreign Affairs, September–October.Google Scholar
Castillo, M., Plaza, Á., & Garfias, R. (2020). A recent review of fire behavior and fire effects on native vegetation in Central Chile. Global Ecology and Conservation, 24, e01210.Google Scholar
Clapp, J., Newell, P., & Brent, Z. W. (2018). The global political economy of climate change, agriculture and food systems. Journal of Peasant Studies, 45(1), 8088.Google Scholar
Clay, J. (2013). World Agriculture and the Environment: A Commodity-by-Commodity Guide to Impacts and Practices. Washington, DC: Island Press.Google Scholar
Cleveland, D. A., & Gee, Q. (2017). Plant-based diets for mitigating climate change. In Mariotti, F. (Ed.), Vegetarian and Plant-Based Diets in Health and Disease Prevention (pp. 135156). London: Academic Press.CrossRefGoogle Scholar
Cromsigt, J. P., Kemp, Y. J., Rodriguez, E., & Kivit, H. (2018). Rewilding Europe’s large grazer community: How functionally diverse are the diets of European bison, cattle, and horses? Restoration Ecology, 26(5), 891899.Google Scholar
De la Vega-Rivera, A., & Merino-Pérez, L. (2021). Socio-environmental impacts of the avocado boom in the Meseta Purepecha, Michoacan, Mexico. Sustainability, 13(13), 7247.CrossRefGoogle Scholar
Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916919.Google Scholar
Fanzo, J., Davis, C., McLaren, R., & Choufani, J. (2018). The effect of climate change across food systems: Implications for nutrition outcomes. Global Food Security, 18, 1219.Google Scholar
Franzke, C. L., Ciullo, A., Gilmore, E. A., Matias, D. M., Nagabhatla, N., Orlov, A., … & Sillmann, J. (2022). Perspectives on tipping points in integrated models of the natural and human Earth system: Cascading effects and telecoupling. Environmental Research Letters, 17(1), 015004.Google Scholar
García-Ruiz, J. M., Lasanta, T., Nadal-Romero, E., Lana-Renault, N., & Álvarez-Farizo, B. (2020). Rewilding and restoring cultural landscapes in Mediterranean mountains: Opportunities and challenges. Land Use Policy, 99, 104850.Google Scholar
Gaupp, F., Hall, J., Hochrainer-Stigler, S., & Dadson, S. (2020). Changing risks of simultaneous global breadbasket failure. Nature Climate Change, 10(1), 5457.Google Scholar
Geissler, B., Mew, M. C., & Steiner, G. (2019). Phosphate supply security for importing countries: Developments and the current situation. Science of the Total Environment, 677, 511523.Google Scholar
Giannini, T. C., Costa, W. F., Cordeiro, G. D., Imperatriz-Fonseca, V. L., Saraiva, A. M., Biesmeijer, J., & Garibaldi, L. A. (2017). Projected climate change threatens pollinators and crop production in Brazil. PLoS One, 12(8), e0182274.Google Scholar
Gleeson, T., Wada, Y., Bierkens, M. F., & Van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197200.Google Scholar
Gómez-González, S., González, M. E., Paula, S., Díaz-Hormazábal, I., Lara, A., & Delgado-Baquerizo, M. (2019). Temperature and agriculture are largely associated with fire activity in Central Chile across different temporal periods. Forest Ecology and Management, 433, 535543.Google Scholar
Grossi, G., Goglio, P., Vitali, A., & Williams, A. G. (2019). Livestock and climate change: Impact of livestock on climate and mitigation strategies. Animal Frontiers, 9(1), 6976.CrossRefGoogle ScholarPubMed
Hasegawa, T., Fujimori, S., Havlík, P., Valin, H., Bodirsky, B. L., Doelman, J. C., … & Witzke, P. (2018). Risk of increased food insecurity under stringent global climate change mitigation policy. Nature Climate Change, 8(8), 699703.CrossRefGoogle Scholar
Ji, Y., Liu, H., & Shi, Y. (2020). Will China’s fertilizer use continue to decline? Evidence from LMDI analysis based on crops, regions and fertilizer types. PLoS One, 15(8), e0237234.Google Scholar
Johnson, C. N., Prior, L. D., Archibald, S., Poulos, H. M., Barton, A. M., Williamson, G. J., & Bowman, D. M. (2018). Can trophic rewilding reduce the impact of fire in a more flammable world? Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1761), 20170443.Google Scholar
Khan, N. A., Gao, Q., Abid, M., & Shah, A. A. (2021). Mapping farmers’ vulnerability to climate change and its induced hazards: Evidence from the rice-growing zones of Punjab, Pakistan. Environmental Science and Pollution Research, 28(4), 42294244.CrossRefGoogle ScholarPubMed
King, O., Bhattacharya, A., Bhambri, R., & Bolch, T. (2019). Glacial lakes exacerbate Himalayan glacier mass loss. Scientific Reports, 9(1), 19.Google Scholar
Klare, M. T. (2020). Climate change, water scarcity, and the potential for interstate conflict in South Asia. Journal of Strategic Security, 13(4), 109122.Google Scholar
Koch, A., McBratney, A., Adams, M., Field, D., Hill, R., Crawford, J., … & Zimmermann, M. (2013). Soil security: Solving the global soil crisis. Global Policy, 4(4), 434441.CrossRefGoogle Scholar
Koning, N. B. J., Van Ittersum, M. K., Becx, G. A., Van Boekel, M. A. J. S., Brandenburg, W. A., Van Den Broek, J. A., … & Smies, M. (2008). Long-term global availability of food: Continued abundance or new scarcity? NJAS: Wageningen Journal of Life Sciences, 55(3), 229292.Google Scholar
Kornhuber, K., Osprey, S., Coumou, D., Petri, S., Petoukhov, V., Rahmstorf, S., & Gray, L. (2019). Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environmental Research Letters, 14(5), 054002.CrossRefGoogle Scholar
Laborde, D., Mamun, A., Martin, W., Piñeiro, V., & Vos, R. (2021). Agricultural subsidies and global greenhouse gas emissions. Nature Communications, 12(1), 19.Google Scholar
Lagman, J. D. N. (2021). Vaccine nationalism: A predicament in ending the COVID-19 pandemic. Journal of Public Health, 43(2), e375376.Google Scholar
Langton, T. G. (2019). The fertilizer industry. In Beige, C. E. & Hero, A. (Eds.), Natural Resources in US–Canadian Relations (pp. 93122). Abingdon, UK: Routledge.Google Scholar
ManaloIV, J. A., van de Fliert, E., & Fielding, K. (2020). Rice farmers adapting to drought in the Philippines. International Journal of Agricultural Sustainability, 18(6), 594605.Google Scholar
McCauley, D. J., Jablonicky, C., Allison, E. H., Golden, C. D., Joyce, F. H., Mayorga, J., & Kroodsma, D. (2018). Wealthy countries dominate industrial fishing. Science Advances, 4 (8), eaau2161.Google Scholar
Miller, S., Chua, K., Coggins, J., & Mohtadi, H. (2021). Heat waves, climate change, and economic output. Journal of the European Economic Association, 19(5), 26582694.CrossRefGoogle Scholar
Mishra, J., Mishra, P., & Arora, N. K. (2021). Linkages between environmental issues and zoonotic diseases: With reference to COVID-19 pandemic. Environmental Sustainability, 4(3), 455467.CrossRefGoogle Scholar
Nguyen, T. P. L., & Sean, C. (2021). Do climate uncertainties trigger farmers’ out-migration in the Lower Mekong Region? Current Research in Environmental Sustainability, 3, 100087.CrossRefGoogle Scholar
Nie, Y., Pritchard, H. D., Liu, Q., Hennig, T., Wang, W., Wang, X., … & Chen, X. (2021). Glacial change and hydrological implications in the Himalaya and Karakoram. Nature Reviews: Earth & Environment, 2(2), 91106.Google Scholar
Nkemelang, T., New, M., & Zaroug, M. (2018). Temperature and precipitation extremes under current, 1.5℃ and 2.0℃ global warming above pre-industrial levels over Botswana, and implications for climate change vulnerability. Environmental Research Letters, 13(6), 065016.Google Scholar
Ojo, T. O., & Baiyegunhi, L. J. S. (2020). Determinants of climate change adaptation strategies and its impact on the net farm income of rice farmers in south-west Nigeria. Land Use Policy, 95, 103946.Google Scholar
Perino, A., Pereira, H. M., Navarro, L. M., Fernández, N., Bullock, J. M., Ceaușu, S., … & Wheeler, H. C. (2019). Rewilding complex ecosystems. Science, 364 (6438), eaav5570.Google Scholar
Salih, A. A., Baraibar, M., Mwangi, K. K., & Artan, G. (2020). Climate change and locust outbreak in East Africa. Nature Climate Change, 10(7), 584585.Google Scholar
Smoyer-Tomic, K. E., Kuhn, R., & Hudson, A. (2003). Heat wave hazards: An overview of heat wave impacts in Canada. Natural Hazards, 28(2), 465486.Google Scholar
Srutee, R. R. S. S., & Uday, S. A. (2021). Clean meat: Techniques for meat production and its upcoming challenges. Animal Biotechnology, 19.Google Scholar
Stuart, T. (2009). Waste: Uncovering the Global Food Scandal. New York: W. W. Norton & Company.Google Scholar
Taylor, G., & Vink, S. (2021). Managing the risks of missing international climate targets. Climate Risk Management, 34, 100379.CrossRefGoogle Scholar
Tigchelaar, M., Battisti, D. S., Naylor, R. L., & Ray, D. K. (2018). Future warming increases probability of globally synchronized maize production shocks. Proceedings of the National Academy of Sciences, 115(26), 66446649.Google Scholar
Trebicki, P., & Finlay, K. (2019). Pests and Diseases under Climate Change: Its Threat to Food Security. In Yadav, S. S., Redden, R. J., Hatfield, J. L., Ebert, A. W., & Hunter, D. (Eds.), Food Security and Climate Change (pp. 229249). Hoboken, NJ: John Wiley & Sons.Google Scholar
Tse, D. C., Lau, V. W., Hong, Y. Y., Bligh, M. C., & Kakarika, M. (2022). Prosociality and hoarding amid the COVID‐19 pandemic: A tale of four countries. Journal of Community & Applied Social Psychology, 32(3), 507520.CrossRefGoogle ScholarPubMed
UNESCO. (2016). World Water Development Report 2016.Google Scholar
Van Vliet, S., Kronberg, S. L., & Provenza, F. D. (2020). Plant-based meats, human health, and climate change. Frontiers in Sustainable Food Systems, Art. 128.Google Scholar
Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37(1), 195222.Google Scholar
Waldram, M. S., Bond, W. J., & Stock, W. D. (2008). Ecological engineering by a mega-grazer: White rhino impacts on a South African savanna. Ecosystems, 11(1), 101112.CrossRefGoogle Scholar
Zhou, Y. R. (2022). Vaccine nationalism: Contested relationships between COVID-19 and globalization. Globalizations, 19(3), 450465.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Ceasing Arrogance
  • Laurence L. Delina, Hong Kong University of Science and Technology
  • Book: COVID and Climate Emergencies in the Majority World
  • Online publication: 22 June 2023
  • Chapter DOI: https://doi.org/10.1017/9781108974455.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Ceasing Arrogance
  • Laurence L. Delina, Hong Kong University of Science and Technology
  • Book: COVID and Climate Emergencies in the Majority World
  • Online publication: 22 June 2023
  • Chapter DOI: https://doi.org/10.1017/9781108974455.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Ceasing Arrogance
  • Laurence L. Delina, Hong Kong University of Science and Technology
  • Book: COVID and Climate Emergencies in the Majority World
  • Online publication: 22 June 2023
  • Chapter DOI: https://doi.org/10.1017/9781108974455.011
Available formats
×