Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-07T09:14:33.595Z Has data issue: false hasContentIssue false

12 - Designing Nature-Inspired Liquid-Repellent Surfaces

from Part III - Natural Phenomena

Published online by Cambridge University Press:  28 August 2020

Wole Soboyejo
Affiliation:
Worcester Polytechnic Institute, Massachusetts
Leo Daniel
Affiliation:
Kwara State University, Nigeria
Get access

Summary

Wetting refers to the interactions between a liquid and a solid in a given environment [1–3]. In particular, it refers to the study of how liquids spread on solids. This field of science involves principles found in fluid mechanics and materials science and is relevant to various natural phenomena and industrial applications.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Young, T. (1805). An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 6587.Google Scholar
Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 28, 988994.Google Scholar
Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546550.Google Scholar
Cassie, A. B. D., & Baxter, S. (1945). Large contact angles of plant and animal surfaces. Nature, 155, 2122.Google Scholar
Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 18.CrossRefGoogle Scholar
Ensikat, H. J., Ditsche-Kuru, P., Neinhuis, C., & Barthlott, W. (2011). Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein Journal of Nanotechnology, 2, 152161.Google Scholar
Helbig, R., Nickerl, J., Neinhuis, C., & Werner, C. (2011). Smart skin patterns protect springtails. PLOS ONE, 6, e25105.CrossRefGoogle ScholarPubMed
Zheng, Y., Gao, X., & Jiang, L. (2007). Directional adhesion of superhydrophobic butterfly wings. Soft Matter, 3, 178182.Google Scholar
Bohn, H. F., & Federle, W. (2004). Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proceedings of the National Academy of Sciences of the United States of America, 101, 1413814143.Google Scholar
Parker, A. R., & Lawrence, C. R. (2001). Water capture by a desert beetle. Nature, 414, 3334.Google Scholar
Gao, X. F., & Jiang, L. (2004). Water-repellent legs of water striders. Nature, 432, 36.CrossRefGoogle ScholarPubMed
Hu, D. L., Chan, B., & Bush, J. W. M. (2003). The hydrodynamics of water strider locomotion. Nature, 424, 663666.Google Scholar
Seymour, R. S., & Hetz, S. K. (2011). The diving bell and the spider: The physical gill of Argyroneta aquatica. Journal of Experimental Biology, 214, 21752181.Google Scholar
Hansen, W. R., & Autumn, K. (2005). Evidence for self-cleaning in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 102, 385389.Google Scholar
de Gennes, P.-G., Brochard-Wyart, F., & Quéré, D. (2004). Capillarity and wetting phenomena: Drops, bubbles, pearls, waves. New York: Springer.Google Scholar
Cassie, A. B. D. (1948). Contact angles. Discussions of the Faraday Society, 3, 1116.CrossRefGoogle Scholar
McHale, G. (2007). Cassie and Wenzel: Were they really so wrong? Langmuir, 23, 82008205.Google Scholar
Bico, J., Thiele, U., & Quéré, D. (2002). Wetting of textured surfaces. Colloids and Surfaces A – Physicochemical and Engineering Aspects, 206, 4146.Google Scholar
Bico, J., Marzolin, C., & Quéré, D. (1999). Pearl drops. Europhysics Letters, 47, 220226.CrossRefGoogle Scholar
Marmur, A. (2009). Solid-surface characterization by wetting. Annual Review of Materials Research, 39, 473489.Google Scholar
Gibbs, J. W. (1961). The scientific papers of J. Willard Gibbs, Ed. Dover, New. New York: Dover Publications.Google Scholar
Amirfazli, A., & Neumann, A. W. (2004). Status of the three-phase line tension. Advances in Colloid and Interface Science, 110, 121141.Google Scholar
Wong, T. S., & Ho, C. M. (2009). Dependence of macroscopic wetting on nanoscopic surface textures. Langmuir, 25, 1285112854.CrossRefGoogle ScholarPubMed
Zheng, Q. S., Lv, C. J., Hao, P. F., & Sheridan, J. (2010). Small is beautiful, and dry. Science China – Physics Mechanics & Astronomy, 53, 22452259.Google Scholar
Bormashenko, E. (2011). General equation describing wetting of rough surfaces. Journal of Colloid and Interface Science, 360, 317319.Google Scholar
Gundersen, H., Leinaas, H. P., & Thaulow, C. (2017). Collembola cuticles and the three-phase line tension. Beilstein Journal of Nanotechnology, 8, 17141722.Google Scholar
Lafuma, A., & Quéré, D. (2003). Superhydrophobic states. Nature Materials, 2, 457460.Google Scholar
Quéré, D. (2008). Wetting and roughness. Annual Review of Materials Research, 38, 7199.CrossRefGoogle Scholar
Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 74, 69117.Google Scholar
Tian, Y., & Jiang, L. (2013). Intrinsically robust hydrophobicity. Nature Materials, 12, 291292.Google Scholar
Nishino, T., Meguro, M., Nakamae, K., Matsushita, M., & Ueda, Y. (1999). The lowest surface free energy based on − CF3 alignment. Langmuir, 15, 43214323.Google Scholar
Furmidge, C. G. (1962). Studies at phase Interfaces.I. Sliding of liquid drops on solid surfaces and a theory for spray retention. Journal of Colloid Science, 17, 309324.Google Scholar
Shuttleworth, R., & Bailey, G. L. J. (1948). The spreading of a liquid over a rough solid. Discussions of the Faraday Society, 3, 1622.CrossRefGoogle Scholar
Johnson, R. E., & Dettre, R. H. (1964). Contact angle hysteresis.III. Study of an idealized heterogeneous surface. Journal of Physical Chemistry, 68, 17441750.Google Scholar
Oliver, J. F., Huh, C., & Mason, S. G. (1977). Resistance to spreading of liquids by sharp edges. Journal of Colloid and Interface Science, 59, 568581.Google Scholar
Extrand, C. W., & Moon, S. I. (2008). Contact angles on spherical surfaces. Langmuir, 24, 94709473.Google Scholar
Wong, T. S., Kang, S. H., Tang, S. K. Y., et al. (2011). Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477, 443447.Google Scholar
Lafuma, A., & Quéré, D. (2011). Slippery pre-suffused surfaces. Europhysics Letters, 96, 56001.Google Scholar
Schellenberger, F., Xie, J., Encinas, N., et al. (2015). Direct observation of drops on slippery lubricant-infused surfaces. Soft Matter, 11, 76177626.Google Scholar
Dai, X. M., Sun, N., Nielsen, S. O., et al. (2018). Hydrophilic directional slippery rough surfaces for water harvesting. Science Advances, 4, eaaq0919.Google Scholar
Zhai, L., Berg, M. C., Cebeci, F. C., et al. (2006). Patterned superhydrophobic surfaces: Toward a synthetic mimic of the Namib Desert beetle. Nano Letters, 6, 12131217.CrossRefGoogle Scholar
Garrod, R. P., Harris, L. G., Schofield, W. C. E., et al. (2007). Mimicking a stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces. Langmuir, 23, 689693,CrossRefGoogle ScholarPubMed
Dorrer, C., & Rühe, J. (2008). Mimicking the stenocara beetle dewetting of drops from a patterned superhydrophobic surface. Langmuir, 24, 61546158.CrossRefGoogle ScholarPubMed
Zhang, L., Wu, J., Hedhili, M. N., Yang, X., & Wang, P. (2015). Inkjet printing for direct micropatterning of a superhydrophobic surface: Toward biomimetic fog harvesting surfaces. Journal of Materials Chemistry A, 3, 28442852.Google Scholar
Yang, X., Song, J., Liu, J., Liu, X., & Jin, Z. (2017). A twice electrochemical-etching method to fabricate superhydrophobic-superhydrophilic patterns for biomimetic fog harvest. Scientific Reports, 7, 8816.Google Scholar
Kostal, E., Stroj, S., Kasemann, S., Matylitsky, V., & Domke, M. (2018). Fabrication of biomimetic fog-collecting superhydrophilic-superhydrophobic surface micropatterns using femtosecond lasers. Langmuir, 34, 29332941.Google Scholar
Bai, H., Wang, L., Ju, J., Sun, R. Z., Zheng, Y. M., & Jiang, L. (2014). Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Advanced Materials, 26, 50255030.CrossRefGoogle ScholarPubMed
Choi, C. H., & Kim, C. J. (2006). Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Physical Review Letters, 96, 066001.Google Scholar
Choi, C. H., Ulmanella, U., Kim, J., Ho, C. M., & Kim, C. J. (2006). Effective slip and friction reduction in nanograted superhydrophobic microchannels. Physics of Fluids, 18, 087105.Google Scholar
Lee, C., Choi, C. H., & Kim, C. J. (2008). Structured surfaces for a giant liquid slip. Physical Review Letters, 101, 064501.Google Scholar
Daniello, R. J., Waterhouse, N. E., & Rothstein, J. P. (2009). Drag reduction in turbulent flows over superhydrophobic surfaces. Physics of Fluids, 21, 085103.Google Scholar
Saranadhi, D., Chen, D. Y., Kleingartner, J. A., Srinivasan, S., Cohen, R. E., & McKinley, G. H. (2016). Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface. Science Advances, 2, e1600686.CrossRefGoogle Scholar
Rosenberg, B. J., Van Buren, T., Fu, M. K., & Smits, A. J. (2016). Turbulent drag reduction over air- and liquid-impregnated surfaces. Physics of Fluids, 28, 015103.Google Scholar
Lee, C., & Kim, C. J. (2011). Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Physical Review Letters, 106, 014502.Google Scholar
Wisdom, K. M., Watson, J. A., Qu, X. P., Liu, F. J., Watson, G. S., & Chen, C. H. (2013). Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proceedings of the National Academy of Sciences of the United States of America, 110, 79927997.Google Scholar
Boreyko, J. B., & Chen, C. H. (2009). Self-propelled dropwise condensate on superhydrophobic surfaces. Physical Review Letters, 103, 184501.Google Scholar
Miljkovic, N., Enright, R., Nam, Y., et al. (2013). Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Letters, 13, 179187.Google Scholar
Feng, L., Zhang, Z. Y., Mai, Z. H., et al. (2004). A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angewandte Chemie-International Edition, 43, 20122014.CrossRefGoogle ScholarPubMed
Cao, L. L., Jones, A. K., Sikka, V. K., Wu, J. Z., & Gao, D. (2009). Anti-icing superhydrophobic coatings. Langmuir, 25, 1244412448.Google Scholar
Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J. A., Krupenkin, T., & Aizenberg, J. (2010). Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano, 4, 76997707.Google Scholar
Liu, Y., Chen, X., & Xin, J. (2009). Can superhydrophobic surfaces repel hot water? Journal of Materials Chemistry, 19, 56025611.Google Scholar
Poetes, R., Holtzmann, K., Franze, K., & Steiner, U. (2010). Metastable underwater superhydrophobicity. Physical Review Letters, 105, 166104.Google Scholar
Hochbaum, A. I., & Aizenberg, J. (2010). Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Letters, 10, 37173721.Google Scholar
Wong, T. S., Sun, T. L., Feng, L., & Aizenberg, J. (2013). Interfacial materials with special wettability. MRS Bulletin, 38, 366371.Google Scholar
Deng, X., Mammen, L., Butt, H. J., & Vollmer, D. (2012). Candle soot as a template for a transparent robust superamphiphobic coating. Science, 335, 6770.Google Scholar
Tian, X. L., Verho, T., & Ras, R. H. A. (2016). Moving superhydrophobic surfaces toward real-world applications. Science, 352, 142143.Google Scholar
Tuteja, A., Choi, W., Ma, M. L., et al. (2007). Designing superoleophobic surfaces. Science, 318, 16181622.Google Scholar
Liu, T. Y., & Kim, C. J. (2014). Turning a surface superrepellent even to completely wetting liquids. Science, 346, 10961100.Google Scholar
Choi, J., Jo, W., Lee, S. Y., Jung, Y. S., Kim, S.-H., & Kim, H.-T. (2017). Flexible and robust superomniphobic surfaces created by localized photofluidization of azopolymer pillars. ACS Nano, 11, 78217828Google Scholar
Lee, S. E., Kim, H.-J., Lee, S.-H., & Choi, D.-G. (2013). Superamphiphobic surface by nanotransfer molding and isotropic etching. Langmuir, 29, 80708075.Google Scholar
Chen, H. W., Zhang, P. F., Zhang, L. W., et al. (2016). Continuous directional water transport on the peristome surface of Nepenthes alata. Nature, 532, 8589.Google Scholar
Kim, P., Wong, T. S., Alvarenga, J. Kreder, M. J., Adorno-Martinez, W. E., & Aizenberg, J. (2012). Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano, 6, 65696577.CrossRefGoogle ScholarPubMed
Yao, X., Hu, Y. H., Grinthal, A., Wong, T. S., Mahadevan, L., & Aizenberg, J. (2013). Adaptive fluid-infused porous films with tunable transparency and wettability. Nature Materials, 12, 529534,Google Scholar
Vogel, N., Belisle, R. A., Hatton, B., Wong, T. S., & Aizenberg, J. (2013). Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nature Communications, 4, 110.Google Scholar
MacCallum, N., Howell, C., Kim, P., et al. (2015). Liquid-infused silicone as a biofouling-free medical material. ACS Biomaterials Science & Engineering, 1, 4351.CrossRefGoogle ScholarPubMed
Leslie, D. C., Waterhouse, A., Berthet, J. B., et al. (2014). A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nature Biotechnology, 32, 11341140.Google Scholar
Smith, J. D., Dhiman, R., Anand, S., et al. (2013). Droplet mobility on lubricant-impregnated surfaces. Soft Matter, 9, 17721780.Google Scholar
Daniel, D., Timonen, J. V. I., Li, R. P., Velling, S. J., & Aizenberg, J. (2017). Oleoplaning droplets on lubricated surfaces. Nature Physics, 13, 10201025.Google Scholar
Irajizad, P., Hasnain, M. Farokhnia, N. Sajadi, S. M., & Ghasemi, H. (2016). Magnetic slippery extreme icephobic surfaces. Nature Communications, 7, 13395.Google Scholar
Golovin, K., Kobaku, S. P. R., Lee, D. H., DiLoreto, E. T. Mabry, J. M., & Tuteja, A. (2016). Designing durable icephobic surfaces. Science Advances, 2, e1501496.CrossRefGoogle ScholarPubMed
Epstein, A. K., Wong, T. S., Belisle, R. A., Boggs, E. M., & Aizenberg, J. (2012). Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proceedings of the National Academy of Sciences of the United States of America, 109, 1318213187.Google Scholar
Amini, S., Kolle, S., Petrone, L., et al. (2017). Preventing mussel adhesion using lubricant-infused materials. Science, 357, 668673.Google Scholar
Tesler, A. B., Kim, P., Kolle, S., Howell, C., Ahanotu, O., & Aizenberg, J. (2015). Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nature Communications, 6, 110.Google Scholar
Van Buren, T., & Smits, A. J. (2017). Substantial drag reduction in turbulent flow using liquid-infused surfaces. Journal of Fluid Mechanics, 827, 448456.Google Scholar
Anand, S. Paxson, A. T., Dhiman, R., Smith, J. D., & Varanasi, K. K. (2012). Enhanced condensation on lubricant-impregnated nanotextured surfaces. ACS Nano, 6, 1012210129.CrossRefGoogle ScholarPubMed
Xiao, R., Miljkovic, N., Enright, R., & Wang, E. N. (2013). Immersion Condensation on oil-infused heterogeneous surfaces for enhanced heat transfer. Scientific Reports, 3, 1988.CrossRefGoogle ScholarPubMed
Hou, X., Hu, Y. H., Grinthal, A., Khan, M., & Aizenberg, J. (2015). Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature, 519, 7073.Google Scholar
Yang, S. K., Dai, X. M., Stogin, B. B., & Wong, T. S. (2016). Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proceedings of the National Academy of Sciences of the United States of America, 113, 268273.CrossRefGoogle ScholarPubMed
Dai, X. M., Stogin, B. B., Yang, S. K., & Wong, T. S. (2015). Slippery Wenzel State. ACS Nano, 9, 92609267.Google Scholar
Park, K.-C., Kim, P., Grinthal, A., et al. (2016). Condensation on slippery asymmetric bumps. Nature, 531, 78.Google Scholar
Huang, Y., Stogin, B. B., Sun, N., Wang, J., Yang, S. K., & Wong, T. S. (2017). A switchable cross-species liquid repellent surface. Advanced Materials, 29, 1604641.Google Scholar
Cheng, Z., Zhang, D., Lv, T., et al. (2018). Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting. Advanced Functional Materials, 28, 1705002.Google Scholar
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G., & Worm, B. (2011). How many species are there on Earth and in the ocean? PLoS Biology, 9, e1001127.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×