Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-05T00:16:18.105Z Has data issue: false hasContentIssue false

12 - Relational Concept Learning in Birds

Published online by Cambridge University Press:  22 June 2017

Carel ten Cate
Affiliation:
Universiteit Leiden
Susan D. Healy
Affiliation:
University of St Andrews, Scotland
Get access
Type
Chapter
Information
Avian Cognition , pp. 229 - 248
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addyman, C. and Mareschal, D. (2010). The perceptual origins of the abstract same/different concept in human infants. Animal Cognition, 13, 817833. DOI:10.1007/s10071–010–0330–0CrossRefGoogle ScholarPubMed
Bond, A. B., Kamil, A. C. and Balda, R. P. (2003). Social complexity and transitive inference in corvids. Animal Behavior, 65, 479487. DOI:10.1006/anbe.2003.2101CrossRefGoogle Scholar
Bryant, P. E. and Trabasso, T. (1971). Transitive inferences and memory in young children. Nature, 232, 456458. DOI:10.1038/232456a0Google Scholar
Carter, D. E. and Werner, T. J. (1978). Complex learning and information processing by pigeons: A critical analysis. Journal of the Experimental Analysis of Behavior, 29, 565601.Google Scholar
Castro, L., Kennedy, P. L. and Wasserman, E. A. (2010). Conditional same-different discrimination by pigeons: Acquisition and generalization to novel and few-item displays. Journal of Experimental Psychology: Animal Behavior Processes, 36, 2338. DOI:10.1037/a0016326Google Scholar
Christie, S. and Gentner, D. (2010). Where hypotheses come from: Learning new relations by structural alignment. Journal of Cognition and Development, 11, 356373. DOI:10.1080/15248371003700015Google Scholar
Cook, R. G. and Wasserman, E. A. (2007). Learning and transfer of relational matching-to-sample by pigeons. Psychonomic Bulletin & Review, 14, 11071114. DOI:10.3758/bf03193099Google Scholar
Darwin, C. (1897). The descent of man, and selection in relation to sex. 2nd edn. New York: Appleton. (Original work published 1871).Google Scholar
Descartes, R. (1994). Discourse on the method (Edited and Translated by Heffeman, G.). Notre Dame, IN: University of Notre Dame Press. (Original work published 1637).Google Scholar
Edwards, C. A., Jagielo, J. A. and Zentall, T. R. (1983). Same/different symbol use by pigeons. Animal Learning and Behavior, 11, 349355. DOI:10.3758/bf03199787Google Scholar
Emery, N. J. (2006). Cognitive ornithology: the evolution of avian intelligence. Philosophical Transactions of the Royal Society B, 361, 2343. DOI:10.1098/rstb.2005.1736CrossRefGoogle ScholarPubMed
Fagot, J. and Parron, J. (2010). Relational matching in baboons (Papio papio) with reduced grouping requirements. Journal of Experimental Psychology: Animal Behaviour Processes, 36, 184193. DOI:10.1037/a0017169Google ScholarPubMed
Fagot, J. and Thompson, R. K. R. (2011). Generalized relational matching by Guinea baboons (Papio papio) in two by two-item analogy problems. Psychological Science, 22, 13041309. DOI:10.1177/0956797611422916Google Scholar
Fagot, J., Wasserman, E. A. and Young, M. E. (2001). Discriminating the relation between relations: The role of entropy in abstract conceptualization by baboons (Papio papio) and humans (Homo sapiens). Journal of Experimental Psychology: Animal Behavior Processes, 27, 316328. DOI:10.1037/0097–7403.27.4.316Google Scholar
Ferry, A. L., Hespos, S. J. and Gentner, D. (2015). Prelinguistic Relational Concepts: Investigating Analogical Processing in Infants. Child Development, 86, 13861405. DOI:10.1111/cdev.12381Google Scholar
Flemming, T. M., Thompson, R. K. R. and Fagot, J. (2013). Baboons, like humans, solve analogy by categorical abstraction of relations. Animal Cognition, 16, 519524. DOI:10.1007/s10071–013–0596–0Google Scholar
Gibson, B. M. and Wasserman, E. A. (2004). Time-course of control by specific stimulus features and relational cues during same-different discrimination training. Learning and Behavior, 32, 183189. DOI:10.3758/bf03196019Google Scholar
Goldstone, R. L. and Barsalou, L. W. (1998). Reuniting perception and conception. Cognition, 65, 21262. DOI:10.1016/s0010–0277(97)00047–4Google Scholar
Johnson, R. C. and Zara, R. C. (1960). Relational learning in young children. Journal of Comparative and Physiological Psychology, 53, 594597. DOI:10.1037/h0042545Google Scholar
Hayne, H. (1996). Categorization in infancy. In Advances in infancy research (Vol. 10), eds. Rovee-Collier, C. and Lipsitt, L. P.. Norwood, NJ: Ablex, pp. 79120.Google Scholar
Hinde, R. A. (1970). Behavioral habituation. In Short term changes in neural activity and behaviour, eds. Horn, G. and Hinde, R. A.. London/New York: Cambridge University Press, pp. 340.Google Scholar
Holyoak, K. J., Gentner, D. and Kokinov, B. N. (2001). Introduction: The Place of Analogy in Cognition. In The analogical mind: Perspectives from cognitive science, eds. Gentner, D., Holyoak, K. J. and Kokinov, B. N.. Cambridge, MA: MIT Press, pp. 119.Google Scholar
Homa, D., Cross, J., Cornell, D., Goldman, D. and Schwartz, S. (1973). Prototype abstraction and classification of new instances as a function of number of instances defining a prototype. Journal of Experimental Psychology, 101, 116122. DOI:10.1037/h0035772Google Scholar
Katz, J. S. and Wright, A. A. (2006). Mechanisms of same/different abstract-concept learning by pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 32, 8086. DOI:10.1037/0097–7403.32.1.80Google Scholar
Keller, F. S. and Schoenfeld, W. N. (1950). Principles of psychology. New York: Appleton-Century-Crofts.Google Scholar
Köhler, W. (1938). Simple structural functions in the chimpanzee and in the chicken. In A Source Book of Gestalt Psychology, ed. Ellis, W. D.. London: Routledge and Kegan Paul, pp. 217227. (Original work published 1918)CrossRefGoogle Scholar
Landy, D. and Goldstone, R. L. (2007). How abstract is symbolic thought? Journal of Experimental Psychology: Learning, Memory, & Cognition, 33, 720733. DOI:10.1037/0278–7393.33.4.720Google ScholarPubMed
Lazareva, O. F. (2012). Relational learning in a context of transposition: a review. Journal of Experimental Analysis of Behavior, 97, 231248. DOI:10.1901/jeab.2012.97–231Google Scholar
Lazareva, O. F., Miner, M., Wasserman, E. A. and Young, M. E. (2008). Multiple-pair training enhances transposition in pigeons. Learning & Behavior, 36, 174187. DOI:10.3758/lb.36.3.174Google Scholar
Lazareva, O. F., Smirnova, A. A., Bagozkaja, M. S., Zorina, Z. A., Rayevsky, V. V. and Wasserman, E. A. (2004). Transitive responding in hooded crows requires linearly ordered stimuli. Journal of Experimental Analysis of Behavior, 82, 119. DOI:10.1901/jeab.2004.82–1Google Scholar
Lazareva, O. F. and Wasserman, E. A. (2008). Categories and concepts in animals. In Learning theory and behaviour. Learning and memory: A comprehensive reference (Vol. 1), ed. Menzel, R.. Oxford: Elsevier, pp. 197226.CrossRefGoogle Scholar
Lazareva, O. F., Wasserman, E. A. and Young, M. E. (2005). Transposition in pigeons: Reassessing Spence (1937) with multiple discrimination training. Learning and Behavior, 33, 2246. DOI:10.3758/bf03196048CrossRefGoogle ScholarPubMed
Lazareva, O. F., Young, M. E. and Wasserman, E. A. (2014). A three-component model of relational responding in the transposition paradigm. Journal of Experimental Psychology: Animal Learning and Cognition, 40, 6380. DOI:10.1037/xan0000004Google Scholar
Locke, J. (1690/1975). An essay concerning human understanding. Oxford: Clarendon Press.Google Scholar
Morgan, C. L. (1894). An introduction to comparative psychology. London: Walter Scott, Ltd.Google Scholar
Nakamura, T., Wright, A. A., Katz, J. S., Bodily, K. D. and Sturz, B. R. (2009). Abstract-concept learning carryover effects from the initial training set in pigeons (Columba livia). Journal of Comparative Psychology, 123, 7989. DOI:10.1037/a0013126Google Scholar
Olson, D. J., Kamil, A. C., Balda, R. P. and Nims, P. J. (1995). Performance of four-seed caching corvid species in operant tests of nonspatial and spatial memory. Journal of Comparative Psychology, 109, 173181. DOI:10.1037/0735–7036.109.2.173Google Scholar
Paz-y-Miño C, G., Bond, A. B., Kamil, A. C. and Balda, R. P. (2004). Pinyon jays use transitive inference to predict social dominance. Nature, 430, 778781. DOI:10.1038/nature02723Google Scholar
Potts, R. (2004). Paleoenvironmental basis of cognitive evolution in great apes. American Journal of Primatology, 62, 209228. DOI:10.1002/ajp.20016Google Scholar
Premack, D. (1983). The codes of man and beast. Behavioral and Brain Sciences, 6, 125137. DOI:10.1017/s0140525x00015077CrossRefGoogle Scholar
Rein, J. R. and Markman, A. B. (2010). Assessing the Concreteness of Relational Representation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 14521465. DOI:10.1037/a0021040Google Scholar
Richland, L. E., Morrison, R. G. and Holyoak, K. J. (2006). Children's development of analogical reasoning: Insights from scene analogy problems. Journal of Experimental Child Psychology, 94, 249271. DOI:10.1016/j.jecp.2006.02.002Google Scholar
Roitblat, H. and von Fersen, L. (1992). Comparative cognition: Representations and processes in learning and memory. Annual Review of Psychology, 43, 671710. DOI:10.1146/annurev.ps.43.020192.003323Google Scholar
Siemann, M., Delius, J. D. and Wright, A. A. (1996). Transitive responding in pigeons: influences of stimulus frequency and reinforcement history. Behavioural Processes, 37, 185195.Google Scholar
Smirnova, A., Zorina, Z., Obozova, T. and Wasserman, E. A. (2015). Crows spontaneously exhibit analogical reasoning. Current Biology, 25, 256260. DOI:10.1016/j.cub.2014.11.063Google Scholar
Soto, F. A. and Wasserman, E. A. (2010). Error-driven learning in visual categorization and object recognition: A common elements model. Psychological Review, 117, 349381. DOI:10.1037/a0018695Google Scholar
Spence, K. W. (1937). The differential response in animals to stimuli varying within a single dimension. Psychological Review, 44, 430444. DOI: 10.1037/h0062885Google Scholar
Steirn, J. N., Weaver, J. E. and Zentall, T. R. (1995). Transitive inference in pigeons: simplified procedures and a test of value transfer theory. Animal Learning & Behavior, 23, 7682. DOI:10.3758/bf03198018Google Scholar
Thompson, R. K. R. and Oden, D. L. (2000). Categorical perception and conceptual judgments by nonhuman primates: The paleological monkey and the analogical ape. Cognitive Science, 24, 363396. DOI:10.1207/s15516709cog2403_2Google Scholar
Thompson, R. K. R., Oden, D. L. and Boysen, S. T. (1997). Language-naïve chimpanzees (Pan troglodytes) judge relations between relations in a conceptual matching-to-sample task. Journal of Experimental Psychology: Animal Behavior Processes, 23, 3143. DOI:10.1037/0097–7403.23.1.31Google Scholar
Thompson, R. F. and Spencer, W. A. (1966). Habituation: A model phenomenon for the study of neuronal substrates of behaviour. Psychological Review, 73, 1643. DOI:10.1037/h0022681Google Scholar
Truppa, V., Mortari, E. P., Garofoli, D., Privitera, S. and Visalberghi, E. (2011). Same/different concept learning by capuchin monkeys in matching-to-sample tasks. PLoS One, 6. DOI:10.1371/journal.pone.0023809Google Scholar
Tyrrell, D. J., Zingaro, M. C. and Minard, K. L. (1993). Learning and transfer of identity/difference relationships by infants. Infant Behavior & Development, 16, 4352. DOI:10.1016/0163–6383(93)80027–6CrossRefGoogle Scholar
von Fersen, L., Wynne, C. D. L., Delius, J. D. and Staddon, J. E. R. (1991). Transitive inference formation in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 17, 334341. DOI:10.1037/0097–7403.17.3.334Google Scholar
Vonk, J. (2003). Gorilla (Gorilla gorilla gorilla) and orangutan (Pongo abelii) understanding of first and second order relations. Animal Cognition, 6, 7786. DOI:10.1007/s10071–003–0159-xGoogle Scholar
Wasserman, E. A. and Bhatt, R. S. (1992). Conceptualization of natural and artificial stimuli by pigeons. In Cognitive aspects of stimulus control, eds. Honig, W. K. and Fetterman, J. G.. Hillsdale, NJ: Erlbaum, pp. 203223.Google Scholar
Wasserman, E. A., Hugart, J. A. and Kirkpatrick-Steger, K. (1995). Pigeons show same-different conceptualization after training with complex visual stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 21, 248252. DOI:10.1037/0097–7403.21.3.248Google Scholar
Wasserman, E. A. and Young, M. E. (2010). Same-different discrimination: The keel and backbone of thought and reasoning. Journal of Experimental Psychology: Animal Behavior Processes, 36, 322. DOI:10.1037/a0016327Google Scholar
Wasserman, E. A., Young, M. E. and Fagot, J. (2001). Effect of the number of items on the baboon's discrimination of same from different visual displays. Animal Cognition, 4, 163176. DOI:10.1007/s100710100095Google Scholar
Wright, A. A., Cook, R. G., Rivera, J. J., Sands, S. F. and Delius, J. D. (1988). Concept learning by pigeons: Matching to sample with trial-unique video picture stimuli. Animal Learning and Behavior, 16, 436444. DOI:10.3758/bf03209384Google Scholar
Wright, A. A., Santiago, H. C., Urcuioli, P. J. and Sands, S. F. (1983). Monkey and pigeon acquisition of same/different concept using pictorial stimuli. In Quantitative analyses of behaviour (Vol. 4), eds. Commons, M. L., Herrnstein, R. J. and Wagner, A. R.. Cambridge, MA: Ballinger, pp. 295317.Google Scholar
Young, M. E. and Wasserman, E. A. (2001). Entropy and variability discrimination. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2, 278293. DOI:10.1037/0278–7393.27.1.278Google Scholar
Young, M. E., Wasserman, E. A. and Garner, K. L. (1997). Effects of number of items on the pigeon's discrimination of same from different visual displays. Journal of Experimental Psychology: Animal Behavior Processes, 23, 491501. DOI:10.1037/0097–7403.23.4.491Google ScholarPubMed
Zentall, T. R., Galizio, M. and Critchfield, T. S. (2002). Categorization, concept learning, and behaviour analysis: An introduction. Journal of the Experimental Analysis of Behavior, 78, 237248. DOI:10.1901/jeab.2002.78–237Google Scholar
Zentall, T. R. and Hogan, D. E. (1974). Abstract concept learning in the pigeon. Journal of Experimental Psychology, 102, 393398. DOI:10.1037/h0035970Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×