Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T20:02:13.201Z Has data issue: false hasContentIssue false

Section 15 - Hematopoietic Cell Transplants for Non-Neoplastic Diseases

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 501 - 558
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bacigalupo, A, Socié, G, Schrezenmeier, H, et al. Bone marrow versus peripheral blood as the stem cell source for sibling transplants in acquired aplastic anemia: survival advantage for bone marrow in all age groups. Haematologica. 2012;97(8):1142–8.CrossRefGoogle ScholarPubMed
Bacigalupo, A, Brand, R, Oneto, R, et al. Treatment of acquired severe aplastic anemia: bone marrow transplantation compared with immunosuppressive therapy–The European Group for Blood and Marrow Transplantation experience. Semin Hematol. 2000;37(1):6980.CrossRefGoogle Scholar
Ades, L, Mary, JY, Robin, M, et al. Long-term outcome after bone marrow transplantation for severe aplastic anemia. Blood. 2004;103(7):2490–7.CrossRefGoogle ScholarPubMed
Schrezenmeier, H, Passweg, JR, Marsh, JC, et al. Worse outcome and more chronic GVHD with peripheral blood progenitor cells than bone marrow in HLA-matched sibling donor transplants for young patients with severe acquired aplastic anemia. Blood. 2007;110(4):1397–400.CrossRefGoogle ScholarPubMed
Stern, M, Passweg, J, Locasciulli, A, et al. Influence of donor/recipient sex matching on outcome of allogeneic hematopoietic stem cell transplantation. Transplantation. 2006;82(2):218–26.CrossRefGoogle ScholarPubMed
Bacigalupo, A, Socie, A, Hamladji, RM, et al. Current outcome of HLA identical sibling versus unrelated donor transplants in severe aplastic anemia. Haematologica. 2015;100:696702.CrossRefGoogle ScholarPubMed
Maury, S, Bacigalupo, A, Anderlini, P, et al. Improved outcome of patients older than 30 years receiving HLA-identical sibling hematopoietic stem cell transplantation for severe acquired aplastic anemia using fludarabine-based conditioning: a comparison with conventional conditioning regimen. Haematologica. 2009;94(9):1312–5.CrossRefGoogle ScholarPubMed
Locatelli, F, Bruno, B, Zecca, M, et al. Cyclosporin A and short-term methotrexate versus cyclosporin A as graft versus host disease prophylaxis in patients with severe aplastic anemia given allogeneic bone marrow transplantation from an HLA-identical sibling: results of a GITMO/EBMT randomized trial. Blood. 2000;96(5):1690–7.Google ScholarPubMed
Maury, S, Balere-Appert, ML, Chir, Z, et al. French Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC). Unrelated stem cell transplantation for severe acquired aplastic anemia: improved outcome in the era of high-resolution HLA matching between donor and recipient. Haematologica. 2007;92:589–96.CrossRefGoogle ScholarPubMed
Viollier, R, Socié, G, Tichelli, A, et al. Recent improvement in outcome of unrelated donor transplantation for aplastic anemia. Bone Marrow Transplant. 2008;41(1):4550.CrossRefGoogle ScholarPubMed
Bacigalupo, A, Marsh, JC. Unrelated donor search and unrelated donor transplantation in the adult aplastic anaemia patient aged 18–40 years without an HLA-identical sibling and failing immunosuppression. Bone Marrow Transplant. 2013;48(2):198200.CrossRefGoogle ScholarPubMed
Marsh, JC, Gupta, V, Lim, Z, et al. Alemtuzumab with fludarabine and cyclophosphamide reduces chronic graft versus host disease after allogeneic stem cell transplantation for acquired aplastic anemia Blood. 2011;118(8):2351–7CrossRefGoogle ScholarPubMed
Samarasinghe, S, Steward, C, Hiwarkar, P, et al. Excellent outcome of matched unrelated donor transplantation in paediatric aplastic anaemia following failure with immunosuppressive therapy: a United Kingdom multicentre retrospective experience. Br J Haematol. 2012;157(3):339–46.CrossRefGoogle ScholarPubMed
Eapen, M, Rademacher, JL, Antin, JH, et al. Effect of stem cell source on outcomes after unrelated donor transplantation in severe aplastic anemia. Blood 2011;118:2618–21.CrossRefGoogle ScholarPubMed
Deeg, HJ, Amylon, ID, Harris, RE, et al. Marrow transplants from unrelated donors for patients with aplastic anemia: minimum effective dose of total body irradiation. Biol Blood Marrow Transplant. 2001;7:208–15.CrossRefGoogle ScholarPubMed
Tolar, J, Deeg, HJ, Arai, S, Horwitz, M, et al. Fludarabine-based conditioning for marrow transplantation from unrelated donors in severe aplastic anemia: early results of a cyclophosphamide dose deescalation study show life-threatening adverse events at predefined cyclophosphamide dose levels. Biol Blood Marrow Transplant. 2012;18(7):1007–11.CrossRefGoogle ScholarPubMed
Kojima, S, Matsuyama, T, Kato, S, et al. Outcome of 154 patients with severe aplastic anemia who received transplants from unrelated donors: the Japan Marrow Donor Program. Blood. 2002;100:799803.CrossRefGoogle ScholarPubMed
Shimada, A, Takahashi, Y, Muramatsu, H, et al. Excellent outcome of allogeneic bone marrow transplantation for Fanconi anemia using fludarabine-based reduced-intensity conditioning regimen. Int J Hematol. 2012;95(6):675–9.CrossRefGoogle ScholarPubMed
Peffault de Latour, R, Rocha, V, Socié, G. Cord blood transplantation in aplastic anemia. Bone Marrow Transplant. 2013;48(2):201–2.CrossRefGoogle ScholarPubMed
Peffault de Latour, R, Purtill, D, Ruggeri, , et al. Influence of nucleated cell dose on overall survival of unrelated cord blood transplantation for patients with severe acquired aplastic anemia: a study by Eurocord and the Aplastic Anemia Working Party of the European Group for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2010;1:7885.Google Scholar
Reisner, Y, Hagin, D, Martelli, MF. Haploidentical hematopoietic transplantation: current status and future perspectives. Blood. 2011;118(23):6006–17.CrossRefGoogle ScholarPubMed
Luznik, L, O’Donnell, PV, Fuchs, EJ. Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical bone marrow transplantation. Semin Oncol. 2012;39(6):683–93.CrossRefGoogle ScholarPubMed
Ciceri, F , Lupo-Stanghellini, MT, Korthof, ET, on behalf of the SAA-WP EBMT. Haploidentical transplantation in patients with acquired aplastic anemia. Bone Marrow Transplant. 2012;48:183.CrossRefGoogle Scholar
Clay, J, Kulasekarara, AG, Potter, V, et al. Non-myeloablative peripheral blood haploidentical stem cell transplantation for refractory severe aplastic anemia. Biol Blood Marrow Transplant. 2014;20(11):1711–6.CrossRefGoogle Scholar
Xu, LP, Liu, KY, Liu, DH, et al. A novel protocol for haploidentical hematopoietic SCT without in vitro T-cell depletion in the treatment of severe acquired aplastic anemia. Bone Marrow Transplant. 2012;47(12):1507–12.CrossRefGoogle ScholarPubMed
Peffault de Latour, R, Schrezenmeier, H, Bacigalupo, A, et al. Allogeneic stem cell transplantation in paroxysmal nocturnal hemoglobinuria. Haematologica. 2012;97(11):1666–73.Google ScholarPubMed

References

Kutler, DI, Singh, B, Satagopan, J, et al. Auerbach AD A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood. 2003;101(4):1249–56.CrossRefGoogle ScholarPubMed
Berger, R, Bernheim, A, Gluckman, E, Gisselbrecht, C. In vitro effect of cyclophosphamide metabolites on chromosomes of Fanconi. anaemia patients. Br J Haematol. 1980;45, 565–8.CrossRefGoogle ScholarPubMed
Gluckman, E, Berger, R, Dutreix, J. Bone marrow transplantation for Fanconi anemia. Sem Hematol. 1984;21, 20–6.Google ScholarPubMed
Socié, G, Devergie, A, Girinski, T, et al. Transplantation for Fanconi’s anaemia: long-term follow-up of fifty patients transplanted from a sibling donor after low-dose cyclophosphamide and thoraco-abdominal irradiation for conditioning. Br J Haematol. 1998;103(1):249–55.CrossRefGoogle ScholarPubMed
Peffault de Latour, R, Porcher, R, Dalle, JH, et al; FA Committee of the Severe Aplastic Anemia Working Party; Pediatric Working Party of the European Group for Blood and Marrow Transplantation. Allogeneic hematopoietic stem cell transplantation in Fanconi anemia: the European Group for Blood and Marrow Transplantation experience. Blood. 2013;122(26):4279–86. doi:10.1182/blood-2013-01-479733. Epub 2013 Oct 21.CrossRefGoogle Scholar
Ayas, M, Saber, W, Davies, SM, et al. Allogeneic hematopoietic cell transplantation for fanconi anemia in patients with pretransplantation cytogenetic abnormalities, myelodysplastic syndrome, or acute leukemia. J Clin Oncol. 2013;31(13):1669–76. doi: 10.1200/JCO.2012.45.9719. Epub 2013 Apr 1.CrossRefGoogle ScholarPubMed
Kumar, AR, Wagner, JE, Auerbach, AD, et al. Fatal hemorrhage from androgen-related hepatic adenoma after hematopoietic cell transplantation. J Pediatr Hematol/Oncol. 2004;26:1618.CrossRefGoogle ScholarPubMed
Pasquini, R, Carreras, J, Pasquini, MC, et al. HLA-matched sibling hematopoietic stem cell transplantation for fanconi anemia: comparison of irradiation and non irradiation containing conditioning regimens. Biol Blood Marrow Transplant. 2008;14(10):1141–7.CrossRefGoogle ScholarPubMed
Svahn, J, Onofrillo, D, Cappelli, E, et al. Long-term hematologic follow-up in Fanconi anemia and impact on survival in 97 patients in a national data base. The 26th Fanconi Anemia Research Fund Scientific Symposium, 18–21 Sept, 2014. Abstract, pp. 117–118.Google Scholar
MacMillan, ML, Wagner, JE. Haematopoietic cell transplantation for Fanconi anaemia – when and how? Br J Haematol. 2010;149(1):1421. Review.CrossRefGoogle Scholar
Dufour, C, Rondelli, R, Locatelli, F, et al. Stem cell transplantation from HLA-matched related donor for Fanconi’s anaemia: a retrospective review of the multicentric Italian experience on behalf of AIEOP-GITMO. Br J Haematol. 2001;112:796805.CrossRefGoogle Scholar
Bonfim, CM, de Medeiros, CR, Bitencourt, MA, et al. HLA-matched related donor hematopoietic cell transplantation in 43 patients with Fanconi anemia conditioned with 60 mg/kg of cyclophosphamide. Biol Blood Marrow Transplant. 2007;13, 1455–60.CrossRefGoogle ScholarPubMed
Locatelli, F, Zecca, M, Pession, A, et al.; Italian Pediatric Group. The outcome of children with Fanconi anemia given hematopoietic stem cell transplantation and the influence of fludarabine in the conditioning regimen: a report from the Italian pediatric group. Haematologica. 2007;92(10):1381–8.CrossRefGoogle ScholarPubMed
Tan, PL, Wagner, JE, Auerbach, AD, Defor, TE, Slungaard, A, MacMillan, ML. Successful engraftment without radiation after fludarabine-based regimen in Fanconi anemia patients undergoing genotypically identical donor hematopoietic cell transplantation. Pediatr Blood Cancer. 2006;46:630–6.CrossRefGoogle ScholarPubMed
Ertem, M, Ileri, T, Azik, F, Uysal, Z, Gozdasoglu, S. Related donor hematopoietic stem cell transplantation for Fanconi anemia without radiation: a single center experience in Turkey. Pediatr Transplant. 2009;13(1):8895. doi: 10.1111/j.1399–3046.2008.00952.x. Epub 2008 Apr 22.CrossRefGoogle ScholarPubMed
Torjemane, L, Ladeb, S, Ben Othman, T, Abdelkefi, A, Lakhal, A, Ben Abdeladhim, A. Bone marrow transplantation from matched related donors for patients with Fanconi anemia using low dose busulfan and cyclophosphamide as conditioning. Pediatr Blood Cancer. 2006;46:496500.CrossRefGoogle ScholarPubMed
Wagner, JE, Eapen, M, MacMillan, ML, et al. Unrelated donor bone marrow transplantation for the treatment of Fanconi anemia. Blood. 2007;109:2256–62.CrossRefGoogle ScholarPubMed
MacMillan, ML, Blazar, Br, DeFor Te, Ma L, Tolar, J, Zierhut, H, Wagner, E. Alternate donor HCT for Fanconi Anemia (FA): results of a total body irradiation (TBI) dose de-escalation study. Biol Blood Marrow Transplant. 2009;15:24.CrossRefGoogle Scholar
MacMillan, ML, Hughes, MR, Agarwal, S, Daley, GQ. Cellular therapy for Fanconi anemia: the past, present, and future. Biol Blood Marrow Transplant. 2011;17(1 Suppl):S109–14. doi: 10.1016/j.bbmt.2010.11.027. Review.CrossRefGoogle ScholarPubMed
Chaudhury, S, Auerbach, AD, Kernan, NA, et al. Fludarabine-based cytoreductive regimen and T-cell-depleted grafts from alternative donors for the treatment of high-risk patients with Fanconi anaemia. Br J Haematol. 2008;140(6):644–55. doi: 10.1111/j.1365–2141.2007.06975. Review.CrossRefGoogle ScholarPubMed
Gluckman, E, Rocha, V, Boyer-Chammard, A, et al; Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. Outcome of cord-blood transplantation from related and unrelated donors. N Engl J Med. 1997;337(6):373381.CrossRefGoogle ScholarPubMed
Gluckman, E, Rocha, V, Ionescu, I, Alternate donor HCT for Fanconi Anemia (FA): results of a total body irradiation (TBI) dose de-escalation study; Eurocord-Netcord and EBMT. Results of unrelated cord blood transplant in fanconi anemia patients: risk factor analysis for engraftment and survival. Biol Blood Marrow Transplant. 2007;13(9):1073–82. Epub 2007 Jul 20.CrossRefGoogle Scholar
Motwani, J, Lawson, SE, Darbyshire, PJ. Successful HSCT using nonradiotherapy-based conditioning regimens and alternative donors in patients with Fanconi anaemia – experience in a single UK centre. Bone Marrow Transplant. 2005;36:405–10. doi:10.1038/sj.bmt.1705071.CrossRefGoogle Scholar
Yabe, H, Inoue, H, Matsumoto, M, et al. Unmanipulated HLA-haploidentical bone marrow transplantation for the treatment of fatal, nonmalignant diseases in children and adolescents. Int J Hematology. 2004, 80(1):7882.CrossRefGoogle ScholarPubMed
Rihani, R, Lataifeh, I, Halalsheh, H, et al. Haploidentical stem cell transplantation as a salvage therapy for cord blood engraftment failure in a patient with Fanconi anemia. Pediatr Blood Cancer. 2010;55:580–2. doi: 10.1002/pbc.22584.CrossRefGoogle Scholar
Locatelli, F, Zecca, M, Pession, A, et al. The outcome of children with Fanconi anemia given hematopoietic stem cell transplantation and the influence of fludarabine in the conditioning regimen: a report from the Italian Pediatric Group. Haematologica. 2007;92:1381–8. doi:10.3324/haematol.11436.CrossRefGoogle ScholarPubMed
Dufort, G, Pisano, S, Incoronato, A, et al. Feasibility and outcome of haploidentical SCT in pediatric high-risk hematologic malignancies and Fanconi anemia in Uruguay. Bone Marrow Transplant. 2012;47:663–8. doi:10.1038/bmt.2011.148; published online 18 July 2011.CrossRefGoogle ScholarPubMed
Thakar, MS, Bonfim, C, Sandmaier, BM, et al. Cyclophosphamide-based in vivo T-cell depletion for HLA-haploidentical transplantation in Fanconi anemia. Pediatr Hematol Oncol. 2012;29(6):568–78. doi: 10.3109/08880018.2012.708708. Epub 2012 Jul 27.CrossRefGoogle ScholarPubMed
Butturini, A, Gale, RP, Verlander, PC, et al. Hematologic abnormalities in Fanconi anemia: An International Fanconi Anemia Registry study. Blood. 1994;84:1650–5.CrossRefGoogle ScholarPubMed
Tonnies, H, Huber, S, Kuhl, JS, et al. Clonal chromosomal aberrations in bone marrow cells of Fanconi anemia patients: Gains of the chromosomal segment 3q26q29 as an adverse risk factor. Blood. 2003;101:3872–4.CrossRefGoogle ScholarPubMed
Mehta, PA, Harris, RE, Davies, SM, et al. Numerical chromosomal changes and risk of developmentof myelodysplastic syndrome: acute myeloid leukemia in patients with Fanconi anemia. Cancer Genet Cytogenet. 2010;203:180–6.CrossRefGoogle Scholar
Cioc, AM, Wagner, JE, MacMillan, ML, DeFor, T, Hirsch, B. Diagnosis of myelodysplastic syndrome among a cohort of 119 patients with fanconi anemia: morphologic and cytogenetic characteristics. Am J Clin Pathol. 2010;133(1):92100.CrossRefGoogle ScholarPubMed
Mehta, PA, Ileri, T, Harris, RE, et al .Chemotherapy for myeloid malignancy in children with Fanconi anemia. Pediatr Blood Cancer, 48 (2007), pp. 668672.CrossRefGoogle ScholarPubMed
Talbot, A, Peffault de Latour, R, Buchbinder, N, et al. Sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic hematopoietic stem cell transplantation in Fanconi anemia patients with acute myeloid leukemia or myelodysplastic syndrome. Blood: ASH Annual Meeting Abstracts. 2012;120: 2363.CrossRefGoogle Scholar
Mitchell, R, Wagner, JE, Hirsch, B, DeFor, TE, Zierhut, H, MacMillan, ML. Haematopoietic cell transplantation for acute leukaemia and advanced myelodysplastic syndrome in Fanconi anaemia. Br J Haematol. 2014;164(3):384–95. doi: 10.1111/bjh.12634. Epub 2013 Oct 30.CrossRefGoogle ScholarPubMed
Rosenberg, PS, Socié, G, Alter, BP, Gluckman, E. Risk of head and neck squamous cell cancer and death in patients with Fanconi anemia who did and did not receive transplants. Blood. 2005;105(1):6773. Epub 2004 Aug 26.CrossRefGoogle Scholar
Curtis, RE, Metayer, C, Rizzo, JD, et al. Impact of chronic GVHD therapy on the development of squamous-cell cancers after hematopoietic stem-cell transplantation: an international case-control study. Blood. 2005;105(10):3802–11. Epub 2005 Feb 1.CrossRefGoogle Scholar

References

Weatheral, D.J., Clegg, J.B.. The Thalassemia Syndromes. 4th ed. Oxford: Blackwell Science. 2001.CrossRefGoogle Scholar
Modell, B., Khan, M., Darlison, M.. Survival in beta-thalassemia major in the UK: data from the UK Thalassemia Register. Lancet 2000; 355: 2051–2.CrossRefGoogle ScholarPubMed
Cunningham, M.J., Macklin, E.A., Neueld, E.J., et al. Thalassemia Clinical Research Network. Complications of beta–thalassemia major in North America. Blood 2002; 99 : 3643.Google Scholar
Thomas, E.D., Buckner, C.D., Sanders, J.E., et al. Marrow transplantation for thalassaemia. Lancet 1982; ii: 227–5.Google Scholar
Lucarelli, G., Galimberti, M., Delfini, C., et al. Marrow transplantation for thalassemia following busulfan and cyclophosphamide. Lancet 1985, 1(8442): 13551357.CrossRefGoogle ScholarPubMed
Lucarelli, G., Galimberti, M., Polchi, P., et al. Marrow transplantation in patients with advanced thalassemia. N Engl J Med 1987; 316: 1050–5.CrossRefGoogle ScholarPubMed
Tutschka, P.J., Elfenbein, G.J., Sensenbrenner, L.L., et al. Preparative regimens for marrow transplantation in acute leukemia and aplastic anemia. Baltimore experience. Am J Ped Hematol Oncol 1980; 2: 363–70.Google Scholar
Santos, G.W., Tutschka, P.J., Brookmeyer, R., et al. Marrow transplantation for acute nonlymphocytic leukemia after treatment with busulfan and cyclophosphamide. N Engl J Med 1983; 309: 1347–53.CrossRefGoogle ScholarPubMed
Bolinger, A.M., Zangwill, A.B., Slattery, J.T., et al. Target dose adjustment of busulfan in pediatric patients undergoing bone marrow transplantation. Bone Marrow Transplant 2001; 28: 1013–18.CrossRefGoogle ScholarPubMed
Chandy, M., Balasubramanian, P., Ramachandran, S.V ., et al. Randomized trial of two different conditioning regimens for bone marrow transplantation in thalassemia-the role of busulfan pharmacokinetics in determining outcome. Bone Marrow Transplant 2005; 36: 839–45.CrossRefGoogle ScholarPubMed
Andersson, B.S., Kashyap, A., Gian, V., et al. Conditioning therapy with intravenous busulfan and cyclophosphamide (IV BuCy2) for hematologic malignancies prior to allogeneic stem cell transplantation: a phase II study. Biol Blood Marrow Transplant 2002; 8: 145–54.CrossRefGoogle ScholarPubMed
Gaziev, J., Nguyen, L., Puozzo, C., et al. Novel pharmacokinetic behavior of intravenous busulfan in children with thalassemia undergoing hematopoietic stem cell transplantation: a prospective evaluation of pharmacokinetic and pharmacodynamic profile with therapeutic drug monitoring. Blood 2010; 115(22): 4597–604.CrossRefGoogle ScholarPubMed
Bernardo, M.E., Piras, E., Vacca, A., et al. Allogeneic hematopoietic stem cell transplantation in thalassemia major: results of a reduced-toxicity conditioning regimen based on the use of threosulfan. Blood 2014; 120: 473–6.Google Scholar
Choudhary, D., Sharma, S.K., Gupta, N., et al. Treosulfan-thiotepa-fludarabinee based conditioning regimen for allogeneic aransplantation in patients with thalassemia major: a single-Center experience from North India. Biol Blood Marrow Transplant 2013; 9: 492503.CrossRefGoogle Scholar
Mathews, V., George, V ., Viswabandya, A., et al. Improved clinical outcomes of high risk b thalassemia major patients undergoing a HLA-matched related allogeneic stem cell transplant with a treosulfan based conditioning regimen and peripheral blood stem cell grafts. PlosOne 2013; 8: 18.CrossRefGoogle Scholar
Anurathapan, U., Pakakasama, S., Rujkijyanont, P., et al. Pretransplant immunosuppression followed by reduced-toxicity conditioning and stem cell transplantation in high-risk thalassemia: a safe approach to disease control. Biol Blood Marrow Transplant 2013; 19: 1254–70.CrossRefGoogle ScholarPubMed
Lucarelli, G., Galimberti, M., Polchi, P., et al. Bone marrow transplantation in patients with thalassemia. N Engl J Med 1990; 322: 417–21.CrossRefGoogle ScholarPubMed
Lucarelli, G., Galimberti, M., Polchi, P., et al. Bone marrow transplantation in thalassemia. Hematol Oncol Clin North Am 1991; 5(3): 549–56.CrossRefGoogle ScholarPubMed
Lucarelli, G., Andreani, M., Angelucci, E.. The cure of thalassemia by bone marrow transplantation. Blood Reviews 2002; 16: 81–5.CrossRefGoogle ScholarPubMed
Lucarelli, G., Clift, R., Galimberti, M., et al. Marrow transplantation for patients with thalassemia: results in Class 3 patients. Blood 1996; 87: 2082–88.CrossRefGoogle ScholarPubMed
Sodani, P., Gaziev, J., Polchi, P., et al. New approach for bone marrow transplantation in patients with class 3 thalassemia aged younger than 17 years. Blood 2004; 104: 1201–3.CrossRefGoogle Scholar
Gaziev, J., Lucarelli, G.. Stem cell transplantation for thalassemia. RBM Online 2005;10:111–15.Google Scholar
Lucarelli, G., Clift, R.A., Galimberti, M., et al. Bone marrow transplantation in adult thalassemic patients. Blood 1999; 93: 1164–7.CrossRefGoogle ScholarPubMed
Gaziev, J., Sodani, P., Polchi, P., et al. Bone marrow transplantation in adults with thalassemia. Treatment and long-term follow-up. Ann NY Acad Sci 2005; 1054: 196205.CrossRefGoogle ScholarPubMed
Gaziev, J., Isgrò, A., Sodani, P., et al. Optimal outcomes in young class 3 patients with thalassemia undergoing HLA-identical sibling bone marrow transplantation. Transplantation 2016; 100(4): 925–32.CrossRefGoogle ScholarPubMed
Lawson, S.E., Roberts, I.A., Amrolia, P., Dokal, I., Szydlo, R., Darbyshire, P.J.. Bone marrow transplantation for beta-thalassaemia major: the UK experience in two paediatric centres. Br J Haematol 2003; 120(2): 289–95.CrossRefGoogle ScholarPubMed
Di Bartolomeo, P., Santarone, S., Di Bartolomeo, E., et al. Long-term results of survival in patients with thalassemia major treated with bone marrow transplantation. Am J Hematol 2008; 83(7): 528–30.CrossRefGoogle ScholarPubMed
Ghavamzadeh, A., Iravani, A., Ashouri, A., et al. Peripheral blood versus bone marrow as a source of hematopoietic stem cells for allogeneic transplantation in children with class I and II beta thalassemia major. Biol Blood Marrow Transplant 2008; 14(3): 301–8.CrossRefGoogle Scholar
Irfan, M., Hashmi, K., Adil, S., et al. Beta-thalassaemia major: bone marrow versus peripheral blood stem cell transplantation. J Pak Med Assoc 2008; 58(3): 107–10.Google ScholarPubMed
Chiesa, R., Cappelli, B., Crocchiolo, R., et al. Unpredictability of intravenous busulfan pharmacokinetics in children undergoing hematopoietic stem cell transplantation for advanced beta thalassemia: limited toxicity with a dose-adjustment policy. Biol Blood Marrow Transplant 2010;16(5):622–8.CrossRefGoogle ScholarPubMed
Iravani, M., Tavakoli, E., Babaie, M.H., Ashouri, A., Khatami, F., Ghavamzadeh, A.. Comparison of peripheral blood stem cell transplant with bone marrow transplant in class 3 thalassemic patients. Exp Clin Transplant 2010; 8(1): 6673Google ScholarPubMed
Sabloff, M., Chandy, M., Wang, Z., et al. HLA-matched sibling bone marrow transplantation for beta-thalassemia major. Blood 2011; 117(5): 1745–50.CrossRefGoogle ScholarPubMed
Yesilipek, M.A., Ertem, M., Cetin, M., et al. HLA-matched family hematopoetic stem cell transplantation in children with beta thalassemia major: the experience of the Turkish Pediatric Bone Marrow Transplantation Group. Pediatr Transplant 2012; 16(8): 846–51.CrossRefGoogle ScholarPubMed
Goussetis, E., Peristeri, I., Kitra, V., et al. HLA-matched sibling stem cell transplantation in children with ß-thalassemia with anti-thymocyte globulina s part of the preparative regimen: the Greek experience. Bone Marrow Transplant 2012; 47: 1061–6.CrossRefGoogle Scholar
Galambrun, C., Pondarre, C., Bertrand, Y., et al. French multicenter 22-year experience in stem cell transplantation for beta-thalassemia major: lessons and future directions. Biol Blood Marrow Transplant 2013; 19(1): 62–8.CrossRefGoogle ScholarPubMed
Hussein, A.A., Al-Zaben, A., Ghatasheh, L., et al. Risk adopted allogeneic hematopoietic stem cell transplantation using a reduced intensity regimen for children with thalassemia major. Pediatr Blood Cancer 2013; 60(8): 1345–9.CrossRefGoogle ScholarPubMed
Shaw, P.J., Kan, F., Ahn, K.W., et al. Outcomes of pediatric bone marrow transplantation for leukemia and myelodysplasia using matched sibling, mismatched related, or matched unrelated donors. Blood 2010; 116(11):4007–15.CrossRefGoogle ScholarPubMed
Gaziev, D., Galimberti, M., Lucarelli, G., et al. Bone marrow transplantation from alternative donors for thalassemia: HLA-phenotypically identical relative and HLA-nonidentical sibling or parent transplants. Bone Marrow Transplant 2000; 25(8): 815–21.CrossRefGoogle ScholarPubMed
Gaziev, J., Sodani, P., Lucarelli, G., et al. Second hematopoietic SCT in patients with thalassemia recurrence following rejection of the first graft. Bone Marrow Transplant 2008; 42(6): 397404.CrossRefGoogle ScholarPubMed
Gaziev, J., Marziali, M., Isgrò, A., et al. Bone marrow transplantation for thalassemia from alternative related donors: improved outcomes with a new approach. Blood 2013; 122(15): 2751–6.Google ScholarPubMed
Sodani, P., Isgro, A., Gaziev, J., et al. Purified T-depleted, CD34+ peripheral blood and bone marrow cell transplantation from haploidentical mother to child with Thalassemia. Blood 2010; 115: 1296–302.CrossRefGoogle ScholarPubMed
Locatelli, F., Rocha, V., Reed, W., et al. Related unbilical cord blood transplantation in patients with thalassemia and sickle cell disease. Blood 2003; 101: 2137–43.CrossRefGoogle Scholar
Soni, S., Boulad, F., Cowan, M.D., et al. Combined umbilical cord blood and bone marrow from HLA-identical sibling donors for hematopoietic stem cell transplantation in children with hemoglobinopathies. Pediatr Blood Cancer 2014; 61(9): 1690–4.CrossRefGoogle ScholarPubMed
Jaing, T-H., Hung, I-J., Yang, C.H., et al. Unrelated cord blood transplantation for thalassemia: a single institution experience of 35 patients. Bone Marrow Transplant 2012; 47: 3339.CrossRefGoogle ScholarPubMed
Ruggeri, A., Eapen, M., Scaravadou, A. et al. Umblical cord blood transplantation for children with thalassemia and sickle cell disease. The Eurocord Registry, the Center for Iternational Blood and Marrow Transplant Research, and the New York Blood Center. Biol Blood Marrow Transplant 2011; 17(9): 1375–82.CrossRefGoogle Scholar
Kharbanda, S., Smith, A.R., Hutchinson, S.K., et al. Unrelated donor allogeneic hematopoietic stem cell transplantation for patients with hemoglobinopathies using a reduced-intensity conditioning regimen and third-party mesenchymal stromal cells. Biol Blood Marrow Transplant 2014; 20: 577–92.CrossRefGoogle ScholarPubMed
Parikh, S.H., Mendizabal, A., Benjamin, C.L., et al. A novel reduced-intensity conditioning regimen for unrelated umbilical cord blood transplantation in children with non-malignant diseases. Biol Blood Marrow Transplant 2014; 20: 326–36.CrossRefGoogle Scholar
La Nasa, G., Giardini, C., Argiolu, F., et al. Unrelated donor bone marrow transplantation for thalassemia: the effect of extended haplotypes. Blood 2002; 99(12): 4350–6.CrossRefGoogle ScholarPubMed
Chunfu, Li., Xuedong, Wu., Feng. Xiaoping, et al. A novel conditioning regimen improves outcomes in ß-thalassemia major patients using unrelated donor peripheral blood stem cell transplantation. Blood 2012, 120: 3875–81.CrossRefGoogle Scholar
La Nasa, G., Caocci, G., Argiolu, F., et al. Unrelated donor stem cell transplantation in adult patients with thalassemia. Bone Marrow Transplant 2005; 36: 971–5.CrossRefGoogle ScholarPubMed
Andreani, M., Testi, M., Battarra, M., et al. Realtionship between mixed chimerism and rejection after bone marrow transplantation in thalassemia. Blood Transfus 2008; 6: 143–9.Google Scholar
Gaziev, J., Isgro, A., Marziali, M., et al. High CD3+ and CD34+ cell doses in the graft increase the incidence of acute GVHD in children receiving BMT for thalassemia. Bone Marrow Transplant 2012; 47: 107–14.CrossRefGoogle ScholarPubMed
Lucarelli, G., Angelucci, E., Giardini, C., et al. Fate of iron stores in thalassemia after bone marrow transplantation. Lancet 1993; 342: 1388–91.CrossRefGoogle ScholarPubMed
Angelucci, E., Muretto, P., Nicolucci, A., et al. Effects of iron overload and hepatitis C virus positivity in determining progression of liver fibrosis in thalassemia following bone marrow transplantation. Blood 2002; 100: 1721.CrossRefGoogle ScholarPubMed

References

Piel, F.B., et al., Global burden of sickle cell anaemia in children under five, 2010–2050: modelling based on demographics, excess mortality, and interventions. PLoS Med, 2013. 10(7): p. e1001484.CrossRefGoogle ScholarPubMed
Charache, S., et al., Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. N Engl J Med, 1995. 332(20): p. 13171322.CrossRefGoogle ScholarPubMed
Fitzhugh, C.D., et al., Hematopoietic stem cell transplantation for patients with sickle cell disease: progress and future directions. Hematol Oncol Clin North Am, 2014. 28(6): p. 1171–85.CrossRefGoogle ScholarPubMed
Adams, R.J., et al., Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography [see comments]. N Engl J Med, 1998. 339(1): p. 511.CrossRefGoogle ScholarPubMed
Kwiatkowski, J.L., et al., Effect of transfusion therapy on transcranial doppler ultrasonography velocities in children with sickle cell disease. Pediatr Blood Cancer. 56(5): p. 777–782.CrossRefGoogle Scholar
Fitzhugh, C.D., et al., Cardiopulmonary complications leading to premature deaths in adult patients with sickle cell disease. Am J Hematol, 2010. 85(1): p. 3640.CrossRefGoogle ScholarPubMed
Platt, O.S., et al., Mortality in sickle cell disease. Life expectancy and risk factors for early death [see comments]. N Engl J Med, 1994. 330(23): p. 1639–44.CrossRefGoogle ScholarPubMed
Johnson, F.L., et al., Bone-marrow transplantation in a patient with sickle-cell anemia. N Engl J Med, 1984. 311(12): p. 780–3.CrossRefGoogle Scholar
Vermylen, C. and Cornu, G., Bone marrow transplantation for sickle cell disease. The European experience. Am J Pediatr Hematol Oncol, 1994. 16(1): p. 1821.Google ScholarPubMed
Bernaudin, F., et al., Bone marrow transplantation (BMT) in 14 children with severe sickle cell disease (SCD): the French experience. GEGMO. Bone Marrow Transplant, 1993. 12(Suppl 1): p. 118–21.Google Scholar
Walters, M.C., et al., Bone marrow transplantation for sickle cell disease. N Engl J Med, 1996. 335(6): p. 369–76.CrossRefGoogle ScholarPubMed
Walters, M.C., et al., Impact of bone marrow transplantation for symptomatic sickle cell disease: an interim report. Multicenter investigation of bone marrow transplantation for sickle cell disease. Blood, 2000. 95(6): p. 1918–24.Google ScholarPubMed
Vermylen, C. and Cornu, G., Hematopoietic stem cell transplantation for sickle cell anemia. Curr Opin Hematol, 1997. 4(6): p. 377–80.CrossRefGoogle ScholarPubMed
Bernaudin, F., et al., Long-term results of related myeloablative stem-cell transplantation to cure sickle cell disease. Blood, 2007. 110(7): p. 2749–56.CrossRefGoogle ScholarPubMed
Walters, M.C., et al., Pulmonary, gonadal, and central nervous system status after bone marrow transplantation for sickle cell disease. Biol Blood Marrow Transplant, 2010. 16(2): p. 263–72.CrossRefGoogle ScholarPubMed
Kuentz, M., Peripheral blood stem cell allograft from HLA-unrelated donors. Hematol Cell Ther, 1996. 38(5): p. 453–4.Google ScholarPubMed
Hsieh, M.M., et al., Nonmyeloablative HLA-matched sibling allogeneic hematopoietic stem cell transplantation for severe sickle cell phenotype. JAMA, 2014. 312(1): p. 4856.CrossRefGoogle ScholarPubMed
Iannone, R., et al., Results of minimally toxic nonmyeloablative transplantation in patients with sickle cell anemia and beta-thalassemia. Biol Blood Marrow Transplant, 2003. 9(8): p. 519–28.CrossRefGoogle ScholarPubMed
Horan, J.T., et al., Hematopoietic stem cell transplantation for multiply transfused patients with sickle cell disease and thalassemia after low-dose total body irradiation, fludarabine, and rabbit anti-thymocyte globulin. Bone Marrow Transplant, 2005. 35(2): p. 171–7.CrossRefGoogle ScholarPubMed
Walters, M.C., et al., Barriers to bone marrow transplantation for sickle cell anemia. Biol Blood Marrow Transplant, 1996. 2(2): p. 100–4.Google ScholarPubMed
Liem, R.I., et al., Parental attitudes toward research participation in pediatric sickle cell disease. Pediatr Blood Cancer, 2010. 55(1): p. 129–33.CrossRefGoogle ScholarPubMed
Locatelli, F., et al., Outcome of patients with hemoglobinopathies given either cord blood or bone marrow transplantation from an HLA-identical sibling. Blood, 2013. 122(6): p. 1072–8.CrossRefGoogle ScholarPubMed
Ruggeri, A., et al., Umbilical cord blood transplantation for children with thalassemia and sickle cell disease. Biol Blood Marrow Transplant, 2011. 17(9): p. 1375–82.CrossRefGoogle ScholarPubMed
Kamani, N.R., et al., Unrelated donor cord blood transplantation for children with severe sickle cell disease: results of one cohort from the phase II study from the Blood and Marrow Transplant Clinical Trials Network (BMT CTN). Biol Blood Marrow Transplant, 2012. 18(8): p. 1265–72.CrossRefGoogle ScholarPubMed
Krishnamurti, L., et al., Availability of unrelated donors for hematopoietic stem cell transplantation for hemoglobinopathies. Bone Marrow Transplant, 2003. 31(7): p. 547–50.CrossRefGoogle ScholarPubMed
Hsieh, M., Wilder, J., Fitzhugh, C., Link, B., Tisdale, J.F.. Results of Alternative Donor Search in Adult Patients with Severe Sickle Cell Disease (SCD) Eligible for Hematopoietic Stem Cell Transplantation (HSCT). The American Society of Hematology Annual Meeting. 2007.CrossRefGoogle Scholar
Bolanos-Meade, J., et al., HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Blood, 2012. 120(22): p. 4285–91.CrossRefGoogle ScholarPubMed
Dallas, M.H., et al., Long-term outcome and evaluation of organ function in pediatric patients undergoing haploidentical and matched related hematopoietic cell transplantation for sickle cell disease. Biol Blood Marrow Transplant, 2013. 19(5): p. 820–30.CrossRefGoogle ScholarPubMed
Cavazzana-Calvo, M., et al., Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease [see comments]. Science, 2000. 288(5466): p. 669–72.CrossRefGoogle ScholarPubMed
Aiuti, A., et al., Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nat Med, 2002. 8(5): p. 423–5.CrossRefGoogle ScholarPubMed
Aiuti, A., et al., Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science, 2002. 296(5577): p. 2410–3.CrossRefGoogle ScholarPubMed
Ott, M.G., et al., Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med, 2006. 12(4): p. 401–9.CrossRefGoogle ScholarPubMed
Aiuti, A., et al., Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. J Clin Invest, 2007. 117(8): p. 2233–40.CrossRefGoogle ScholarPubMed
Aiuti, A., et al., Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med, 2009. 360(5): p. 447–58.CrossRefGoogle ScholarPubMed
Gaspar, H.B., et al., Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci Transl Med, 2011. 3(97): p. 97ra80.CrossRefGoogle ScholarPubMed
Hacein-Bey-Abina, S., et al., Efficacy of gene therapy for X-linked severe combined immunodeficiency. New Engl J Med, 2010. 363(4): p. 355–64.CrossRefGoogle ScholarPubMed
Hacein-Bey-Abina, S., et al., A modified gamma-retrovirus vector for X-linked severe combined immunodeficiency. New Engl J Med, 2014. 371(15): p. 1407–17.CrossRefGoogle ScholarPubMed
May, C., et al., Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature, 2000. 406(6791): p. 82–6.CrossRefGoogle ScholarPubMed
Persons, D.A., et al., Successful treatment of murine beta-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells. Blood, 2003. 102(2): p. 506–13.CrossRefGoogle ScholarPubMed
Persons, D.A., et al., The degree of phenotypic correction of murine beta -thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. Blood, 2003. 101(6): p. 2175–83.CrossRefGoogle ScholarPubMed
Pawliuk, R., et al., Correction of sickle cell disease in transgenic mouse models by gene therapy. Science, 2001. 294(5550): p. 2368–71.CrossRefGoogle ScholarPubMed
Imren, S., et al., Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc Natl Acad Sci U S A, 2002. 99(22): p. 14380–5.CrossRefGoogle ScholarPubMed
Moreau-Gaudry, F., et al., High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood, 2001. 98(9): p. 2664–72.CrossRefGoogle ScholarPubMed
Perumbeti, A., et al., A novel human gamma-globin gene vector for genetic correction of sickle cell anemia in a humanized sickle mouse model: critical determinants for successful correction. Blood, 2009. 114(6): p. 1174–85.CrossRefGoogle Scholar
Arumugam, P.I., et al., Improved human beta-globin expression from self-inactivating lentiviral vectors carrying the chicken hypersensitive site-4 (cHS4) insulator element. Mol Ther, 2007. 15(10): p. 1863–71.CrossRefGoogle ScholarPubMed
Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663–76.CrossRefGoogle ScholarPubMed
Gaj, T., Gersbach, C.A., and Barbas, C.F. 3rd, ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013. 31(7): p. 397405.CrossRefGoogle ScholarPubMed
Ballas, S.K., The cost of health care for patients with sickle cell disease. Am J Hematol, 2009. 84(6): p. 320–2.CrossRefGoogle ScholarPubMed
Arnold, S.D., et al., Allogeneic hematopoietic cell transplantation for children with sickle cell disease is beneficial and cost-effective: a single-center analysis. Biol Blood Marrow Transplant, 2015. 21(7): p. 1258–65.CrossRefGoogle ScholarPubMed
Saenz, C. and Tisdale, J.F., Assessing costs, benefits, and risks in chronic disease: taking the long view. Biol Blood Marrow Transplant, 2015. 21(7): p. 1149–50.CrossRefGoogle ScholarPubMed

References

Muraro, PA, Abrahamsson, SV. Resetting autoimmunity in the nervous system: The role of hematopoietic stem cell transplantation. Curr Opin Investig Drugs. 2010;11(11):1265–75.Google ScholarPubMed
Muraro, PA, Douek, DC, Packer, A, Chung, K, Guenaga, FJ, Cassiani-Ingoni, R, et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med. 2005;201(5):805–16.CrossRefGoogle ScholarPubMed
Arruda, LCM, Lorenzi, JCC, Sousa, APA, Zanette, DL, Palma, PVB, Panepucci, RA, et al. Autologous hematopoietic SCT normalizes miR-16, -155 and -142–3p expression in multiple sclerosis patients. Bone Marrow Transplant. 2015;50(3):380–9.CrossRefGoogle ScholarPubMed
Muraro, PA, Robins, H, Malhotra, S, Howell, M, Phippard, D, Desmarais, C, et al. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Invest. 2014;124(3):1168–72.CrossRefGoogle ScholarPubMed
Euler, HH, Marmont, AM, Bacigalupo, A, Fastenrath, S, Dreger, P, Hoffknecht, M, et al. Early recurrence or persistence of autoimmune diseases after unmanipulated autologous stem cell transplantation. Blood. 1996;88(9):3621–5.CrossRefGoogle ScholarPubMed
Burt, RK. BMT for severe autoimmune diseases: an idea whose time has come. Oncology (Williston Park). 1997;11(7):1001–14; 17, discussion 18–24.Google ScholarPubMed
Cooley, HM, Snowden, JA, Grigg, AP, Wicks, IP. Outcome of rheumatoid arthritis and psoriasis following autologous stem cell transplantation for hematologic malignancy. Arthritis Rheum. 1997;40(9):1712–5.CrossRefGoogle ScholarPubMed
Fassas, A, Anagnostopoulos, A, Kazis, A, Kapinas, K, Sakellari, I, Kimiskidis, V, et al. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transplant. 1997;20(8):631–8.CrossRefGoogle ScholarPubMed
Marmont, AM, van Lint, MT, Gualandi, F, Bacigalupo, A. Autologous marrow stem cell transplantation for severe systemic lupus erythematosus of long duration. Lupus. 1997;6(6):545–8.CrossRefGoogle ScholarPubMed
Brodsky, RA, Petri, M, Smith, BD, Seifter, EJ, Spivak, JL, Styler, M, et al. Immunoablative high-dose cyclophosphamide without stem-cell rescue for refractory, severe autoimmune disease. Ann Intern Med. 1998;129(12):1031–5.CrossRefGoogle ScholarPubMed
Binks, M, Passweg, JR, Furst, D, McSweeney, P, Sullivan, K, Besenthal, C, et al. Phase I/II trial of autologous stem cell transplantation in systemic sclerosis: procedure related mortality and impact on skin disease. Ann Rheum Dis. 2001;60(6):577–84.CrossRefGoogle ScholarPubMed
Burt, RK, Traynor, AE, Cohen, B, Karlin, KH, Davis, FA, Stefoski, D, et al. T cell-depleted autologous hematopoietic stem cell transplantation for multiple sclerosis: report on the first three patients. Bone Marrow Transplant. 1998;21(6):537–41.CrossRefGoogle ScholarPubMed
McSweeney, PA, Nash, RA, Sullivan, KM, Storek, J, Crofford, LJ, Dansey, R, et al. High-dose immunosuppressive therapy for severe systemic sclerosis: initial outcomes. Blood. 2002;100(5):1602–10.CrossRefGoogle ScholarPubMed
Farge, D, Labopin, M, Tyndall, A, Fassas, A, Mancardi, GL, Van Laar, J, et al. Autologous hematopoietic stem cell transplantation (HSCT) for autoimmune diseases: an observational study on 12 years of experience from the European Group for Blood and Marrow Transplantation (EBMT) Working Party on Autoimmune Diseases. Haematologica. 2009;95(2):284–92.Google Scholar
Pasquini, MC, Voltarelli, J, Atkins, HL, Hamerschlak, N, Zhong, X, Ahn, KW, et al. Transplantation for autoimmune diseases in north and South america: a report of the center for international blood and marrow transplant research. Biol Blood Marrow Transplant. 2012;18(10):1471–8.CrossRefGoogle ScholarPubMed

References

Marmont, AM. Stem cell transplantation for severe autoimmune diseases: progress and problems. Haematologica 1998; 83(8): 733743.Google Scholar
Tyndall, A, Gratwohl, A. Blood and marrow stem cell transplants in autoimmune disease. A consensus report written on behalf of the European League Against Rheumatism (EULAR) and the European Group for Blood and Marrow Transplantation (EBMT). Br J Rheumatol 1997; 36(3): 390392.CrossRefGoogle Scholar
Snowden, JA, Saccardi, R, Allez, M, Ardizzone, S, Arnold, R, Cervera, R et al. Haematopoietic SCT in severe autoimmune diseases: updated guidelines of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 2012; 47(6): 770790. doi: 10.1038/bmt.2011.185CrossRefGoogle ScholarPubMed
Gratwohl, A, Passweg, J, Bocelli-Tyndall, C, Fassas, A, van Laar, JM, Farge, D et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transplant 2005; 35(9): 869879. doi: 10.1038/sj.bmt.1704892CrossRefGoogle ScholarPubMed
Farge, D, Labopin, M, Tyndall, A, Fassas, A, Mancardi, GL, Van Laar, J et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years’ experience from the European Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases. Haematologica 2010; 95(2): 284292. doi: 10.3324/haematol.2009.013458CrossRefGoogle Scholar
Sun, L. Stem cell transplantation: progress in Asia. Lupus 2010; 19(12): 14681473. doi: 10.1177/0961203310370051CrossRefGoogle ScholarPubMed
Passweg, JR, Baldomero, H, Peters, C, Gaspar, HB, Cesaro, S, Dreger, P et al. Hematopoietic SCT in Europe: data and trends in 2012 with special consideration of pediatric transplantation. Bone Marrow Transplant 2014; 49(6): 744750. doi: 10.1038/bmt.2014.55CrossRefGoogle ScholarPubMed
Gratwohl, A, Baldomero, H, Gratwohl, M, Aljurf, M, Bouzas, LF, Horowitz, M et al. Quantitative and qualitative differences in use and trends of hematopoietic stem cell transplantation: a Global Observational Study. Haematologica 2013; 98(8): 12821290. doi: 10.3324/haematol.2012.076349CrossRefGoogle ScholarPubMed
Snowden, JA, Pearce, RM, Lee, J, Kirkland, K, Gilleece, M, Veys, P et al. Haematopoietic stem cell transplantation (HSCT) in severe autoimmune diseases: analysis of UK outcomes from the British Society of Blood and Marrow Transplantation (BSBMT) data registry 1997–2009. Br J Haematol 2012; 157(6): 742746. doi: 10.1111/j.1365–2141.2012.09122.xCrossRefGoogle ScholarPubMed
Pasquini, MC, Voltarelli, J, Atkins, HL, Hamerschlak, N, Zhong, X, Ahn, KW et al. Transplantation for autoimmune diseases in north and South America: a report of the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant 2012; 18(10): 14711478. doi: 10.1016/j.bbmt.2012.06.003CrossRefGoogle ScholarPubMed
Sullivan, KM, Muraro, P, Tyndall, A. Hematopoietic cell transplantation for autoimmune disease: updates from Europe and the United States. Biol Blood Marrow Transplant 2010; 16(1 Suppl): S48–56. doi: 10.1016/j.bbmt.2009.10.034CrossRefGoogle ScholarPubMed
Sureda, A, Bader, P, Cesaro, S, Dreger, P, Duarte, RF, Dufour, C et al. Indications for allo- and auto-SCT for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2015. Bone Marrow Transplant 2015; 50(8):10371056. doi: 10.1038/bmt.2015.6CrossRefGoogle ScholarPubMed
Burt, RK, Loh, Y, Cohen, B, Stefoski, D, Stefosky, D, Balabanov, R et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol 2009; 8(3): 244253. doi: 10.1016/S1474-4422(09)70017-1CrossRefGoogle ScholarPubMed
Burt, RK, Balabanov, R, Voltarelli, J, Barreira, A, Burman, J. Autologous hematopoietic stem cell transplantation for multiple sclerosis – if confused or hesitant, remember: ‘treat with standard immune suppressive drugs and if no inflammation, no response’. Mult Scler 2012; 18(6): 772775. doi: 10.1177/1352458512442993CrossRefGoogle ScholarPubMed
Reston, JT, Uhl, S, Treadwell, JR, Nash, RA, Schoelles, K. Autologous hematopoietic cell transplantation for multiple sclerosis: a systematic review. Mult Scler 2011; 17(2): 204213. doi: 10.1177/1352458510383609CrossRefGoogle ScholarPubMed
Burt, RK, Kozak, T. Hematopoietic stem cell transplantation for multiple sclerosis: finding equipoise. Bone Marrow Transplant 2003; 32 (Suppl 1): S45–48. doi: 10.1038/sj.bmt.1703942CrossRefGoogle ScholarPubMed
Nash, RA, Bowen, JD, McSweeney, PA, Pavletic, SZ, Maravilla, KR, Park, MS et al. High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood 2003; 102(7): 23642372. doi: 10.1182/blood-2002-12-3908CrossRefGoogle ScholarPubMed
Burt, RK, Cohen, B, Rose, J, Petersen, F, Oyama, Y, Stefoski, D et al. Hematopoietic stem cell transplantation for multiple sclerosis. Arch Neurol 2005; 62(6): 860864. doi: 10.1001/archneur.62.6.860CrossRefGoogle ScholarPubMed
Saccardi, R, Kozak, T, Bocelli-Tyndall, C, Fassas, A, Kazis, A, Havrdova, E et al. Autologous stem cell transplantation for progressive multiple sclerosis: update of the European Group for Blood and Marrow Transplantation autoimmune diseases working party database. Mult Scler 2006; 12(6): 814823.CrossRefGoogle Scholar
Saccardi, R, Mancardi, GL, Solari, A, Bosi, A, Bruzzi, P, Di Bartolomeo, P et al. Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life. Blood 2005; 105(6): 26012607. doi: 10.1182/blood-2004-08-3205CrossRefGoogle Scholar
Hamerschlak, N, Rodrigues, M, Moraes, DA, Oliveira, MC, Stracieri, AB, Pieroni, F et al. Brazilian experience with two conditioning regimens in patients with multiple sclerosis: BEAM/horse ATG and CY/rabbit ATG. Bone Marrow Transplant 2010; 45(2): 239248. doi: 10.1038/bmt.2009.127CrossRefGoogle ScholarPubMed
Krasulová, E, Trneny, M, Kozák, T, Vacková, B, Pohlreich, D, Kemlink, D et al. High-dose immunoablation with autologous haematopoietic stem cell transplantation in aggressive multiple sclerosis: a single centre 10-year experience. Mult Scler 2010; 16(6): 685693. doi: 10.1177/1352458510364538CrossRefGoogle ScholarPubMed
Xu, J, Ji, BX, Su, L, Dong, HQ, Sun, WL, Wan, SG et al. Clinical outcome of autologous peripheral blood stem cell transplantation in opticospinal and conventional forms of secondary progressive multiple sclerosis in a Chinese population. Ann Hematol 2011; 90(3): 343348. doi: 10.1007/s00277-010–1071-5CrossRefGoogle ScholarPubMed
Burt, RK, Balabanov, R, Han, X, Sharrack, B, Morgan, A, Quigley, K et al. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA 2015; 313(3): 275284. doi: 10.1001/jama.2014.17986CrossRefGoogle ScholarPubMed
Nash, RA, Hutton, GJ, Racke, MK, Popat, U, Devine, SM, Griffith, LM et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report. JAMA Neurol 2015; 72(2): 159169. doi: 10.1001/jamaneurol.2014.3780CrossRefGoogle ScholarPubMed
Mancardi, GL, Sormani, MP, Gualandi, F, Saiz, A, Carreras, E, Merelli, E et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology 2015; 84(10): 981988. doi: 10.1212/WNL.0000000000001329CrossRefGoogle ScholarPubMed
Burman, J, Iacobaeus, E, Svenningsson, A, Lycke, J, Gunnarsson, M, Nilsson, P et al. Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: the Swedish experience. J Neurol Neurosurg Psychiatry 2014; 85(10):11161121. doi: 10.1136/jnnp-2013–307207CrossRefGoogle ScholarPubMed
Carreras, E, Saiz, A, Marín, P, Martínez, C, Rovira, M, Villamor, N et al. CD34+ selected autologous peripheral blood stem cell transplantation for multiple sclerosis: report of toxicity and treatment results at one year of follow-up in 15 patients. Haematologica 2003; 88(3): 306314.Google ScholarPubMed
van Laar, JM, Farge, D, Tyndall, A. Stem cell transplantation: a treatment option for severe systemic sclerosis? Ann Rheum Dis 2008; 67 (Suppl 3): iii35–38. doi: 10.1136/ard.2008.098384CrossRefGoogle ScholarPubMed
Burt, RK, Oliveira, MC, Shah, SJ, Moraes, DA, Simoes, B, Gheorghiade, M et al. Cardiac involvement and treatment-related mortality after non-myeloablative haemopoietic stem-cell transplantation with unselected autologous peripheral blood for patients with systemic sclerosis: a retrospective analysis. Lancet 2013; 381(9872): 11161124. doi: 10.1016/S0140-6736(12)62114-XCrossRefGoogle ScholarPubMed
Burt, RK, Shah, SJ, Dill, K, Grant, T, Gheorghiade, M, Schroeder, J et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 2011; 378(9790): 498506. doi: 10.1016/S0140-6736(11)60982-3CrossRefGoogle ScholarPubMed
Binks, M, Passweg, JR, Furst, D, McSweeney, P, Sullivan, K, Besenthal, C et al. Phase I/II trial of autologous stem cell transplantation in systemic sclerosis: procedure related mortality and impact on skin disease. Ann Rheum Dis 2001; 60(6): 577584.CrossRefGoogle ScholarPubMed
Farge, D, Marolleau, JP, Zohar, S, Marjanovic, Z, Cabane, J, Mounier, N et al. Autologous bone marrow transplantation in the treatment of refractory systemic sclerosis: early results from a French multicentre phase I-II study. Br J Haematol 2002; 119(3): 726739.CrossRefGoogle ScholarPubMed
van Laar, JM, Farge, D, Sont, JK, Naraghi, K, Marjanovic, Z, Larghero, J et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA 2014; 311(24): 24902498. doi: 10.1001/jama.2014.6368CrossRefGoogle ScholarPubMed
Oyama, Y, Craig, RM, Traynor, AE, Quigley, K, Statkute, L, Halverson, A et al. Autologous hematopoietic stem cell transplantation in patients with refractory Crohn’s disease. Gastroenterology 2005; 128(3): 552563.CrossRefGoogle ScholarPubMed
Burt, RK, Craig, RM, Milanetti, F, Quigley, K, Gozdziak, P, Bucha, J et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in patients with severe anti-TNF refractory Crohn disease: long-term follow-up. Blood 2010; 116(26): 61236132. doi: 10.1182/blood-2010-06-292391CrossRefGoogle ScholarPubMed
Craig, RM, Traynor, A, Oyama, Y, Burt, RK. Hematopoietic stem cell transplantation for severe Crohn’s disease. Bone Marrow Transplant 2003; 32 (Suppl 1): S57–59. doi: 10.1038/sj.bmt.1703945CrossRefGoogle ScholarPubMed
Nash, RA, McDonald, GB. Crohn disease: remissions but no cure. Blood 2010; 116(26): 57905791. doi: 10.1182/blood-2010-09-309252CrossRefGoogle ScholarPubMed
Hommes, DW, Duijvestein, M, Zelinkova, Z, Stokkers, PC, Ley, MH, Stoker, J et al. Long-term follow-up of autologous hematopoietic stem cell transplantation for severe refractory Crohn’s disease. J Crohns Colitis 2011; 5(6): 543549. doi: 10.1016/j.crohns.2011.05.004CrossRefGoogle ScholarPubMed
Burt, RK, Traynor, A, Statkute, L, Barr, WG, Rosa, R, Schroeder, J et al. Nonmyeloablative hematopoietic stem cell transplantation for systemic lupus erythematosus. JAMA 2006; 295(5): 527535. doi: 10.1001/jama.295.5.527CrossRefGoogle ScholarPubMed
Traynor, AE, Schroeder, J, Rosa, RM, Cheng, D, Stefka, J, Mujais, S et al. Treatment of severe systemic lupus erythematosus with high-dose chemotherapy and haemopoietic stem-cell transplantation: a phase I study. Lancet 2000; 356(9231): 701707. doi: 10.1016/S0140-6736(00)02627–1CrossRefGoogle ScholarPubMed
Alchi, B, Jayne, D, Labopin, M, Demin, A, Sergeevicheva, V, Alexander, T et al. Autologous haematopoietic stem cell transplantation for systemic lupus erythematosus: data from the European Group for Blood and Marrow Transplantation registry. Lupus 2013; 22(3): 245253. doi: 10.1177/0961203312470729CrossRefGoogle Scholar
Marmont du Haut Champ, AM. Hematopoietic stem cell transplantation for systemic lupus erythematosus. Clin Dev Immunol 2012; 2012: 380391. doi: 10.1155/2012/380391CrossRefGoogle ScholarPubMed
Illei, GG, Cervera, R, Burt, RK, Doria, A, Hiepe, F, Jayne, D et al. Current state and future directions of autologous hematopoietic stem cell transplantation in systemic lupus erythematosus. Ann Rheum Dis 2011; 70(12): 20712074. doi: 10.1136/ard.2010.148049CrossRefGoogle ScholarPubMed
Couri, CE, Oliveira, MC, Stracieri, AB, Moraes, DA, Pieroni, F, Barros, GM et al. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 2009; 301(15): 15731579. doi: 10.1001/jama.2009.470CrossRefGoogle ScholarPubMed
Voltarelli, JC, Couri, CE, Stracieri, AB, Oliveira, MC, Moraes, DA, Pieroni, F et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 2007; 297(14): 15681576. doi: 10.1001/jama.297.14.1568CrossRefGoogle ScholarPubMed
D’Addio, F, Valderrama Vasquez, A, Ben Nasr, M, Franek, E, Zhu, D, Li, L et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in new-onset type 1 diabetes: a multicenter analysis. Diabetes 2014. doi: 10.2337/db14-0295CrossRefGoogle Scholar
Burt, RK, Loh, Y, Pearce, W, Beohar, N, Barr, WG, Craig, R et al. Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA 2008; 299(8): 925936. doi: 10.1001/jama.299.8.925CrossRefGoogle ScholarPubMed
Ikehara, S. Bone marrow transplantation for autoimmune diseases. Acta Haematol 1998; 99(3): 116132. doi: 40826CrossRefGoogle ScholarPubMed
Ikehara, S, Good, RA, Nakamura, T, Sekita, K, Inoue, S, Oo, MM et al. Rationale for bone marrow transplantation in the treatment of autoimmune diseases. Proc Natl Acad Sci U S A 1985; 82(8): 24832487.CrossRefGoogle ScholarPubMed
van Bekkum, DW. Stem cell transplantation for autoimmune disorders. Preclinical experiments. Best Pract Res Clin Haematol 2004; 17(2): 201222. doi: 10.1016/j.beha.2004.04.003CrossRefGoogle ScholarPubMed
van Bekkum, DW. Stem cell transplantation in experimental models of autoimmune disease. J Clin Immunol 2000; 20(1): 1016.CrossRefGoogle ScholarPubMed
Van Bekkum, DW. Experimental basis for the treatment of autoimmune diseases with autologous hematopoietic stem cell transplantation. Bone Marrow Transplant 2003; 32 (Suppl 1): S37–39. doi: 10.1038/sj.bmt.1703941CrossRefGoogle ScholarPubMed
van Bekkum, DW. Experimental basis of hematopoietic stem cell transplantation for treatment of autoimmune diseases. J Leukoc Biol 2002; 72(4): 609620.CrossRefGoogle ScholarPubMed
van Bekkum, DW. Autologous stem cell transplantation for treatment of autoimmune diseases. Stem Cells 1999; 17(3): 172178. doi: 10.1002/stem.170172CrossRefGoogle ScholarPubMed
Nelson, JL, Torrez, R, Louie, FM, Choe, OS, Storb, R, Sullivan, KM. Pre-existing autoimmune disease in patients with long-term survival after allogeneic bone marrow transplantation. J Rheumatol Suppl 1997; 48: 2329.Google ScholarPubMed
Marmont, AM. Stem cell transplantation for autoimmune disorders. Coincidental autoimmune disease in patients transplanted for conventional indications. Best Pract Res Clin Haematol 2004; 17(2): 223232. doi: 10.1016/j.beha.2004.04.004CrossRefGoogle ScholarPubMed
Burt, RK, Traynor, AE, Pope, R, Schroeder, J, Cohen, B, Karlin, KH et al. Treatment of autoimmune disease by intense immunosuppressive conditioning and autologous hematopoietic stem cell transplantation. Blood 1998; 92(10): 35053514.CrossRefGoogle ScholarPubMed
Burt, RK, Cohen, BA, Russell, E, Spero, K, Joshi, A, Oyama, Y et al. Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores. Blood 2003; 102(7): 23732378. doi: 10.1182/blood-2003-03-0877CrossRefGoogle ScholarPubMed
Tyndall, A, Saccardi, R. Haematopoietic stem cell transplantation in the treatment of severe autoimmune disease: results from phase I/II studies, prospective randomized trials and future directions. Clin Exp Immunol 2005; 141(1): 19. doi: 10.1111/j.1365–2249.2005.02806.xCrossRefGoogle ScholarPubMed
Alexander, T, Bondanza, A, Muraro, PA, Greco, R, Saccardi, R, Daikeler, T et al. SCT for severe autoimmune diseases: consensus guidelines of the European Society for Blood and Marrow Transplantation for immune monitoring and biobanking. Bone Marrow Transplant 2015; 50(2):173–80. doi: 10.1038/bmt.2014.251CrossRefGoogle ScholarPubMed
Saccardi, R, Tyndall, A, Coghlan, G, Denton, C, Edan, G, Emdin, M et al. Consensus statement concerning cardiotoxicity occurring during haematopoietic stem cell transplantation in the treatment of autoimmune diseases, with special reference to systemic sclerosis and multiple sclerosis. Bone Marrow Transplant 2004; 34(10): 877881. doi: 10.1038/sj.bmt.1704656CrossRefGoogle ScholarPubMed
Illei, GG. Hematopoietic stem cell transplantation in autoimmune diseases: is the glass half full or half empty? Arthritis Rheum 2006; 54(12): 37303734. doi: 10.1002/art.22257CrossRefGoogle ScholarPubMed
Domsic, RT, Medsger, TA. Connective tissue diseases: Predicting death in SSc: planning and cooperation are needed. Nat Rev Rheumatol 2011; 7(11): 628630. doi: 10.1038/nrrheum.2011.152CrossRefGoogle ScholarPubMed
Fransen, J, Popa-Diaconu, D, Hesselstrand, R, Carreira, P, Valentini, G, Beretta, L et al. Clinical prediction of 5-year survival in systemic sclerosis: validation of a simple prognostic model in EUSTAR centres. Ann Rheum Dis 2011; 70(10): 17881792. doi: 10.1136/ard.2010.144360CrossRefGoogle ScholarPubMed
Burt, RK, Shah, SJ, Gheorghiade, M, Ruderman, E, Schroeder, J. Hematopoietic stem cell transplantation for systemic sclerosis: if you are confused, remember: “it is a matter of the heart”. J Rheumatol 2012; 39(2): 206209. doi: 10.3899/jrheum.111302CrossRefGoogle Scholar
Burt, RK, Oliveira, MC, Shah, SJ. Cardiac assessment before stem cell transplantation for systemic sclerosis. JAMA 2014; 312(17): 1803. doi: 10.1001/jama.2014.12566CrossRefGoogle ScholarPubMed
Houssiau, FA, Vasconcelos, C, D’Cruz, D, Sebastiani, GD, Garrido Ed Ede, E, Danieli, MG et al. Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum 2002; 46(8): 21212131. doi: 10.1002/art.10461CrossRefGoogle Scholar
Contreras, G, Pardo, V, Leclercq, B, Lenz, O, Tozman, E, O’Nan, P et al. Sequential therapies for proliferative lupus nephritis. N Engl J Med 2004; 350(10): 971980. doi: 10.1056/NEJMoa031855CrossRefGoogle ScholarPubMed
Illei, GG, Austin, HA, Crane, M, Collins, L, Gourley, MF, Yarboro, CH et al. Combination therapy with pulse cyclophosphamide plus pulse methylprednisolone improves long-term renal outcome without adding toxicity in patients with lupus nephritis. Ann Intern Med 2001; 135(4): 248257.CrossRefGoogle ScholarPubMed
Doria, A, Iaccarino, L, Ghirardello, A, Zampieri, S, Arienti, S, Sarzi-Puttini, P et al. Long-term prognosis and causes of death in systemic lupus erythematosus. Am J Med 2006; 119(8): 700706. doi: 10.1016/j.amjmed.2005.11.034CrossRefGoogle ScholarPubMed
Jayne, D, Tyndall, A. Autologous stem cell transplantation for systemic lupus erythematosus. Lupus 2004; 13(5): 359365.CrossRefGoogle ScholarPubMed
Traynor, AE, Barr, WG, Rosa, RM, Rodriguez, J, Oyama, Y, Baker, S et al. Hematopoietic stem cell transplantation for severe and refractory lupus. Analysis after five years and fifteen patients. Arthritis Rheum 2002; 46(11): 29172923. doi: 10.1002/art.10594CrossRefGoogle ScholarPubMed
Moore, J, Brooks, P, Milliken, S, Biggs, J, Ma, D, Handel, M et al. A pilot randomized trial comparing CD34-selected versus unmanipulated hemopoietic stem cell transplantation for severe, refractory rheumatoid arthritis. Arthritis Rheum 2002; 46(9): 23012309. doi: 10.1002/art.10495CrossRefGoogle ScholarPubMed
Snowden, JA, Passweg, J, Moore, JJ, Milliken, S, Cannell, P, Van Laar, J et al. Autologous hemopoietic stem cell transplantation in severe rheumatoid arthritis: a report from the EBMT and ABMTR. J Rheumatol 2004; 31(3): 482488.Google ScholarPubMed
Snowden, JA, Kapoor, S, Wilson, AG. Stem cell transplantation in rheumatoid arthritis. Autoimmunity 2008; 41(8): 625631. doi: 10.1080/08916930802198550CrossRefGoogle ScholarPubMed
Verburg, RJ, Sont, JK, van Laar, JM. Reduction of joint damage in severe rheumatoid arthritis by high-dose chemotherapy and autologous stem cell transplantation. Arthritis Rheum 2005; 52(2): 421424. doi: 10.1002/art.20859CrossRefGoogle ScholarPubMed
Teng, YK, Verburg, RJ, Sont, JK, van den Hout, WB, Breedveld, FC, van Laar, JM. Long-term followup of health status in patients with severe rheumatoid arthritis after high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation. Arthritis Rheum 2005; 52(8): 22722276. doi: 10.1002/art.21219CrossRefGoogle ScholarPubMed
Moore, J, Ma, D, Will, R, Cannell, P, Handel, M, Milliken, S. A phase II study of Rituximab in rheumatoid arthritis patients with recurrent disease following haematopoietic stem cell transplantation. Bone Marrow Transplant 2004; 34(3): 241247. doi: 10.1038/sj.bmt.1704570CrossRefGoogle ScholarPubMed
Roord, ST, de Jager, W, Boon, L, Wulffraat, N, Martens, A, Prakken, B et al. Autologous bone marrow transplantation in autoimmune arthritis restores immune homeostasis through CD4+CD25+Foxp3+ regulatory T cells. Blood 2008; 111(10): 52335241. doi: 10.1182/blood-2007-12-128488CrossRefGoogle ScholarPubMed
Wulffraat, NM, de Kleer, IM, Prakken, B. Refractory juvenile idiopathic arthritis: using autologous stem cell transplantation as a treatment strategy. Expert Rev Mol Med 2006; 8(26): 111. doi: 10.1017/S1462399406000135CrossRefGoogle ScholarPubMed
Wu, Q, Pesenacker, AM, Stansfield, A, King, D, Barge, D, Foster, HE et al. Immunological characteristics and T-cell receptor clonal diversity in children with systemic juvenile idiopathic arthritis undergoing T-cell-depleted autologous stem cell transplantation. Immunology 2014; 142(2): 227236. doi: 10.1111/imm.12245CrossRefGoogle ScholarPubMed
Mancardi, GL, Sormani, MP, Di Gioia, M, Vuolo, L, Gualandi, F, Amato, MP et al. Autologous haematopoietic stem cell transplantation with an intermediate intensity conditioning regimen in multiple sclerosis: the Italian multi-centre experience. Mult Scler 2012; 18(6): 835842. doi: 10.1177/1352458511429320CrossRefGoogle ScholarPubMed
Bowen, JD, Kraft, GH, Wundes, A, Guan, Q, Maravilla, KR, Gooley, TA et al. Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results. Bone Marrow Transplant 2012; 47(7): 946951. doi: 10.1038/bmt.2011.208CrossRefGoogle ScholarPubMed
Saccardi, R, Freedman, MS, Sormani, MP, Atkins, H, Farge, D, Griffith, LM et al. A prospective, randomized, controlled trial of autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: a position paper. Mult Scler 2012; 18(6): 825834. doi: 10.1177/1352458512438454CrossRefGoogle ScholarPubMed
Phillips, JT, Giovannoni, G, Lublin, FD, O’Connor, PW, Polman, CH, Willoughby, E et al. Sustained improvement in Expanded Disability Status Scale as a new efficacy measure of neurological change in multiple sclerosis: treatment effects with natalizumab in patients with relapsing multiple sclerosis. Mult Scler 2011; 17(8): 970979. doi: 10.1177/1352458511399611CrossRefGoogle ScholarPubMed
Greco, R, Bondanza, A, Oliveira, MC, Badoglio, M, Burman, J, Piehl, F et al. Autologous hematopoietic stem cell transplantation in neuromyelitis optica: a registry study of the EBMT Autoimmune Diseases Working Party. Mult Scler 2015; 21(2): 189197. doi: 10.1177/1352458514541978CrossRefGoogle ScholarPubMed
Matiello, M, Pittock, SJ, Porrata, L, Weinshenker, BG. Failure of autologous hematopoietic stem cell transplantation to prevent relapse of neuromyelitis optica. Arch Neurol 2011; 68(7): 953955. doi: 10.1001/archneurol.2011.38CrossRefGoogle ScholarPubMed
Peng, F, Qiu, W, Li, J, Hu, X, Huang, R, Lin, D et al. A preliminary result of treatment of neuromyelitis optica with autologous peripheral hematopoietic stem cell transplantation. Neurologist 2010; 16(6): 375378. doi: 10.1097/NRL.0b013e3181b126e3CrossRefGoogle ScholarPubMed
Bewtra, M, Kaiser, LM, TenHave, T, Lewis, JD. Crohn’s disease and ulcerative colitis are associated with elevated standardized mortality ratios: a meta-analysis. Inflamm Bowel Dis 2013; 19(3): 599613. doi: 10.1097/MIB.0b013e31827f27aeCrossRefGoogle ScholarPubMed
Gu, Y, Gong, C, Peng, X, Wei, L, Su, C, Qin, M et al. Autologous hematopoietic stem cell transplantation and conventional insulin therapy in the treatment of children with newly diagnosed type 1 diabetes: long term follow-up. Chin Med J (Engl) 2014; 127(14): 26182622.Google ScholarPubMed
Gu, W, Hu, J, Wang, W, Li, L, Tang, W, Sun, S et al. Diabetic ketoacidosis at diagnosis influences complete remission after treatment with hematopoietic stem cell transplantation in adolescents with type 1 diabetes. Diabetes Care 2012; 35(7): 14131419. doi: 10.2337/dc11-2161CrossRefGoogle ScholarPubMed
Snarski, E, Milczarczyk, A, Torosian, T, Paluszewska, M, Urbanowska, E, Król, M et al. Independence of exogenous insulin following immunoablation and stem cell reconstitution in newly diagnosed diabetes type I. Bone Marrow Transplant 2011; 46(4): 562566. doi: 10.1038/bmt.2010.147CrossRefGoogle ScholarPubMed
Notkins, AL, Lernmark, A. Autoimmune type 1 diabetes: resolved and unresolved issues. J Clin Invest 2001; 108(9): 12471252. doi: 10.1172/JCI14257CrossRefGoogle ScholarPubMed
Burt, RK, Fassas, A, Snowden, J, van Laar, JM, Kozak, T, Wulffraat, NM et al. Collection of hematopoietic stem cells from patients with autoimmune diseases. Bone Marrow Transplant 2001; 28(1): 112. doi: 10.1038/sj.bmt.1703081CrossRefGoogle ScholarPubMed
De Santis, GC, de Pina Almeida Prado, B, de Lima Prata, K, Brunetta, DM, Orellana, MD, Palma, PV et al. Mobilization and harvesting of PBPC in newly diagnosed type 1 diabetes mellitus. Bone Marrow Transplant 2012; 47(7): 993994. doi: 10.1038/bmt.2011.188CrossRefGoogle ScholarPubMed
Dubinsky, AN, Burt, RK, Martin, R, Muraro, PA. T-cell clones persisting in the circulation after autologous hematopoietic SCT are undetectable in the peripheral CD34+ selected graft. Bone Marrow Transplant 2010; 45(2): 325331. doi: 10.1038/bmt.2009.139CrossRefGoogle ScholarPubMed
Nash, RA, Dansey, R, Storek, J, Georges, GE, Bowen, JD, Holmberg, LA et al. Epstein–Barr virus-associated posttransplantation lymphoproliferative disorder after high-dose immunosuppressive therapy and autologous CD34-selected hematopoietic stem cell transplantation for severe autoimmune diseases. Biol Blood Marrow Transplant 2003; 9(9): 583591.CrossRefGoogle ScholarPubMed
Tsukamoto, H, Ayano, M, Miyamoto, T, Niiro, H, Arinobu, Y, Akahoshi, M et al. Comparison of CD34-selected and unmanipulated autologous hematopoietic stem cell transplantation for systemic sclerosis: four-year follow-up results. EULAR Conference 2014; 73 (Suppl 2): 9697.Google Scholar
Oliveira, M, Labopin, M, Henes, J, Moore, J, Del Papa, N, Stanciu, S et al. Does ex vivo CD34+ cell selection change the outcome of systemic sclerosis patients treated with autologous hematopoietic stem cell transplantation (AHSCT), an ADWP EBMT Study? ASH Conference 2014; 124(21).Google Scholar
Nash, RA, McSweeney, PA, Crofford, LJ, Abidi, M, Chen, CS, Godwin, JD et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for severe systemic sclerosis: long-term follow-up of the US multicenter pilot study. Blood 2007; 110(4): 13881396. doi: 10.1182/blood-2007-02-072389CrossRefGoogle ScholarPubMed
Burt, RK, Marmont, A, Oyama, Y, Slavin, S, Arnold, R, Hiepe, F et al. Randomized controlled trials of autologous hematopoietic stem cell transplantation for autoimmune diseases: the evolution from myeloablative to lymphoablative transplant regimens. Arthritis Rheum 2006; 54(12): 37503760. doi: 10.1002/art.22256CrossRefGoogle ScholarPubMed
McSweeney, PA, Nash, RA, Sullivan, KM, Storek, J, Crofford, LJ, Dansey, R et al. High-dose immunosuppressive therapy for severe systemic sclerosis: initial outcomes. Blood 2002; 100(5): 16021610.CrossRefGoogle ScholarPubMed
Openshaw, H, Lund, BT, Kashyap, A, Atkinson, R, Sniecinski, I, Weiner, LP et al. Peripheral blood stem cell transplantation in multiple sclerosis with busulfan and cyclophosphamide conditioning: report of toxicity and immunological monitoring. Biol Blood Marrow Transplant 2000; 6(5A): 563575.CrossRefGoogle ScholarPubMed
Nannini, C, West, CP, Erwin, PJ, Matteson, EL. Effects of cyclophosphamide on pulmonary function in patients with scleroderma and interstitial lung disease: a systematic review and meta-analysis of randomized controlled trials and observational prospective cohort studies. Arthritis Res Ther 2008; 10(5): R124. doi: 10.1186/ar2534CrossRefGoogle ScholarPubMed
Henes, JC, Koetter, I, Horger, M, Schmalzing, M, Mueller, K, Eick, C et al. Autologous stem cell transplantation with thiotepa-based conditioning in patients with systemic sclerosis and cardiac manifestations. Rheumatology (Oxford) 2014; 53(5): 919922. doi: 10.1093/rheumatology/ket464CrossRefGoogle ScholarPubMed
Chen, B, Zhou, M, Ouyang, J, Zhou, R, Xu, J, Zhang, Q et al. Long-term efficacy of autologous haematopoietic stem cell transplantation in multiple sclerosis at a single institution in China. Neurol Sci 2012; 33(4): 881886. doi: 10.1007/s10072-011–0859-yCrossRefGoogle Scholar
Curro’, D, Vuolo, L, Gualandi, F, Bacigalupo, A, Roccatagliata, L, Capello, E et al. Low intensity lympho-ablative regimen followed by autologous hematopoietic stem cell transplantation in severe forms of multiple sclerosis: A MRI-based clinical study. Mult Scler 2015; 21(11):14231430. doi: 10.1177/1352458514564484CrossRefGoogle ScholarPubMed
Greco, R, Bondanza, A, Vago, L, Moiola, L, Rossi, P, Furlan, R et al. Allogeneic hematopoietic stem cell transplantation for neuromyelitis optica. Ann Neurol 2014; 75(3): 447453. doi: 10.1002/ana.24079CrossRefGoogle ScholarPubMed
Aouad, P, Li, J, Arthur, C, Burt, R, Fernando, S, Parratt, J. Resolution of aquaporin-4 antibodies in a woman with neuromyelitis optica treated with human autologous stem cell transplant. J Clin Neurosci 2015; 22(7): 12151217. doi: 10.1016/j.jocn.2015.02.007CrossRefGoogle Scholar
Clerici, M, Cassinotti, A, Onida, F, Trabattoni, D, Annaloro, C, Della Volpe, A et al. Immunomodulatory effects of unselected haematopoietic stem cells autotransplantation in refractory Crohn’s disease. Dig Liver Dis 2011; 43(12): 946952. doi: 10.1016/j.dld.2011.07.021CrossRefGoogle ScholarPubMed
Kriván, G, Szabó, D, Kállay, K, Benyó, G, Kassa, C, Sinkó, J et al. [Successful autologous haematopoietic stem cell transplantation in severe, therapy-resistant childhood Crohn’s disease. Report on the first case in Hungary]. Orv Hetil 2014; 155(20): 789792. doi: 10.1556/OH.2014.29892CrossRefGoogle ScholarPubMed
Kountouras, J, Sakellari, I, Tsarouchas, G, Tsiaousi, E, Michael, S, Zavos, C et al. Autologous haematopoietic stem cell transplantation in a patient with refractory Crohn’s disease. J Crohns Colitis 2011; 5(3): 275276. doi: 10.1016/j.crohns.2011.03.004CrossRefGoogle Scholar
Hasselblatt, P, Drognitz, K, Potthoff, K, Bertz, H, Kruis, W, Schmidt, C et al. Remission of refractory Crohn’s disease by high-dose cyclophosphamide and autologous peripheral blood stem cell transplantation. Aliment Pharmacol Ther 2012; 36(8): 725735. doi: 10.1111/apt.12032CrossRefGoogle ScholarPubMed
Bryan, C, Knight, C, Black, CM, Silman, AJ. Prediction of five-year survival following presentation with scleroderma: development of a simple model using three disease factors at first visit. Arthritis Rheum 1999; 42(12): 26602665. doi: 10.1002/1529-0131(199912)42:12<2660::AID-ANR23>3.0.CO;2-N3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Hussein, H, Lee, P, Chau, C, Johnson, SR. The effect of male sex on survival in systemic sclerosis. J Rheumatol 2014; 41(11): 21932200. doi: 10.3899/jrheum.140006CrossRefGoogle ScholarPubMed
Sampaio-Barros, PD, Bortoluzzo, AB, Marangoni, RG, Rocha, LF, Del Rio, AP, Samara, AM et al. Survival, causes of death, and prognostic factors in systemic sclerosis: analysis of 947 Brazilian patients. J Rheumatol 2012; 39(10): 19711978. doi: 10.3899/jrheum.111582CrossRefGoogle ScholarPubMed
Rahman, P, Gladman, DD, Urowitz, MB, Hallett, D, Tam, LS. Early damage as measured by the SLICC/ACR damage index is a predictor of mortality in systemic lupus erythematosus. Lupus 2001; 10(2): 9396.CrossRefGoogle ScholarPubMed
Kaufman, DW, Reshef, S, Golub, HL, Peucker, M, Corwin, MJ, Goodin, DS et al. Survival in commercially insured multiple sclerosis patients and comparator subjects in the U.S. Mult Scler Relat Disord 2014; 3(3): 364371. doi: 10.1016/j.msard.2013.12.003CrossRefGoogle ScholarPubMed
Mancardi, G, Saccardi, R. Autologous haematopoietic stem-cell transplantation in multiple sclerosis. Lancet Neurol 2008; 7(7): 626636. doi: 10.1016/S1474-4422(08)70138–8CrossRefGoogle ScholarPubMed
Kohno, K, Nagafuji, K, Tsukamoto, H, Horiuchi, T, Takase, K, Aoki, K et al. Infectious complications in patients receiving autologous CD34-selected hematopoietic stem cell transplantation for severe autoimmune diseases. Transpl Infect Dis 2009; 11(4): 318323. doi: 10.1111/j.1399–3062.2009.00401.xCrossRefGoogle ScholarPubMed
Bloomgren, G, Richman, S, Hotermans, C, Subramanyam, M, Goelz, S, Natarajan, A et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med 2012; 366(20): 18701880. doi: 10.1056/NEJMoa1107829CrossRefGoogle ScholarPubMed
Pfitzer, C, Orawa, H, Balcerek, M, Langer, T, Dirksen, U, Keslova, P et al. Dynamics of fertility impairment and recovery after allogeneic haematopoietic stem cell transplantation in childhood and adolescence: results from a longitudinal study. J Cancer Res Clin Oncol 2015; 141(1): 135142. doi: 10.1007/s00432-014–1781-5CrossRefGoogle ScholarPubMed
Nabhan, SK, Bitencourt, MA, Duval, M, Abecasis, M, Dufour, C, Boudjedir, K et al. Fertility recovery and pregnancy after allogeneic hematopoietic stem cell transplantation in Fanconi anemia patients. Haematologica 2010; 95(10): 17831787. doi: 10.3324/haematol.2010.023929CrossRefGoogle ScholarPubMed
Snarski, E, Snowden, JA, Oliveira, MC, Simoes, B, Badoglio, M, Carlson, K et al. Onset and outcome of pregnancy after autologous haematopoietic SCT (AHSCT) for autoimmune diseases: a retrospective study of the EBMT autoimmune diseases working party (ADWP). Bone Marrow Transplant 2015; 50(2): 216220. doi: 10.1038/bmt.2014.248CrossRefGoogle ScholarPubMed
Leal, AM, Oliveira, MC, Couri, CE, Moraes, DA, Stracieri, AB, Pieroni, F et al. Testicular function in patients with type 1 diabetes treated with high-dose CY and autologous hematopoietic SCT. Bone Marrow Transplant 2012; 47(3): 467468. doi: 10.1038/bmt.2011.113CrossRefGoogle ScholarPubMed
Daikeler, T, Tichelli, A, Passweg, J. Complications of autologous hematopoietic stem cell transplantation for patients with autoimmune diseases. Pediatr Res 2012; 71(4 Pt 2): 439444. doi: 10.1038/pr.2011.57CrossRefGoogle ScholarPubMed
Bohgaki, T, Atsumi, T, Koike, T. Autoimmune disease after autologous hematopoietic stem cell transplantation. Autoimmun Rev 2008; 7(3): 198203. doi: 10.1016/j.autrev.2007.11.005CrossRefGoogle ScholarPubMed
Holbro, A, Abinun, M, Daikeler, T. Management of autoimmune diseases after haematopoietic stem cell transplantation. Br J Haematol 2012; 157(3): 281290. doi: 10.1111/j.1365–2141.2012.09070.xCrossRefGoogle ScholarPubMed
Daikeler, T, Labopin, M, Di Gioia, M, Abinun, M, Alexander, T, Miniati, I et al. Secondary autoimmune diseases occurring after HSCT for an autoimmune disease: a retrospective study of the EBMT Autoimmune Disease Working Party. Blood 2011; 118(6): 16931698. doi: 10.1182/blood-2011-02-336156CrossRefGoogle ScholarPubMed
Loh, Y, Oyama, Y, Statkute, L, Quigley, K, Yaung, K, Gonda, E et al. Development of a secondary autoimmune disorder after hematopoietic stem cell transplantation for autoimmune diseases: role of conditioning regimen used. Blood 2007; 109(6): 26432548. doi: 10.1182/blood-2006-07-035766CrossRefGoogle ScholarPubMed
Muraro, PA, Douek, DC. Renewing the T cell repertoire to arrest autoimmune aggression. Trends Immunol 2006; 27(2): 6167. doi: 10.1016/j.it.2005.12.003CrossRefGoogle Scholar
Abrahamsson, S, Muraro, PA. Immune re-education following autologous hematopoietic stem cell transplantation. Autoimmunity 2008; 41(8): 577584. doi: 10.1080/08916930802197081CrossRefGoogle ScholarPubMed
Hügle, T, Daikeler, T. Stem cell transplantation for autoimmune diseases. Haematologica 2010; 95(2): 185188. doi: 10.3324/haematol.2009.017038CrossRefGoogle ScholarPubMed
Muraro, PA, Robins, H, Malhotra, S, Howell, M, Phippard, D, Desmarais, C et al. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Invest 2014; 124(3): 11681172. doi: 10.1172/JCI71691CrossRefGoogle ScholarPubMed
Muraro, PA, Douek, DC, Packer, A, Chung, K, Guenaga, FJ, Cassiani-Ingoni, R et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med 2005; 201(5): 805816. doi: 10.1084/jem.20041679CrossRefGoogle ScholarPubMed
Baraut, J, Grigore, EI, Jean-Louis, F, Khelifa, SH, Durand, C, Verrecchia, F et al. Peripheral blood regulatory T cells in patients with diffuse systemic sclerosis (SSc) before and after autologous hematopoietic SCT: a pilot study. Bone Marrow Transplant 2014; 49(3): 349354. doi: 10.1038/bmt.2013.202CrossRefGoogle ScholarPubMed
Farge, D, Henegar, C, Carmagnat, M, Daneshpouy, M, Marjanovic, Z, Rabian, C et al. Analysis of immune reconstitution after autologous bone marrow transplantation in systemic sclerosis. Arthritis Rheum 2005; 52(5): 15551563. doi: 10.1002/art.21036CrossRefGoogle ScholarPubMed
Alexander, T, Thiel, A, Rosen, O, Massenkeil, G, Sattler, A, Kohler, S et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 2009; 113(1): 214223. doi: 10.1182/blood-2008-07-168286CrossRefGoogle ScholarPubMed
Li, HW, Sykes, M. Emerging concepts in haematopoietic cell transplantation. Nat Rev Immunol 2012; 12(6): 403416. doi: 10.1038/nri3226CrossRefGoogle ScholarPubMed
Sykes, M, Nikolic, B. Treatment of severe autoimmune disease by stem-cell transplantation. Nature 2005; 435(7042): 620627. doi: 10.1038/nature03728CrossRefGoogle ScholarPubMed
Zhang, L, Bertucci, AM, Ramsey-Goldman, R, Burt, RK, Datta, SK. Regulatory T cell (Treg) subsets return in patients with refractory lupus following stem cell transplantation, and TGF-beta-producing CD8+ Treg cells are associated with immunological remission of lupus. J Immunol 2009; 183(10): 63466358. doi: 10.4049/jimmunol.0901773CrossRefGoogle Scholar
Abrahamsson, SV, Angelini, DF, Dubinsky, AN, Morel, E, Oh, U, Jones, JL et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 2013; 136(Pt 9): 28882903. doi: 10.1093/brain/awt182CrossRefGoogle ScholarPubMed
Darlington, PJ, Touil, T, Doucet, JS, Gaucher, D, Zeidan, J, Gauchat, D et al. Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation. Ann Neurol 2013; 73(3): 341354. doi: 10.1002/ana.23784CrossRefGoogle ScholarPubMed
Tsukamoto, H, Nagafuji, K, Horiuchi, T, Mitoma, H, Niiro, H, Arinobu, Y et al. Analysis of immune reconstitution after autologous CD34+ stem/progenitor cell transplantation for systemic sclerosis: predominant reconstitution of Th1 CD4+ T cells. Rheumatology (Oxford) 2011; 50(5): 944952. doi: 10.1093/rheumatology/keq414CrossRefGoogle ScholarPubMed
Li, L, Shen, S, Ouyang, J, Hu, Y, Hu, L, Cui, W et al. Autologous hematopoietic stem cell transplantation modulates immunocompetent cells and improves β-cell function in Chinese patients with new onset of type 1 diabetes. J Clin Endocrinol Metab 2012; 97(5): 17291736. doi: 10.1210/jc.2011–2188CrossRefGoogle ScholarPubMed
Bohgaki, T, Atsumi, T, Bohgaki, M, Furusaki, A, Kondo, M, Sato-Matsumura, KC et al. Immunological reconstitution after autologous hematopoietic stem cell transplantation in patients with systemic sclerosis: relationship between clinical benefits and intensity of immunosuppression. J Rheumatol 2009; 36(6): 12401248. doi: 10.3899/jrheum.081025CrossRefGoogle ScholarPubMed
de Oliveira, GL, Malmegrim, KC, Ferreira, AF, Tognon, R, Kashima, S, Couri, CE et al. Up-regulation of fas and fasL pro-apoptotic genes expression in type 1 diabetes patients after autologous haematopoietic stem cell transplantation. Clin Exp Immunol 2012; 168(3): 291302. doi: 10.1111/j.1365–2249.2012.04583.xCrossRefGoogle ScholarPubMed
Arruda, LC, Lorenzi, JC, Sousa, AP, Zanette, DL, Palma, PV, Panepucci, RA et al. Autologous hematopoietic SCT normalizes miR-16, -155 and -142–3p expression in multiple sclerosis patients. Bone Marrow Transplant 2014;50:380389CrossRefGoogle ScholarPubMed
Connick, P, Kolappan, M, Crawley, C, Webber, DJ, Patani, R, Michell, AW et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012; 11(2): 150156. doi: 10.1016/S1474-4422(11)70305-2CrossRefGoogle ScholarPubMed
Gu, F, Wang, D, Zhang, H, Feng, X, Gilkeson, GS, Shi, S et al. Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clin Rheumatol 2014; 33(11): 16111619. doi: 10.1007/s10067-014–2754-4CrossRefGoogle ScholarPubMed
Carlsson, PO, Schwarcz, E, Korsgren, O, Le Blanc, K. Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes 2015; 64(2): 587592. doi: 10.2337/db14-0656CrossRefGoogle ScholarPubMed

References

Breen, E. C., Hussain, S. K., Magpantay, L., et al. B-cell stimulatory cytokines and markers of immune activation are elevated several years prior to the diagnosis of systemic AIDS-associated non-Hodgkin B-cell lymphoma. Cancer Epidemiol Biomarkers Prev 2011; 20: 1303–14.CrossRefGoogle Scholar
Shibata, D., Weiss, L. M., Hernandez, A. M., Nathwani, B. N., Bernstein, L., Levine, A. M. Epstein–Barr virus-associated non-Hodgkin’s lymphoma in patients infected with the human immunodeficiency virus. Blood 1993; 81: 2102–9.CrossRefGoogle ScholarPubMed
Swerdlow, S. H., International Agency for Research on Cancer, World Health Organization. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed. Lyon, France, International Agency for Research on Cancer, 2008.Google Scholar
Centers for Disease Control. Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome. Council of State and Territorial Epidemiologists; AIDS Program, Center for Infectious Diseases. MMWR Morb Mortal Wkly Rep 1987; 36: 1S15S.Google Scholar
Little, R. F., Dunleavy, K. Update on the treatment of HIV-associated hematologic malignancies. Hematology Am Soc Hematol Educ Program 2013; 2013: 382–8.Google ScholarPubMed
Martis, N., Mounier, N. Hodgkin lymphoma in patients with HIV infection: a review. Curr Hematol Malig Rep 2012; 7: 228–34.CrossRefGoogle ScholarPubMed
Gopal, S., Patel, M. R., Yanik, E. L., et al. Temporal trends in presentation and survival for HIV-associated lymphoma in the antiretroviral therapy era. J Natl Cancer Inst 2013; 105: 1221–9.CrossRefGoogle ScholarPubMed
Dunleavy, K., Wilson, W. H. Implications of the shifting pathobiology of AIDS-related lymphoma. J Natl Cancer Inst 2013; 105: 1170–1.CrossRefGoogle ScholarPubMed
Dunleavy, K., Wilson, W. H. How I treat HIV-associated lymphoma. Blood 2012; 119: 3245–55.CrossRefGoogle Scholar
Dunleavy, K., Pittaluga, S., Shovlin, M., et al. Low-intensity therapy in adults with Burkitt’s lymphoma. N Engl J Med 2013; 369: 1915–25.CrossRefGoogle ScholarPubMed
Dunleavy, K., Little, R. F., Pittaluga, S., et al. The role of tumor histogenesis, FDG-PET, and short-course EPOCH with dose-dense rituximab (SC-EPOCH-RR) in HIV-associated diffuse large B-cell lymphoma. Blood 2010; 115: 3017–24.CrossRefGoogle ScholarPubMed
Xicoy, B., Ribera, J. M., Muller, M., et al. Dose-intensive chemotherapy including rituximab is highly effective but toxic in human immunodeficiency virus-infected patients with Burkitt lymphoma/leukemia: parallel study of 81 patients. Leuk Lymphoma 2014; 55(10): 2341–8.CrossRefGoogle ScholarPubMed
Noy, A., Kaplan, L., Lee, J. Y. A modified dose intensive R-CODOX-M/IVAC for HIV-associated Burkitt and atypical Burkitt lymphoma(BL) demonstrates high cure rates and low toxicity: prospective multicenter phase II trial of the AIDS Malignancy Consortium (AMC 048). Blood 2013; 122: 2.CrossRefGoogle Scholar
Re, A., Cattaneo, C., Skert, C., et al. Stem cell mobilization in HIV seropositive patients with lymphoma. Haematologica 2013; 98: 1762–8.CrossRefGoogle ScholarPubMed
Attolico, I., Pavone, V., Ostuni, A., et al. Plerixafor added to chemotherapy plus G-CSF is safe and allows adequate PBSC collection in predicted poor mobilizer patients with multiple myeloma or lymphoma. Biol Blood Marrow Transplant 2012; 18: 241–9.CrossRefGoogle ScholarPubMed
Gabarre, J., Azar, N., Autran, B., Katlama, C., Leblond, V. High-dose therapy and autologous haematopoietic stem-cell transplantation for HIV-1-associated lymphoma. Lancet 2000; 355: 1071–2.CrossRefGoogle ScholarPubMed
Krishnan, A., Molina, A., Zaia, J., et al. Durable remissions with autologous stem cell transplantation for high-risk HIV-associated lymphomas. Blood 2005; 105: 874–8.CrossRefGoogle ScholarPubMed
Krishnan, A., Palmer, J. M., Zaia, J. A., Tsai, N. C., Alvarnas, J., Forman, S. J. HIV status does not affect the outcome of autologous stem cell transplantation (ASCT) for non-Hodgkin lymphoma (NHL). Biol Blood Marrow Transplant 2010; 16: 1302–8.CrossRefGoogle Scholar
Diez-Martin, J. L., Balsalobre, P., Re, A., et al. Comparable survival between HIV+ and HIV– non-Hodgkin and Hodgkin lymphoma patients undergoing autologous peripheral blood stem cell transplantation. Blood 2009; 113: 6011–4.CrossRefGoogle ScholarPubMed
Re, A., Michieli, M., Casari, S., et al. High-dose therapy and autologous peripheral blood stem cell transplantation as salvage treatment for AIDS-related lymphoma: long-term results of the Italian Cooperative Group on AIDS and Tumors (GICAT) study with analysis of prognostic factors. Blood 2009; 114: 1306–13.CrossRefGoogle Scholar
Zaia, J., Krishnan, A., Rossi, J. Hematopoietic cell transplantation for patients with human immunodeficiency virus infection. In: Thomas’ Hematopoietic Cell Transplantation. Hoboken, NJ, Wiley-Blackwell, 2008: p. 1001.Google Scholar
Alvarnas, J.C., Le Rademacher, J., Wang, Y., et al. Autologous hematopoietic cell transplantation for HIV-related lymphoma. Blood 2016; 128:1050–8.CrossRefGoogle ScholarPubMed
Cillo, A. R., Krishnan, A., Mitsuyasu, R. T., et al. Plasma viremia and cellular HIV-1 DNA persist despite autologous hematopoietic stem cell transplantation for HIV-related lymphoma. J Acquir Immune Defic Syndr 2013; 63: 438–41.CrossRefGoogle ScholarPubMed
Serrano, D., Carrion, R., Balsalobre, P., et al. HIV-associated lymphoma successfully treated with peripheral blood stem cell transplantation. Exp Hematol 2005; 33: 487–94.CrossRefGoogle ScholarPubMed
Spitzer, T. R., Ambinder, R. F., Lee, J. Y., et al. Dose-reduced busulfan, cyclophosphamide, and autologous stem cell transplantation for human immunodeficiency virus-associated lymphoma: AIDS Malignancy Consortium study 020. Biol Blood Marrow Transplant 2008; 14: 5966.CrossRefGoogle ScholarPubMed
Te Boekhorst, P. A., Lamers, C. H., Schipperus, M. R., et al. T-lymphocyte reconstitution following rigorously T-cell-depleted versus unmodified autologous stem cell transplants. Bone Marrow Transplant 2006; 37: 763–72.CrossRefGoogle ScholarPubMed
Pratesi, C., Simonelli, C., Zanussi, S., et al. Recent thymic emigrants in lymphoma patients with and without human immunodeficiency virus infection candidates for autologous peripheral stem cell transplantation. Clin Exp Immunol 2008; 151: 101–9.Google ScholarPubMed
Simonelli, C., Zanussi, S., Pratesi, C., et al. Immune recovery after autologous stem cell transplantation is not different for HIV-infected versus HIV-uninfected patients with relapsed or refractory lymphoma. Clin Infect Dis 2010; 50: 1672–9.CrossRefGoogle ScholarPubMed
Benicchi, T., Ghidini, C., Re, A., et al. T-cell immune reconstitution after hematopoietic stem cell transplantation for HIV-associated lymphoma. Transplantation 2005; 80: 673–82.CrossRefGoogle ScholarPubMed
Resino, S., Perez, A., Seoane, E., et al. Short communication: Immune reconstitution after autologous peripheral blood stem cell transplantation in HIV-infected patients: might be better than expected? AIDS Res Hum Retroviruses 2007; 23: 543–8.CrossRefGoogle ScholarPubMed
Hutter, G., Nowak, D., Mossner, M., et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009; 360: 692–8.CrossRefGoogle ScholarPubMed
Allers, K., Hutter, G., Hofmann, J., et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood 2011; 117: 2791–9.CrossRefGoogle ScholarPubMed
Hutter, G., Zaia, J. A. Allogeneic haematopoietic stem cell transplantation in patients with human immunodeficiency virus: the experiences of more than 25 years. Clin Exp Immunol 2011; 163: 284–95.CrossRefGoogle ScholarPubMed
Gupta, V., Tomblyn, M., Pedersen, T. L., et al. Allogeneic hematopoietic cell transplantation in human immunodeficiency virus-positive patients with hematologic disorders: a report from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant 2009; 15: 864–71.CrossRefGoogle ScholarPubMed
Novembre, J., Galvani, A. P., Slatkin, M. The geographic spread of the CCR5 Delta32 HIV-resistance allele. PLoS Biol 2005; 3: e339.CrossRefGoogle ScholarPubMed
Sanchez, R., Wills, S., Young, S. HIV returns in two patients after bone marrow transplant. CNN. December 9, 2013; Sect. Health. http://www.cnn.com/2013/12/07/health/hiv-patients/ (accessed July 29, 2014).Google Scholar
Petz, L. D., Redei, I., Bryson, Y., et al. Hematopoietic cell transplantation with cord blood for cure of HIV infections. Biol Blood Marrow Transplant 2013; 19: 393–7.CrossRefGoogle ScholarPubMed
Gonzalez, G., Park, S., Chen, D., Armitage, S., Shpall, E., Behringer, R. Identification and frequency of CCR5Delta32/Delta32 HIV-resistant cord blood units from Houston area hospitals. HIV Med 2011; 12: 481–6.CrossRefGoogle ScholarPubMed
Mitsuyasu, R. T., Merigan, T. C., Carr, A., et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med 2009; 15: 285–92.CrossRefGoogle ScholarPubMed
DiGiusto, D. L., Krishnan, A., Li, L., et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2010; 2: 36ra43.CrossRefGoogle ScholarPubMed
DiGiusto, D. L., Stan, R., Krishnan, A., Li, H., Rossi, J. J., Zaia, J. A. Development of hematopoietic stem cell based gene therapy for HIV-1 infection: considerations for proof of concept studies and translation to standard medical practice. Viruses 2013; 5: 2898–919.CrossRefGoogle ScholarPubMed
Krishnan, A. Y., Zaia, J. A., Rossi, J. J., et al. Autologous stem cell transplantation (ASCT) for AIDS-related lymphomas (ARL) and the potential role of HIV-resistant stem cells. Blood 2006; 108: Abstract 491a.CrossRefGoogle Scholar
Aiuti, A., Slavin, S., Aker, M., et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–3.CrossRefGoogle ScholarPubMed
Candotti, F., Shaw, K. L., Muul, L., et al. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood 2012; 120: 3635–46.CrossRefGoogle ScholarPubMed
Tebas, P., Stein, D., Tang, W. W., et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370: 901–10.CrossRefGoogle ScholarPubMed
Gabarre, J., Marcelin, A. G., Azar, N., et al. High-dose therapy plus autologous hematopoietic stem cell transplantation for human immunodeficiency virus (HIV)-related lymphoma: results and impact on HIV disease. Haematologica 2004; 89: 1100–8.Google ScholarPubMed
Balsalobre, P., Diez-Martin, J. L., Re, A., et al. Autologous stem-cell transplantation in patients with HIV-related lymphoma. J Clin Oncol 2009; 27: 2192–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×