Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T13:07:37.475Z Has data issue: false hasContentIssue false

Chapter 7 - Anesthesia and Neurodegeneration

from Section 2 - Pathophysiology of the Perioperative Neurocognitive Disorders

Published online by Cambridge University Press:  11 April 2019

Roderic G. Eckenhoff
Affiliation:
University of Pennsylvania
Niccolò Terrando
Affiliation:
Duke University, North Carolina
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eckenhoff, R. G., Johansson, J. S., Wei, H., Carnini, A., Kang, B., Wei, W., et al. Inhaled anesthetic enhancement of amyloid-beta oligomerization and cytotoxicity. Anesthesiology 2004; 101: 703–9.CrossRefGoogle ScholarPubMed
Moller, J. T., Cluitmans, P., Rasmussen, L. S., Houx, P., Rasmussen, H., Canet, J., et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study: ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. The Lancet 1998; 351: 857–61.CrossRefGoogle Scholar
Zhang, G., Dong, Y., Zhang, B., Ichinose, F., Wu, X., Culley, D. J., et al. Isoflurane-induced caspase-3 activation is dependent on cytosolic calcium and can be attenuated by memantine. J Neurosci 2008; 28: 4551–60.CrossRefGoogle ScholarPubMed
Zhang, Y., Xu, Z., Wang, H., Dong, Y., Shi, H. N., Culley, D. J., et al. Anesthetics isoflurane and desflurane differently affect mitochondrial function, learning, and memory. Ann Neurol 2012; 71: 687–98.Google Scholar
Wang, H., Dong, Y., Zhang, J., Xu, Z., Wang, G., Swain, C. A., et al. Isoflurane induces endoplasmic reticulum stress and caspase activation through ryanodine receptors. Br J Anaesth 2014; 113: 695707.Google Scholar
Ni, C., Li, Z., Qian, M., Zhou, Y., Wang, J., Guo, X.. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling. Biochem Biophys Res Commun 2015; 460: 889–95.Google Scholar
Stratmann, G., Sall, J. W., Bell, J. S., Alvi, R. S., May, L., Ku, B., et al. Isoflurane does not affect brain cell death, hippocampal neurogenesis, or long-term neurocognitive outcome in aged rats. Anesthesiology 2010; 112: 305–15.Google Scholar
Dong, Y., Zhang, G., Zhang, B., Moir, R. D., Xia, W., Marcantonio, E. R., et al. The common inhalational anesthetic sevoflurane induces apoptosis and increases beta-amyloid protein levels. Arch Neurol 2009; 66: 620–31.CrossRefGoogle ScholarPubMed
Satomoto, M., Satoh, Y., Terui, K., Miyao, H., Takishima, K., Ito, M., et al. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology 2009; 110: 628–37.CrossRefGoogle ScholarPubMed
Shih, J., May, L. D., Gonzalez, H. E., Lee, E. W., Alvi, R. S., Sall, J. W., et al. Delayed environmental enrichment reverses sevoflurane-induced memory impairment in rats. Anesthesiology 2012; 116: 586602.Google Scholar
Kodama, M., Satoh, Y., Otsubo, Y., Araki, Y., Yonamine, R., Masui, K., et al. Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology 2011; 115: 979–91.CrossRefGoogle ScholarPubMed
Istaphanous, G. K., Howard, J., Nan, X., Hughes, E. A., McCann, J. C., McAuliffe, J. J., et al. Comparison of the neuroapoptotic properties of equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in neonatal mice. Anesthesiology 2011; 114: 578–87.Google Scholar
Yamakura, T., Harris, R. A.. Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels: comparison with isoflurane and ethanol. Anesthesiology 2000; 93: 1095–101.CrossRefGoogle ScholarPubMed
Deacon, R., Lumb, M., Perry, J., Chanarin, I., Minty, B., Halsey, M. J., et al. Selective inactivation of vitamin B12 in rats by nitrous oxide. The Lancet 1978; 2: 1023–4.Google ScholarPubMed
Cohen Aubart, F., Sedel, F., Vicart, S., Lyon-Caen, O., Fontaine, B.. Nitric-oxide triggered neurological disorders in subjects with vitamin B12 deficiency. Rev Neurol (Paris) 2007; 163: 362–4.Google Scholar
Layzer, R. B.. Myeloneuropathy after prolonged exposure to nitrous oxide. The Lancet 1978; 2: 1227–30.Google Scholar
Jevtović-Todorović, V., Beals, J., Benshoff, N., Olney, J. W.. Prolonged exposure to inhalational anesthetic nitrous oxide kills neurons in adult rat brain. Neuroscience 2003; 122: 609–16.CrossRefGoogle ScholarPubMed
Zhen, Y., Dong, Y., Wu, X., Xu, Z., Lu, Y., Zhang, Y., et al. Nitrous oxide plus isoflurane induces apoptosis and increases beta-amyloid protein levels. Anesthesiology 2009; 111: 741–52.Google Scholar
Young, C., Jevtović-Todorović, V., Qin, Y. Q., Tenkova, T., Wang, H., Labruyere, J., et al. Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol 2005; 146: 189–97.CrossRefGoogle ScholarPubMed
Kahraman, S., Zup, S. L., McCarthy, M. M., Fiskum, G.. GABAergic mechanism of propofol toxicity in immature neurons. J Neurosurg Anesthesiol 2008; 20: 233–40.CrossRefGoogle ScholarPubMed
Pearn, M. L., Hu, Y., Niesman, I. R., Patel, H. H., Drummond, J. C., Roth, D. M., et al. Propofol neurotoxicity is mediated by p75 neurotrophin receptor activation. Anesthesiology 2012; 116: 352–61.CrossRefGoogle ScholarPubMed
Cattano, D., Young, C., Straiko, M. M., Olney, J. W.. Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. Anesth Analg 2008; 106: 1712–14.Google Scholar
Sun, L. S., Li, G., DiMaggio, C. J., Byrne, M. W., Ing, C., Miller, T. L., et al. Feasibility and pilot study of the Pediatric Anesthesia NeuroDevelopment Assessment (PANDA) project. J Neurosurg Anesthesiol 2012; 24: 382–8.Google Scholar
Whittington, R. A., Virag, L., Marcouiller, F., Papon, M. A., El Khoury, N. B., Julien, C., et al. Propofol directly increases tau phosphorylation. PLoS One 2011; 6: e16648.CrossRefGoogle ScholarPubMed
Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., Binder, L. I.. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986; 83: 4913–17.Google Scholar
Paule, M. G., Li, M., Allen, R. R., Liu, F., Zou, X., Hotchkiss, C., et al. Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol 2011; 33: 220–30.CrossRefGoogle ScholarPubMed
Wang, C., Sadovova, N., Fu, X., Schmued, L., Scallet, A., Hanig, J., et al. The role of the N-methyl-D-aspartate receptor in ketamine-induced apoptosis in rat forebrain culture. Neuroscience 2005; 132: 967–77.Google Scholar
Dasgupta, M., Dumbrell, A. C.. Preoperative risk assessment for delirium after noncardiac surgery: a systematic review. J Am Geriatr Soc 2006; 54: 1578–89.Google Scholar
Zhang, B., Tian, M., Zheng, H., Zhen, Y., Yue, Y., Li, T., et al. Effects of anesthetic isoflurane and desflurane on human cerebrospinal fluid Aβ and tau level. Anesthesiology 2013; 119: 5260.Google Scholar
Xie, Z., McAuliffe, S., Swain, C. A., Ward, S. A., Crosby, C. A., Zheng, H., et al. Cerebrospinal fluid aβ to tau ratio and postoperative cognitive change. Ann Surg 2013; 258: 364–9.Google Scholar
Shaw, L. M., Vanderstichele, H., Knapik-Czajka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 2009; 65: 403–13.Google Scholar
Zhang, B., Tian, M., Zhen, Y., Yue, Y., Sherman, J., Zheng, H., et al. The effects of isoflurane and desflurane on cognitive function in humans. Anesth Analg 2012; 114: 410–15.Google Scholar
Michenfelder, J. D., Theye, R. A.. Cerebral protection by thiopental during hypoxia. Anesthesiology 1973; 39: 510–17.Google Scholar
Lavine, S. D., Masri, L. S., Levy, M. L., Giannotta, S. L.. Temporary occlusion of the middle cerebral artery in intracranial aneurysm surgery: time limitation and advantage of brain protection. J Neurosurg 1997; 87: 817–24.Google Scholar
Zaidan, J. R., Klochany, A., Martin, W. M., Ziegler, J. S., Harless, D. M., Andrews, R. B.. Effect of thiopental on neurologic outcome following coronary artery bypass grafting. Anesthesiology 1991; 74: 406–11.Google Scholar
Kaisti, K. K., Langsjo, J. W., Aalto, S., Oikonen, V., Sipila, H., Teras, M., et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 2003; 99: 603–13.Google Scholar
Gelb, A. W., Bayona, N. A., Wilson, J. X., Cechetto, D. F.. Propofol anesthesia compared to awake reduces infarct size in rats. Anesthesiology 2002; 96: 1183–90.Google Scholar
Green, T. R., Bennett, S. R., Nelson, V. M.. Specificity and properties of propofol as an antioxidant free radical scavenger. Toxicol Appl Pharmacol 1994; 129: 163–9.Google Scholar
Adembri, C., Venturi, L., Tani, A., Chiarugi, A., Gramigni, E., Cozzi, A., et al. Neuroprotective effects of propofol in models of cerebral ischemia: inhibition of mitochondrial swelling as a possible mechanism. Anesthesiology 2006; 104: 80–9.Google Scholar
Wei, H., Inan, S.. Dual effects of neuroprotection and neurotoxicity by general anesthetics: role of intracellular calcium homeostasis. Prog Neuropsychopharmacol Biol Psychiatry 2013; 47: 156–61.Google Scholar
Lee, J. J., Li, L., Jung, H. H., Zuo, Z.. Postconditioning with isoflurane reduced ischemia-induced brain injury in rats. Anesthesiology 2008; 108: 1055–62.Google Scholar
Sakai, H., Sheng, H., Yates, R. B., Ishida, K., Pearlstein, R. D., Warner, D. S.. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. Anesthesiology 2007; 106: 92–9; discussion 8–10.Google Scholar
Bilotta, F., Gelb, A. W., Stazi, E., Titi, L., Paoloni, F. P., Rosa, G.. Pharmacological perioperative brain neuroprotection: a qualitative review of randomized clinical trials. Br J Anaesth 2013; 110 Suppl 1: 113–20.Google Scholar
Ishida, K., Berger, M., Nadler, J., Warner, D. S.. Anesthetic neuroprotection: antecedents and an appraisal of preclinical and clinical data quality. Curr Pharm Des 2014; 20: 5751–65.CrossRefGoogle Scholar
Xie, Z., Dong, Y., Maeda, U., Alfille, P., Culley, D. J., Crosby, G., et al. The common inhalation anesthetic isoflurane induces apoptosis and increases amyloid beta protein levels. Anesthesiology 2006; 104: 988–94.CrossRefGoogle ScholarPubMed
Shen, X., Dong, Y., Xu, Z., Wang, H., Miao, C., Soriano, S. G., et al. Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology 2013; 118: 502–15.CrossRefGoogle ScholarPubMed
Hu, N., Guo, D., Wang, H., Xie, K., Wang, C., Li, Y., et al. Involvement of the blood-brain barrier opening in cognitive decline in aged rats following orthopedic surgery and high concentration of sevoflurane inhalation. Brain Res 2014; 1551: 1324.Google Scholar
Zhang, B., Dong, Y., Zhang, G., Moir, R. D., Xia, W., Yue, Y., et al. The inhalation anesthetic desflurane induces caspase activation and increases amyloid beta-protein levels under hypoxic conditions. J Biol Chem 2008; 283: 11866–75.Google Scholar
Callaway, J. K., Jones, N. C., Royse, A. G., Royse, C. F.. Memory impairment in rats after desflurane anesthesia is age and dose dependent. J Alzheimers Dis 2015; 44: 9951005.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×