Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T23:31:07.795Z Has data issue: false hasContentIssue false

4 - Selecting Resin Matrix and Nanomaterials for Applications

from Part One - Fundamentals, Processing, and Characterization

Published online by Cambridge University Press:  27 January 2017

Joseph H. Koo
Affiliation:
University of Texas, Austin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pinnavaia, T. J. (1983). Intercalated clay catalysts. Science 220, 365371.CrossRefGoogle ScholarPubMed
Mehrotra, V. and Giannelis, E. P. (1990). Conducting molecular multilayers: intercalation of conjugated polymers in layered media. Materials Research Society Symposium Proceedings 171, 3944.CrossRefGoogle Scholar
Giannelis, E. P. (1992). A new strategy for synthesizing polymer-ceramic nanocomposites. Journal of Minerals 44, 2830.Google Scholar
Carter, L. W., Hendricks, J. G., and Bolley, D. S. (1950). United States Patent No. 2531396 (assigned to National Lead Co.).Google Scholar
Nahin, P. G. and Backlund, P. S. (1963). United States Patent No. 3084117 (assigned to Union Oil Co.).Google Scholar
Fujiwara, S. and Sakamoto, T. (1976). Japanese Kokai Patent Application No. 109998 (assigned to Unichika K.K., Japan).Google Scholar
Fukushima, Y. and Inagaki, S. (1987). Synthesis of an intercalated compound of montmorillonite and 6-polyamide. Journal of Inclusion Phenomena 5, 473482.CrossRefGoogle Scholar
Okada, A., Fukushima, Y., Kawasumi, M., Inagaki, S., Usuki, A., Sugiyama, S., Kuraunch, T., and Kamigaito, O. (1988). United States Patent No. 4739007 (assigned to Toyota Motor Co., Japan).Google Scholar
Kawasumi, M., Kohzaki, M., Kojima, Y., Okada, A., and Kamigaito, O. (1989). United States Patent No. 4810734 (assigned to Toyota Motor Co., Japan).Google Scholar
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukusima, Y., et al. (1993). Synthesis of nylon 6-clay hybrid. Journal of Material Research 8, 11791184.CrossRefGoogle Scholar
Ray, S. S. and Okamoto, M. (2003). Polymer/layered silicate nanocomposites: A review from preparation to processing. Progress in Polymer Science 28, 15391641.Google Scholar
Vaia, R. A., Ishii, H., and Giannelis, E. P. (1993). Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chemistry of Materials 5, 16941696.CrossRefGoogle Scholar
Vaia, R. A., Jandt, K. D., Kramer, E. J., and Giannelis, E. P. (1995). Kinetics of polymer melt intercalation. Macromolecules 28, 80808085.CrossRefGoogle Scholar
Vaia, R. A. and Giannelis, E. P. (1997). Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30, 79907999.CrossRefGoogle Scholar
Vaia, R. A. and Giannelis, E. P. (1997). Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment. Macromolecules 30, 80008009.CrossRefGoogle Scholar
Dennis, H. R., Hunter, D. L., Chang, D., Kim, S., et al. (2001). Effect of melting processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42, 95139522.CrossRefGoogle Scholar
Cho, J. W. and Paul, D. R. (2001). Nylon 6 nanocomposites by melt compounding. Polymer 42, 10831094.CrossRefGoogle Scholar
Fornes, T. D., Yoon, P. J., Keskula, H, and Paul, D. R. (2001). Nylon 6 nanocomposites: The effect of matrix molecular weight. Polymer 42, 99299940.CrossRefGoogle Scholar
Fornes, T. D., Yoon, P. J., Hunter, D. L., Keskula, H., and Paul, D. R. (2002). Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer 43, 59155933.CrossRefGoogle Scholar
Baraton, M. I. (2002). Synthesis, Fictionalization and Surface Treatment of Nanoparticles. Los Angeles, CA: American Science Publishers.Google Scholar
Brown, J. M., Curliss, D., and Vaia, R. A. (2000). Thermoset-layered silicate nanocomposites: Quaternary ammonium montmorillonite with primary diamine cured epoxies. Chemistry of Materials 12, 33763384.CrossRefGoogle Scholar
Gilman, J. W. (1999). Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Applied Clay Science 15, 3159.CrossRefGoogle Scholar
Vaia, R. A., Price, G., Ruth, P. N., Nguyen, H. T., and Lichtenhan, J. (1999). Polymer/layered silicate nanocomposites as high performance ablative materials. Applied Clay Science 15, 6792.CrossRefGoogle Scholar
Becker, O., Varley, R., and Simon, G. (2002). Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 43, 43654373.CrossRefGoogle Scholar
Becker, O., Cheng, Y-B., Varley, R. J., and Simon, G. P. (2003). Layered Silicate nanocomposites based on various high-functionality epoxy resins: The influence of cure temperature on morphology, mechanical properties, and free volume. Macromolecules 36, 16161625.CrossRefGoogle Scholar
Lan, T. and Pinnavaia, J. T., (1994). Clay-reinforced epoxy nanocomposites. Chemistry of Materials 6, 22162219.CrossRefGoogle Scholar
Wang, K., Chen, L., Wu, J., Toh, M. L., He, C., and Yee, A. F. (2005). Epoxy nanocomposites with highly exfoliated clay: Mechanical properties and fracture mechanisms. Macromolecules 38, 788800.CrossRefGoogle Scholar
Bondioli, F., Cannillo, V., Fabbri, E., and Messori, M. (2005). Epoxy-silica nanocomposites: Preparation, experimental characterization, and modeling. Journal of Applied Polymer Science 97, 23822386.CrossRefGoogle Scholar
Carter, W. C., Langer, S. A., and Fuller, E. R. (1998). OOF Manual: Version 1.0. www.ctcms.nist.gov/oofGoogle Scholar
Barbero, E. J. (1998). Introduction to Composite Materials Design (Solution Manual). New York: Taylor & Francis.Google Scholar
Lewis, T. B. and Nielsen, L. E. (1970). Dynamic mechanical properties of particulate-filled composites. Journal of Applied Polymer Science 14, 14491471.CrossRefGoogle Scholar
Gao, S.-L. and Mader, E. (2002). Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Composites Part A 33, 559576.CrossRefGoogle Scholar
Wang, H., Bai, Y., Liu, S., Wu, J., and Wong, C. P. (2002). Combined effects of silica filler and its interface in epoxy resin. Acta Materialia 50, 43694377.CrossRefGoogle Scholar
Hoffmann, B., Dietrich, C., Thomann, R., Friedrich, C., and Mulhaupt, R. (2000). Morphology and rheology of polystyrene nanocomposites based upon organoclay. Macromolecular Rapid Communications 21, 5761.3.0.CO;2-E>CrossRefGoogle Scholar
Kawasumi, M., Hasegawa, N., Kato, M., Usuki, A., and Okada, A. (1997). Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules 30, 63336338.CrossRefGoogle Scholar
Reichert, P., Nitz, H., Klinke, S., Brahdsch, R., Thomann, R., and Mulhaupt, R. (2000). Poly(propylene)/organoclay nanocomposite formation: Influence of compatibilizer functionality and organoclay modification. Macromolecular Materials Engineering 275, 817.3.0.CO;2-6>CrossRefGoogle Scholar
Fasulo, P. D., Rodgers, W. R., Ottaviani, R. A., and Hunter, D. L. (2004). Extrusion processing of TPO nanocomposites. Polymer Engineering and Science 44, 10361045.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×