Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T16:13:31.234Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 April 2017

Kostas Kampourakis
Affiliation:
Université de Genève
Get access
Type
Chapter
Information
Making Sense of Genes , pp. 265 - 294
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abifadel, M., Rabès, J. P., Jambart, S. et al. (2009). The molecular basis of familial hypercholesterolemia in Lebanon: spectrum of LDLR mutations and role of PCSK9 as a modifier gene. Human Mutation, 30(7), E682E691.Google Scholar
Abifadel, M., Varret, M., Rabès, J.-P. et al. (2003). Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nature Genetics, 34, 154156.Google Scholar
Adams, M. C., Evans, J. P., Henderson, G. E., Berg, J. S., & GeneScreen Investigators. (2015). The promise and peril of genomic screening in the general population. Genetics in Medicine, 18(6), 593599.CrossRefGoogle ScholarPubMed
Adkins, N. L., & Georgel, P. T. (2010). MeCP2: structure and function. Biochemistry and Cell Biology, 89(1), 111.Google Scholar
Alberts, B., Bray, D., Hopkin, K. et al. (2010). Essential Cell Biology (3rd edn). New York and London: Garland Science.Google Scholar
Alexandrov, L. B., Jones, P. H., Wedge, D. C. et al. (2015). Clock-like mutational processes in human somatic cells. Nature Genetics, 47(12), 14021407.Google Scholar
Alfirevic, Z., Sundberg, K., & Brigham, S. (2009). Amniocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane Review, 1, 1142.Google Scholar
Alkuraya, F. S. (2015). Human knockout research: new horizons and opportunities. Trends in Genetics, 31(2), 108115.CrossRefGoogle ScholarPubMed
Allen, G. E. (1997). The social and economic origins of genetic determinism: a case history of the American eugenics movement, 1900–1940, and its lessons for today. Genetica, 99, 7788.CrossRefGoogle ScholarPubMed
Allen, G. E. (1978a). Life Science in the Twentieth Century. Cambridge: Cambridge University Press.Google Scholar
Allen, G. E. (1978b). Thomas Hunt Morgan: The Man and His Science. Princeton: Princeton University Press.Google Scholar
Allen, G. E. (2003). Mendel and modern genetics: the legacy for today. Endeavour, 27, 6368.Google Scholar
Allen, G. E. (2014). Origins of the classical gene concept, 1900–1950: genetics, mechanistic philosophy, and the capitalization of agriculture. Perspectives in Biology and Medicine, 57(1), 839.Google Scholar
Allen, H. L., Estrada, K., Lettre, G. et al. (2010). Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature, 467(7317), 832838.CrossRefGoogle Scholar
American Cancer Society (2016). Cancer Facts & Figures. Atlanta: American Cancer Society.Google Scholar
Angelman, H. (1965). “Puppet” children: a report on three cases. Developmental Medicine & Child Neurology, 7(6), 681688.Google Scholar
Annas, G. J., & Elias, S. (2014). 23andMe and the FDA. New England Journal of Medicine, 370(11), 985988.Google Scholar
Annas, G. J., & Elias, S. (2015). Genomic Messages: How the Evolving Science of Genetics Affects Our Health, Families, and Future. New York: HarperOne.Google Scholar
Arney, A. (2016). Herding Hemingway’s Cats: Understanding How Our Genes Work. London & New York: Bloomsbury Sigma.Google Scholar
Arthur, W. (2004). Biased Embryos and Evolution. New York: Cambridge University Press.Google Scholar
Avery, O. T., MacLeod, C. M., & McCarty, M. (1944). Studies of the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type III. Journal of Experimental Medicine, 79, 137158.Google Scholar
Avise, J. C. (2001). Evolving genomic metaphors: a new look at the language of DNA. Science, 294(5540), 8687.Google Scholar
Baltimore, D. (1970). RNA-dependent DNA polymerase in virions of RNA tumor viruses. Nature, 226, 12091211.Google Scholar
Baltimore, D. (1971). Expression of animal virus genomes. Bacteriological Reviews, 35(3), 235.Google Scholar
Baran, Y., Subramaniam, M., Biton, A. et al. (2015). The landscape of genomic imprinting across diverse adult human tissues. Genome Research, 25(7), 927936.CrossRefGoogle ScholarPubMed
Barnes, B., & Dupré, J. (2008). Genomes and What to Make of Them. Chicago: University of Chicago Press.Google Scholar
Barrell, B. G., Air, G. M., & Hutchison, C. A. 3rd (1976). Overlapping genes in bacteriophage phiX174. Nature, 264(5581), 3441.Google Scholar
Bartolomei, M. S. (2009). Genomic imprinting: employing and avoiding epigenetic processes. Genes & Development, 23(18), 21242133.CrossRefGoogle ScholarPubMed
Bateson, P., & Gluckman, P. (2011). Plasticity, Robustness, Development and Evolution. Cambridge: Cambridge University Press.Google Scholar
Bateson, W. (1902). Mendel’s Principles of Heredity: A Defence. London: Cambridge University Press.Google Scholar
Bazak, L., Haviv, A., Barak, M. et al. (2014). A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Research, 24(3), 365376.CrossRefGoogle Scholar
Beadle, G. W., & Tatum, E. L. (1941). Genetic control of biochemical reactions in Neurospora. Proceedings of the National Academies of Science, USA, 27, 499506.Google Scholar
Beckwith, J. (2002). Genetics in society: society in genetics. In Alper, J., Ard, C., Asch, A. et al. (Eds.) The Double-Edged Helix: Social Implication of Genetics in a Diverse Society. Baltimore: Johns Hopkins University Press, 3957.Google Scholar
Beckwith, J. (2013). The persistent influence of failed scientific ideas. In Krimsky, S. and Gruber, J. (Eds). Genetic Explanations: Sense and Nonsense. Cambridge MA: Harvard University Press, 173185.Google Scholar
Beckwith, J., & King, J. (1974). The XYY syndrome: a dangerous myth. New Scientist, 64(923), 474476.Google Scholar
Benne, R., Van Den Burg, J. Brakenhoff, J. P. J. et al. (1986). Major transcript of the frameshifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell, 46, 819826.Google Scholar
Benzer, S. (1955). Fine structure of a genetic region in bacteriophage. Proceedings of the National Academies of Science USA, 41, 344354.Google Scholar
Benzer, S. (1957). The elementary units of heredity. In Symposium on the Chemical Basis of Heredity. Baltimore: Johns Hopkins University Press, pp. 7093.Google Scholar
Berget, S. M., Moore, C., & Sharp, P. A. (1977). Spliced segments at the 5’terminus of adenovirus 2 late mRNA. Proceedings of the National Academy of Sciences, 74(8), 31713175.CrossRefGoogle Scholar
Berry, S. A., Brown, C., Grant, M. et al. (2013). Newborn screening 50 years later: access issues faced by adults with PKU. Genetics in Medicine, 15(8), 591599.CrossRefGoogle ScholarPubMed
Betteridge, D. J. (2013). Cardiovascular endocrinology in 2012: PCSK9 – an exciting target for reducing LDL-cholesterol levels. Nature Reviews Endocrinology, 9(2), 7678.Google Scholar
Beurton, P., Falk, R., & Rheinberger, H. J. (Eds.) (2000). The Concept of the Gene in Development and Evolution. Historical and Epistemological Perspectives. Cambridge: Cambridge University Press.Google Scholar
Bhattacharyya, M. K., Smith, A. M., Ellis, T. N., Hedley, C., & Martin, C. (1990). The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell, 60(1), 115122.Google Scholar
Bianchi, D. W. (2012). From prenatal genomic diagnosis to fetal personalized medicine: progress and challenges. Nature Medicine, 18(7), 10411051.CrossRefGoogle ScholarPubMed
Bickel, H., Gerrard, J., & Hickmans, E. M. (1953). Influence of phenylalanine intake on phenylketonuria. The Lancet, 265, 812813.Google Scholar
Biggs, A., Hagins, W. C., Holliday, W. G., Kapicka, C. L., & Lundgren, L. (2009). Glencoe Science: Biology. New York: McGraw-Hill.Google Scholar
Bird, A., Taggart, M., Frommer, M., Miller, O. J., & Macleod, D. (1985). A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell, 40(1), 9199.Google Scholar
Blau, N., Shen, N., & Carducci, C. (2014). Molecular genetics and diagnosis of phenylketonuria: state of the art. Expert Review of Molecular Diagnostics, 14(6), 655671.Google Scholar
Blau, N., van Spronsen, F. J., & Levy, H. L. (2010). Phenylketonuria. The Lancet, 376(9750), 14171427.Google Scholar
Bloss, C. S., Schork, N. J., & Topol, E. J. (2011) Effect of direct-to-consumer genomewide profiling to assess disease risk. New England Journal of Medicine, 364, 524534.Google Scholar
Borzekowski, D. L. G., Guan, Y., Smith, K. C., Erby, L. H., & Roter, D. L. (2013). The Angelina effect: immediate reach, grasp, and impact of going public. Genetics in Medicine, 16, 516521.Google Scholar
Botstein, D. (2015). Decoding the Language of Genetics. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
Bowler, P. J. (1989). The Mendelian Revolution: The Emergence of Hereditarian Concepts in Modern Science and Society. Baltimore: Johns Hopkins University Press.Google Scholar
Braam, J., & Davis, R. W. (1990). Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell, 60(3), 357364.Google Scholar
Brannigan, A. (1979). The reification of Mendel. Social Studies of Science, 9, 423454.Google Scholar
Brannigan, A. (1981). The Social Basis of Scientific Discoveries. Cambridge: Cambridge University Press.Google Scholar
Braude, P., Pickering, S., Flinter, F., & Ogilvie, C. M. (2002). Preimplantation genetic diagnosis. Nature Reviews Genetics, 3(12), 941955.Google Scholar
Brenner, S. (1998). Refuge of spandrels. Current Biology, 8(19), R669.Google Scholar
Brenner, S., Jacob, F., & Meselson, M. (1961). An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature, 190, 576581.Google Scholar
Britten, R. J., & Davidson, E. H. (1969). Gene regulation for higher cells: a theory. Science, 165(3891), 349357.Google Scholar
Brookes, A. J. (1999). The essence of SNPs. Gene, 234(2), 177186.Google Scholar
Brooks, W. K. (1883). The Law of Heredity: A Study of the Cause of Variation and the Origin of Living Organisms (2nd ed.). Baltimore and New York: John Murphy & Co.Google Scholar
Brownell, J. E., & Allis, C. D. (1996). Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Current Opinion in Genetics & Development, 6(2), 176184.Google Scholar
Brunner, H. G., Nelen, M. R., Van Zandvoort, P. et al. (1993). X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. American Journal of Human Genetics, 52(6), 10321039.Google Scholar
Brunner, H. G., Nelen, M., Breakefield, X. O. et al. (1993). Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science, 262(5133), 578580.CrossRefGoogle ScholarPubMed
Brush, S. G. (1978). Nettie M. Stevens and the discovery of sex determination by chromosomes. Isis, 69(2), 163172.Google Scholar
Burbridge, D. (2001). Francis Galton on twins, heredity and social class. The British Journal for the History of Science, 34(3), 323340.Google Scholar
Burian, R. M., & Kampourakis, K. (2013). Against “genes for”: could an inclusive concept of genetic material effectively replace gene concepts? In Kampourakis, K. (Ed.) The Philosophy of Biology: A Companion for Educators. Dordrecht: Springer, 597628.Google Scholar
Byrd, A. L., & Manuck, S. B. (2014). MAOA, childhood maltreatment, and antisocial behavior: meta-analysis of a gene-environment interaction. Biological Psychiatry, 75(1), 917.CrossRefGoogle ScholarPubMed
Carey, N. (2012). The Epigenetics Revolution: How Modern Biology Is Rewriting Our Understanding of Genetics, Disease, and Inheritance. New York: Columbia University Press.Google Scholar
Carey, N. (2015). Junk DNA: A Journey through the Dark Matter of the Genome. New York: Columbia University Press.Google Scholar
Carlson, E. A. (2004) Mendel’s Legacy: The Origin of Classical Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Carver, R., Waldahl, R., & Breivik, J. (2008). Frame that gene. EMBO Reports, 9(10), 943947.CrossRefGoogle ScholarPubMed
Carver, R. B., Rødland, E. A., & Breivik, J. (2013). Quantitative frame analysis of how the gene concept is presented in tabloid and elite newspapers. Science Communication, 35(4), 449475.Google Scholar
Casey, M. D., Segall, L. J., Street, D. R. K., & Blank, C. E. (1966). Sex chromosome abnormalities in two state hospitals for patients requiring special security. Nature, 209, 641642.Google Scholar
Caspi, A., McClay, J., Moffitt, T. E. et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297(5582), 851854.CrossRefGoogle ScholarPubMed
Castera, J., & Clement, P. (2014). Teachers’ conceptions about genetic determinism of human behaviour: a survey in 23 countries. Science & Education, 23(2), 417443.Google Scholar
Castle, W. E. (1903). Mendel’s law of heredity. Science, 18(456), 396406.Google Scholar
Cattanach, B. M. (1986). Parental origin effects in mice. Journal of Embryology and Experimental Morphology, 97(Supplement), 137150.Google Scholar
Cattanach, B. M., & Kirk, M. (1985). Differential activity of maternally and paternally derived chromosome regions in mice. Nature, 315(6019), 496498.Google Scholar
Caulfield, T., & McGuire, A. L. (2012). Direct-to-consumer genetic testing: perceptions, problems, and policy responses. Annual Review of Medicine, 63, 2333.Google Scholar
Cech, T. R., & Steitz, J. A. (2014). The noncoding RNA revolution – trashing old rules to forge new ones. Cell, 157(1), 7794.Google Scholar
Centerwall, S. A., & Centerwall, W. R. (2000). The discovery of phenylketonuria: the story of a young couple, two retarded children, and a scientist. Pediatrics, 105(1), 89103.Google Scholar
Chen, R., Mias, G. I., Li-Pook-Than, J. et al. (2012). Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell, 148(6), 12931307.Google Scholar
Chen, R., Shi, L., Hakenberg, J. et al. (2016). Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nature Biotechnology, 34(5), 531538.Google Scholar
Cheung, B., Dar-Nimrod, I., & Gonsalkorale, K. (2014). Am I my genes? Perceived genetic etiology, intrapersonal processes, and health. Social and Personality Psychology Compass, 8(11), 626637.Google Scholar
Chow, L. T., Gelinas, R. E., Broker, T. R., & Roberts, R. J. (1977). An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell, 12(1), 18.Google Scholar
Cobb, M. (2006). Heredity before genetics: a history. Nature Reviews Genetics, 7, 953958.Google Scholar
Cobb, M. (2015). Life’s Greatest Secret: The Story of the Race to Crack the Genetic Code. London: Profile Books.Google Scholar
Cohen, J. C., Boerwinkle, E., Mosley, T. H., Jr., & Hobbs, H. H. (2006). Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. New England Journal of Medicine, 354, 12641272.Google Scholar
Collins, F. S. (1999). Medical and societal consequences of the Human Genome Project. New England Journal of Medicine, 341(1), 2837.Google Scholar
Collins, F. S. (2010). The Language of Life: DNA and the Revolution in Personalized Medicine. New York: Harper.Google Scholar
Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England Journal of Medicine, 372, 793795.Google Scholar
Comfort, N. (2012). The Science of Human Perfection: How Genes Became the Heart of American Medicine. New Haven & London: Yale University Press.Google Scholar
Condit, C. M. (1999). How the public understands genetics: non-deterministic and non-discriminatory interpretations of the “blueprint” metaphor. Public Understanding of Science, 8, 169180.Google Scholar
Condit, C. M. (2007). How geneticists can help reporters to get their story right. Nature Reviews Genetics, 8, 815820.Google Scholar
Condit, C. M. (2010a). Public attitudes and beliefs about genetics. Annual Review of Genomics and Human Genetics, 11, 339359.Google Scholar
Condit, C. M. (2010b). Public understandings of genetics and health. Clinical Genetics, 77, 19.CrossRefGoogle ScholarPubMed
Condit, C. M., Ofulue, N., & Sheedy, K. M. (1998). Determinism and mass-media portrayals of genetics. American Journal of Human Genetics, 62(4), 979984.Google Scholar
Condit, C. M., Ferguson, A., Kassel, R. et al. (2001). An exploratory study of the impact of news headlines on genetic determinism. Science Communication, 22(4), 379395.Google Scholar
Cooley, T. B., & Lee, P. (1925). A series of cases of splenomegaly in children with anemia and peculiar bone changes. American Journal of Diseases of Children, 30, 447.Google Scholar
Correns, C. (1950/1900). G. Mendel’s law concerning the behavior of progeny of varietal hybrids. Genetics, 35, 3341.Google Scholar
Couzin-Frankel, J. (2015a). Bad luck and cancer: a science reporter’s reflections on a controversial story. Science (available at www.sciencemag.org/news/2015/01/bad-luck-and-cancer-science-reporter-s-reflections-controversial-story).Google Scholar
Couzin-Frankel, J. (2015b). The bad luck of cancer. Science, 347(6217), 12.Google Scholar
Cranor, C. F. (2013). Assessing genes as causes of human disease in a multi-causal world. In Krimsky, S., & Gruber, J. (Eds.) Genetic Explanations: Sense and Nonsense. Cambridge MA: Harvard University Press, 107121.Google Scholar
Creighton, H. B., & McClintock, B. (1931). A correlation of cytological and genetical crossing-over in Zea mays. Proceedings of the National Academy of Sciences, 17(8), 492497.Google Scholar
Crick, F. (1958). On protein synthesis. Symposium of the Society of Experimental Biology, 12, 138163.Google Scholar
Crick, F. (1970). Central dogma of molecular biology. Nature, 227, 561563.Google Scholar
Crick, F. (1979). Split genes and RNA splicing. Science, 204, 264271.Google Scholar
Crick, F. H. C., Griffith, J. S., & Orgel, L. E. (1957). Codes without commas. Proceedings of the National Academy of Sciences, 43, 416421.Google Scholar
Crick, F. H. C. (1988), What Mad Pursuit: A Personal View of Scientific Discovery. New York: Basic Books.Google Scholar
Crick, F. H. C., Barnett, L., Brenner, S., & Watts-Tobin, R. J. (1961). General nature of the genetic code for proteins. Nature, 192, 12271232.Google Scholar
Dar-Nimrod, I. (2012). Postgenomics and genetic essentialism. Behavioral and Brain Sciences, 35, 362363.Google Scholar
Dar-Nimrod, I., & Heine, S. J. (2011). Genetic essentialism: on the deceptive determinism of DNA. Psychological Bulletin, 137(5), 800818.Google Scholar
Dar-Nimrod, I., Cheung, B., Ruby, M., & Heine, S. (2014). Can merely learning about obesity genes affect eating behavior? Appetite, 81, 269276.Google Scholar
Darden, L. (1991). Theory Change in Science: Strategies from Mendelian Genetics. New York: Oxford University Press.Google Scholar
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection. London: John Murray.Google Scholar
Darwin, C. (1868). The Variation of Animals and Plants under Domestication. London: John Murray.Google Scholar
Darwin, C. (1871). Pangenesis. Nature, 3, 502503.Google Scholar
Davenport, G. C., & Davenport, C. B. (1907). Heredity of eye-color in man. Science, 26, 590592.Google Scholar
Davies, J. A. (2014). Life Unfolding: How the Human Body Creates Itself. Oxford: Oxford University Press.Google Scholar
Davies, K. (2001). Cracking the Genome: Inside the Race to Unlock Human DNA. New York: Free Press.Google Scholar
Davies, K. (2010). The $1,000 Genome: The Revolution in DNA Sequencing and the New Era of Personalized Medicine. New York: Free Press.Google Scholar
Dawson, M. A., & Kouzarides, T. (2012). Cancer epigenetics: from mechanism to therapy. Cell, 150(1), 1227.Google Scholar
De Vries, H. (1910/1889). Intracellular Pangenesis. Chicago: Open Court Publishing Co.Google Scholar
De Vries, H. (1950/1900). Concerning the law of segregation of hybrids. Genetics, 35, 3032.Google Scholar
Denney, R. M., Koch, H., & Craig, I. W. (1999). Association between monoamine oxidase A activity in human male skin fibroblasts and genotype of the MAOA promoter-associated variable number tandem repeat. Human Genetics, 105(6), 542551.Google Scholar
Depew, D. J., & Weber, B. H. (1995). Darwinism evolving: Systems dynamics and the genealogy of natural selection. Cambridge MA: MIT Press.Google Scholar
Dermitzakis, E. T. (2012). Cellular genomics for complex traits. Nature Reviews Genetics, 13, 215220.Google Scholar
DiSilvestre, D., Koch, R., & Groffen, J. (1991). Different clinical manifestations of hyperphenylalaninemia in three siblings with identical phenylalanine hydroxylase genes. American Journal of Human Genetics, 48(5), 10141016.Google Scholar
Dixon, J., Jones, N. C., Sandell, L. L. et al. (2006). Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proceedings of the National Academy of Sciences, 103(36), 1340313408.Google Scholar
Donnelly, P. (2008). Progress and challenges in genome-wide association studies in humans. Nature, 456(7223), 728731.Google Scholar
Donovan, J., & Venville, G. (2014). Blood and bones: the influence of the mass media on Australian primary school children’s understandings of genes and DNA. Science & Education, 23(2), 325360.Google Scholar
Doolittle, W. F. (2013). Is junk DNA bunk? A critique of ENCODE. Proceedings of the National Academy of Sciences, 110(14), 52945300.Google Scholar
Du, J., Johnson, L. M., Jacobsen, S. E., & Patel, D. J. (2015). DNA methylation pathways and their crosstalk with histone methylation. Nature Reviews Molecular Cell Biology, 16(9), 519532.Google Scholar
Duffy, D. L., Montgomery, G. W., Chen, W. et al. (2007). A three–single-nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation. American Journal of Human Genetics, 80(2), 241252.Google Scholar
Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: students’ understandings of molecular genetics. Journal of Research in Science Teaching, 938959.Google Scholar
Dunn, L. C. (1991/1965). A Short History of Genetics. Ames Iowa: Iowa State University Press.Google Scholar
Easton, D. F., Pharoah, P. D., Antoniou, A. C. et al. (2015). Gene-panel sequencing and the prediction of breast-cancer risk. New England Journal of Medicine, 372(23), 22432257.Google Scholar
Ecker, U. K., Lewandowsky, S., Chang, E. P., & Pillai, R. (2014). The effects of subtle misinformation in news headlines. Journal of Experimental Psychology: Applied, 20(4), 323335.Google ScholarPubMed
Eddy, S. R. (2013). The ENCODE project: missteps overshadowing a success. Current Biology, 23(7), R259R261.Google Scholar
Edwards, M., Cha, D., Krithika, S., et al. (2016). Iris pigmentation as a quantitative trait: variation in populations of European, East Asian and South Asian ancestry and association with candidate gene polymorphisms. Pigment Cell & Melanoma Research, 29(2): 141162.Google Scholar
Eiberg, H., Troelsen, J., Nielsen, M., et al. (2008). Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression. Human Genetics, 123, 177187.Google Scholar
ENCODE Project Consortium (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447(7146), 799816.Google Scholar
ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414), 5774.Google Scholar
Engel, E. (1972). The making of an XYY. American Journal of Mental Deficiency, 77(2), 123127.Google Scholar
Enns, G. M., Koch, R., Brumm, V. et al. (2010). Suboptimal outcomes in patients with PKU treated early with diet alone: revisiting the evidence. Molecular Genetics and Metabolism, 101(2), 99109.Google Scholar
Erbilgin, A., Civelek, M., Romanoski, C. E. et al. (2013). Identification of CAD candidate genes in GWAS loci and their expression in vascular cells. Journal of Lipid Research, 54, 18941905.Google Scholar
Esteller, M. (2008). Epigenetics in cancer. New England Journal of Medicine, 358(11), 11481159.Google Scholar
Esteller, M. (2011). Epigenetic changes in cancer. F1000 Biol Rep, 3, 9. doi: 10.3410/B3-9Google Scholar
Etchegary, H., Cappelli, M., Potter, B. et al. (2010). Attitude and knowledge about genetics and genetic testing. Public Health Genomics, 13(2), 8088.Google Scholar
Evans, J. P., Meslin, E.M., Marteau, T.M. et al. (2011). Deflating the genomic bubble. Science, 331, 861862.Google Scholar
Falk, R. (2009). Genetic Analysis: A History of Genetic Thinking. Cambridge: Cambridge University Press.Google Scholar
Farajollahi, S., & Maas, S. (2010). Molecular diversity through RNA editing: a balancing act. Trends in Genetics, 26(5), 221230.Google Scholar
Feinberg, A. P., & Tycko, B. (2004). The history of cancer epigenetics. Nature Reviews Cancer, 4, 143153.Google Scholar
Feng, S., Jacobsen, S. E., & Reik, W. (2010). Epigenetic reprogramming in plant and animal development. Science, 330(6004), 622627.Google Scholar
Fernàndez-Castillo, N., & Cormand, B. (2016). Aggressive behavior in humans: genes and pathways identified through association studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(5), 676–696.Google Scholar
Feuk, L., Carson, A. R., & Scherer, S. W. (2006). Structural variation in the human genome. Nature Reviews Genetics, 7(2), 8597.Google Scholar
Ficks, C. A., & Waldman, I. D. (2014). Candidate genes for aggression and antisocial behavior: a meta-analysis of association studies of the 5HTTLPR and MAOA-uVNTR. Behavior Genetics, 44(5), 427444.Google Scholar
Fields, S., & Johnston, M. (2010). Genetic Twists of Fate. Cambridge MA: MIT Press.Google Scholar
Firestein, S. (2012). Ignorance: How It Drives Science. Oxford: Oxford University Press.Google Scholar
Firestein, S. (2016). Failure: Why Science Is so Successful. Oxford: Oxford University Press.Google Scholar
Følling, A. (1934). The excretion of phenylpyruvic acid in the urine, an anomaly of metabolism in connection with imbecility. Zeitschrift fur Physiologische Chemie, 227, 169176.Google Scholar
Følling, I. (1994). The discovery of phenylketonuria. Acta Paediatrica, 83(s407), 410.Google Scholar
Fox, R. G. (1971). The XYY offender: a modern myth? Journal of Criminal Law, Criminology, and Police Science, 62(1), 5973.Google Scholar
Fraga, M. F., Ballestar, E., Paz, M. F. et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences, 102(30), 1060410609.Google Scholar
Francis, R. C. (2012). Epigenetics: How Environment Shapes Our Genes. W. W. Norton & Company.Google Scholar
Franklin, R., & Gosling, R. G. (1953). Molecular configuration in sodium thymonucleate. Nature, 171, 740741.Google Scholar
Frazer, K. A., Murray, S. S., Schork, N. J., & Topol, E. J. (2009). Human genetic variation and its contribution to complex traits. Nature Reviews Genetics, 10(4), 241251.Google Scholar
Frudakis, T., Terravainen, T., & Thomas, M. (2007). Multilocus OCA2 genotypes specify human iris colors. Human Genetics, 122(3–4), 311326.Google Scholar
Frudakis, T., Thomas, M., Gaskin, Z. et al. (2003). Sequences associated with human iris pigmentation. Genetics, 165(4), 20712083.Google Scholar
Fung-Leung, W. P., Schilham, M. W., Rahemtulla, A. et al. (1991). CD8 is needed for development of cytotoxic T but not helper T cells. Cell, 65(3), 443449.Google Scholar
Galton, F. (1871a). Experiments in pangenesis, by breeding from rabbits of a pure variety, into whose circulation blood taken from other varieties had previously been largely transfused. Proceedings of the Royal Society, 19, 393410.Google Scholar
Galton, F. (1871b). Pangenesis. Nature, 4, 56.Google Scholar
Galton, F. (1874). English Men of Science: Their Nature and Nurture. London: Macmillan & Co.Google Scholar
Galton, F. (1876). A theory of heredity. Journal of the Anthropological Institute, 5, 329348.Google Scholar
Galton, F. (1886). Hereditary stature. Nature, 33, 295298.Google Scholar
Galton, F. (1889). Natural Inheritance. London: MacmillanGoogle Scholar
Gannett, L. (1999). What’s in a cause? The pragmatic dimensions of genetic explanations. Biology and Philosophy, 14, 349373.Google Scholar
Gannett, L. (2013). Genomics and society: why “discovery” matters. In Kampourakis, K. (Ed.) The Philosophy of Biology: A Companion for Educators. Dordrecht: Springer, 653685.Google Scholar
Gannett, L. (2014). “The Human Genome Project,” The Stanford Encyclopedia of Philosophy (Winter 2014 Edition), Zalta, E. N. (Ed.) http://plato.stanford.edu/archives/win2014/entries/human-genome/.Google Scholar
Gelman, S. A. (2003). The Essential Child: Origins of Essentialism in Everyday Thought. Oxford: Oxford University Press.Google Scholar
Gelman, S. A. (2004). Psychological essentialism in children. TRENDS in Cognitive Sciences, 8(9), 404409.Google Scholar
Gericke, N., Hagberg, M., Carvalho Santos, V., Joaquim, L. M., & El-Hani, C. (2014). Conceptual variation or incoherence? Textbook discourse on genes in six countries. Science & Education, 23(2), 381416.Google Scholar
Gerstein, M. B., Bruce, C., Rozowsky, J. S. et al. (2007). What is a gene, post-ENCODE? History and updated definition. Genome Research, 17(6), 669681.Google Scholar
Giardine, B., Borg, J., Higgs, D. R. et al. (2011). Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach. Nature Genetics, 43(4), 295301.Google Scholar
Giardine, B., Borg, J., Viennas, E. et al. (2014). Updates of the HbVar database of human hemoglobin variants and thalassemia mutations. Nucleic Acids Research, 42(D1), D1063D1069.Google Scholar
Gibson, G. (2012). Rare and common variants: twenty arguments. Nature Reviews Genetics, 13(2), 135145.Google Scholar
Giere, R. N. (2006) Scientific Perspectivism. Chicago and London: University of Chicago Press.Google Scholar
Gigerenzer, G. (2002). Calculated Risks: How to Know When Numbers Deceive You. New York: Simon and Schuster.Google Scholar
Gilbert, W. (1978). Why genes in pieces? Nature, 271, 501.Google Scholar
Gilbert, W. (1992). A vision of the grail. In Kevles, D. J., & Hood, L. (Eds.) The Code of Codes: Scientific and Social Issues in the Human Genome Project. Cambridge MA: Harvard University Press, 8397.Google Scholar
Gilbert, W., & Muller-Hill, B. (1966). Isolation of the lac repressor. Proceedings of the National Academy of Sciences, 56(6), 18911898.Google Scholar
Gill, P., Jeffreys, A. J., & Werrett, D. J. (1985). Forensic application of DNA “fingerprints.” Nature, 318(6046), 577579.Google Scholar
Gillham, N. W. (2001). A Life of Sir Francis Galton: From African Explorations to the Birth of Eugenics. Oxford: Oxford University Press.Google Scholar
Gladwell, M. (2008). Outliers: The Story of Success. New York: Little, Brown and Company.Google Scholar
Gliboff, S. (1998). Evolution, revolution, and reform in Vienna: Franz Unger’s ideas on descent and their post-1848 reception. Journal of the History of Biology, 31(2), 179209.Google Scholar
Gliboff, S. (2013). The many sides of Gregor Mendel. In Harman, O., & Dietrich, M. R. (Eds.) Outsider Scientists: Routes to Innovation in Biology. Chicago: University of Chicago Press.Google Scholar
Godfrey-Smith, P. (2014). Philosophy of Biology. Princeton: Princeton University Press.Google Scholar
Goding, C. R., Pei, D., & Lu, X. (2014). Cancer: pathological nuclear reprogramming?. Nature Reviews Cancer, 14(8), 568573.Google Scholar
Gofman, J. W., Delalla, O., Glazier, F., et al. (1955). The serum lipoprotein transport system in health, metabolic disorders, atherosclerosis and coronary heart disease. Plasma, 2, 413484; Reprinted as Gofman, J. W., Delalla, O., Glazier, F., et al. (2007). The serum lipoprotein transport system in health, metabolic disorders, atherosclerosis and coronary heart disease. Journal of Clinical Lipidology, 1(2), 104141.Google Scholar
Gofman, J. W., Lindgren, F., Elliott, H., et al. (1950). The role of lipids and lipoproteins in atherosclerosis. Science, 111, 166171.Google Scholar
Goldsmith, L., Jackson, L., O’Connor, A., & Skirton, H. (2012). Direct-to-consumer genomic testing: systematic review of the literature on user perspectives. European Journal of Human Genetics, 8, 811816.Google Scholar
Goldstein, J. L., & Brown, M. S. (2015). A century of cholesterol and coronaries: from plaques to genes to statins. Cell, 161(1), 161172.Google Scholar
Gott, J. M., & Emeson, R. B. (2000). Functions and mechanisms of RNA editing. Annual Review of Genetics, 34(1), 499531.Google Scholar
Gould, S. J. (1996). The Mismeasure of Man (Revised and Expanded Edition). New York & London: W.W. Norton & Company.Google Scholar
Gould, W. A., & Heine, S. J. (2012). Implicit essentialism: genetic concepts are implicitly associated with fate concepts. PLoS ONE, 7(6), e38176. doi:10.1371/journal.pone.0038176.Google Scholar
Graur, D., Zheng, Y., & Azevedo, R. B. (2015). An evolutionary classification of genomic function. Genome Biology and Evolution, 7(3), 642645.Google Scholar
Graur, D., Zheng, Y., Price, N. et al. (2013). On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biology and Evolution, 5(3), 578590.Google Scholar
Green, R.C., & Farahany, N.A. (2014) The FDA is overcautious on consumer genomics. Nature, 505, 286287.Google Scholar
Greenman, C., Stephens, P., Smith, R. et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446(7132), 153158.Google Scholar
Griffiths, P., & Stotz, K. (2013). Genetics and Philosophy: An Introduction. Cambridge: Cambridge University Press.Google Scholar
Griffiths, A. J. F., Wessler, S. R., Lewontin, R. C. et al. (2005). An Introduction to Genetic Analysis (8th ed.). New York: WH Freeman & Company.Google Scholar
Gros, F., Hiatt, H., Gilbert, W. et al. (1961). Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature, 190, 581585.Google Scholar
Gudbjartsson, D. F., Walters, G. B., Thorleifsson, G. et al. (2008). Many sequence variants affecting diversity of adult human height. Nature Genetics, 40(5), 609615.Google Scholar
Guthrie, R., & Susi, A. (1963). A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics, 32, 338343.Google Scholar
Guttmacher, A. E., Porteous, M. E., & McInerney, J. D. (2007). Educating health-care professionals about genetics and genomics. Nature Reviews Genetics, 8(2), 151157.Google Scholar
Haga, S., Burke, W., Ginsburg, G., Mills, R., & Agans, R. (2012). Primary care physicians’ knowledge of and experience with pharmacogenomics testing. Clinical Genetics, 82(4), 388394.Google Scholar
Haga, S. B., O’Daniel, J. M., Tindall, G. M. et al. (2012). Survey of genetic counselors and clinical geneticists’ use and attitudes toward pharmacogenetic testing. Clinical Genetics, 82, 115120.Google Scholar
Haldane, J. B. S. (1936). A provisional map of a human chromosome. Nature, 137, 398400.Google Scholar
Haldane, J. B. S. (1938). Blood royal: a study of haemophilia in the royal families of Europe. Modern Quarterly, 1, 129–39.Google Scholar
Haldane, J. B. S. (1939). Blood royal. The Living Age, 2631.Google Scholar
Hall, B. K. (2011). A brief history of the term and concept of epigenetics. In Hallgrímsson, B., & Hall, B. K. (Eds.) Epigenetics: Linking Genotype and Phenotype in Development and Evolution. Berkeley: University of California Press, 913.Google Scholar
Hall, B., Limaye, A., & Kulkarni, A. B. (2009). Overview: generation of gene knockout mice. Current Protocols in Cell Biology, Unit 1912, 11–17.Google Scholar
Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 5770.Google Scholar
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646674.Google Scholar
Hand, D. J. (2014). The Improbability Principle: Why Coincidences, Miracles, and Rare Events Happen Day. New York: Scientific American/Farrar, Straus and Giroux.Google Scholar
Harper, J. C., & SenGupta, S. B. (2012). Preimplantation genetic diagnosis: state of the art 2011. Human Genetics, 131(2), 175186.Google Scholar
Hayden, E. C. (2016). Seeing deadly mutations in a new light. Nature, 538, 154157.Google Scholar
Heard, E., & Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: myths and mechanisms. Cell, 157(1), 95109.Google Scholar
Hegreness, M., & Meselson, M. (2007). What did Sutton see?: Thirty years of confusion over the chromosomal basis of Mendelism. Genetics, 176(4), 19391944.Google Scholar
Henikoff, S., Keene, M. A., Fechtel, K., & Fristrom, J. W. (1986). Gene within a gene: nested Drosophila genes encode unrelated proteins on opposite DNA strands. Cell, 44, 3342Google Scholar
Hershey, A. D., & Chase, M. (1952). Independent functions of viral proteins and nucleic acid in growth of bacteriophage. Journal of General Physiology, 36, 3956.Google Scholar
Higgs, D. R., Engel, J. D., & Stamatoyannopoulos, G. (2012). Thalassaemia. The Lancet, 379(9813), 373383.Google Scholar
Hill, R. E., & Lettice, L. A. (2013). Alterations to the remote control of Shh gene expression cause congenital abnormalities. Philosphical Transactions of the Royal Society Part B, 368, 20120357.Google Scholar
Hoagland, M. B., Stephenson, M. L., Scott, J. F., Hecht, L. I., & Zamecnik, P. C. (1958). A soluble ribonucleic acid intermediate in protein synthesis. Journal of Biological Chemistry, 231, 241257.Google Scholar
Hochedlinger, K., & Plath, K. (2009). Epigenetic reprogramming and induced pluripotency. Development, 136(4), 509523.Google Scholar
Holmes, F. L. (2000). Seymour Benzer and the definition of the gene. In Beurton, P. J., Falk, R., & Rheinberger, H.-J. (Eds.) The Concept of the Gene in Development and Evolution. Cambridge: Cambridge University Press, 115155.Google Scholar
Holmes, S. J., & Loomis, H. M. (1909). The heredity of eye color and hair color in man. Biological Bulletin, 18(1), 5065.Google Scholar
Holoch, D., & Moazed, D. (2015). RNA-mediated epigenetic regulation of gene 3expression. Nature Reviews Genetics, 16(2), 7184.Google Scholar
Horowitz, N. H. (1948). The one gene-one enzyme hypothesis. Genetics, 33(6), 612613.Google Scholar
Horton, J. D., Cohen, J. C., & Hobbs, H. H. (2009). PCSK9: a convertase that coordinates LDL catabolism. Journal of Lipid Research, 50, S172S177.Google Scholar
Horton, W. A., Hall, J. G., & Hecht, J. T. (2007). Achondroplasia. The Lancet, 370, 162172.CrossRefGoogle ScholarPubMed
Hubbard, R. (2013). The mismeasure of the gene. In Krimsky, S., & Gruber, J. (Eds). Genetic Explanations: Sense and Nonsense. Cambridge MA: Harvard University Press, 1725.Google Scholar
Hubbard, R., & Wald, E. (1997). Exploding the Gene Myth: How Genetic Information Is Produced and Manipulated by Scientists, Physicians, Employers, Insurance Companies, Educations, and Law Enforcers. Boston: Beacon Press.Google Scholar
Hughes, V. (2014). Epigenetics: the sins of the father. Nature, 507, 2224.Google Scholar
Hurst, C. C. (1908). On the inheritance of eye-colour in man. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 80, 8596.Google Scholar
Ingram, V. M. (1956). A specific chemical difference between globins of normal and sickle-cell anemia hemoglobins. Nature, 178(4537), 792794.Google Scholar
Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124.Google Scholar
Ioannidis, J. P. A. (2016). Why most clinical research is not useful. PLoS Medicine, 13(6), e1002049.Google Scholar
Jablonka, E. (2013). Some problems with genetic horoscopes. In Krimsky, S., & Gruber, J. (Eds.) Genetic Explanations: Sense and Nonsense. Cambridge MA: Harvard University Press, 7680.Google Scholar
Jablonka, E., & Lamb, M. J. (2002). The changing concept of epigenetics. Annals of the New York Academy of Sciences, 981(1), 8296.Google Scholar
Jablonka, E., & Lamb, M. J. (2014). Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life (2nd ed). Cambridge MA: MIT Press.Google Scholar
Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318356.Google Scholar
Jacobs, P. A. (1982). The William Allan Memorial Award address: human population cytogenetics: the first twenty-five years. American Journal of Human Genetics, 34(5), 689.Google Scholar
Jacobs, P. A., Brunton, M., Melville, M. M., Brittain, R. P., & McClemont, W. F. (1965). Aggressive behaviour, mental sub-normality and the XYY male. Nature, 208, 13511352.Google Scholar
Jäger, R. J., Anvret, M., Hall, K., & Scherer, G. (1990). A human XY female with a frameshift mutation in the candidate testis-determining gene SRY. Nature, 348, 452454.Google Scholar
Jamieson, A., & Radick, G. (2013). Putting Mendel in his place: how curriculum reform in genetics and counterfactual history of science can work together. In Kampourakis, K. (Ed.) The Philosophy of Biology: A Companion for Educators. Dordrecht: Springer, 577595.Google Scholar
Jeffreys, A. J., Brookfield, J. F. Y., & Semeonoff, R. (1985). Positive identification of an immigration test-case using human DNA fingerprints. Nature, 317, 818819.Google Scholar
Jeffreys, A. J., Wilson, V., & Thein, S. L. (1985). Individual-specific “fingerprints” of human DNA. Nature, 316(6023), 7679.Google Scholar
Jensen, A. R. (1969). How much can we boost IQ and scholastic achievement? Harvard Educational Review, 39, 1123.Google Scholar
Jensen, A. R. (1970). Race and the genetics of intelligence: a reply to Lewontin. Bulletin of the Atomic Scientists, 26(5), 1723.Google Scholar
Jervis, G. A. (1937). Phenylpyruvic oligophrenia: introductory study of fifty cases of mental deficiency associated with excretion of phenylpyruvic acid. Archives of Neurology and Psychiatry, 38(5), 944.Google Scholar
Jervis, G. A. (1947). Studies on phenylpyruvic oligophrenia: the position of the metabolic error. Journal of Biological Chemistry, 169, 651656.Google Scholar
Jervis, G. A. (1953). Phenylpyruvic oligophrenia deficiency of phenylalanine-oxidizing system. Proceedings of the Society for Experimental Biology and Medicine, 82(3), 514515.Google Scholar
Jobling, M., & Gill, P. (2004). Encoded evidence: DNA in forensic analysis. Nature Reviews Genetics, 5, 739751.Google Scholar
Johannsen, W. (1911). The genotype conception of heredity. American Naturalist, 45 (531), 129159.Google Scholar
Jones, D. S. (2013). The prospects of personalized medicine. In Krimsky, S., & Gruber, J. (Eds.) Genetic Explanations: Sense and Nonsense. Cambridge MA: Harvard University Press, 147170.Google Scholar
Judson, H. F. (1996). The Eighth Day of Creation: The Makers of the Revolution in Biology (Commemorative Edition). New York: Cold Spring Harbor Laboratory Press.Google Scholar
Kalf, R. R., Mihaescu, R., Kundu, S. et al. (2014). Variations in predicted risks in personal genome testing for common complex diseases. Genetics in Medicine, 16(1), 8591.Google Scholar
Kampourakis, K. (2013). Mendel and the path to genetics: portraying science as a social process. Science & Education, 22(2), 293324.Google Scholar
Kampourakis, K. (2014). Understanding Evolution. Cambridge: Cambridge University Press.Google Scholar
Kampourakis, K. (2015). Myth 16: that Gregor Mendel was a lonely pioneer of genetics, being ahead of his time. In Numbers, R. L., & Kampourakis, K. (Eds.) Newton’s Apple and Other Myths about Science. Cambridge MA: Harvard University Press, 129138.Google Scholar
Kampourakis, K. (2016). The “general aspects” conceptualization as a pragmatic and effective means to introducing students to nature of science. Journal of Research in Science Teaching, 53(5), 667682.Google Scholar
Kampourakis, K., Vayena, E., Mitropoulou, C. et al. (2014). Next-generation pharmacogenomics and society: key challenges ahead. EMBO Reports, 15(5), 472476.Google Scholar
Kaplan, J.M. (2000). The Limits and Lies of Human Genetic Research: Dangers for Social Policy. London: Routledge.Google Scholar
Karlin, S., Chen, C., Gentles, A. J., & Cleary, M. (2002). Associations between human disease genes and overlapping gene groups and multiple amino acid runs. Proceedings of the National Academy of Sciencs, 99, 1700817013.Google Scholar
Kay, L. E. (2000). Who Wrote the Book of Life?: A History of the Genetic Code. Stanford: Stanford University Press.Google Scholar
Kayaalp, E., Treacy, E., Waters, P. J. et al. (1997). Human phenylalanine hydroxylase mutations and hyperphenylalaninemia phenotypes: a metanalysis of genotype-phenotype correlations. American Journal of Human Genetics, 61(6), 13091317.Google Scholar
Kayser, M., & deKnijff, P. (2011). Improving human forensics through advances in genetics, genomics and molecular biology. Nature Reviews Genetics, 12, 179192.Google Scholar
Kayser, M., Liu, F., Janssens, A. C. J. et al. (2008). Three genome-wide association studies and a linkage analysis identify HERC2 as a human iris color gene. American Journal of Human Genetics, 82(2), 411423.Google Scholar
Keller, E. F. (1983). A Feeling for the Organism: The Life and Work of Barbara McClintock. New York: Henry Holt.Google Scholar
Keller, E. F. (2000). The Century of the Gene. Cambridge MA: Harvard University Press.Google Scholar
Keller, E. F. (2010). The Mirage of a Space between Nature and Nurture. Duke University Press.Google Scholar
Keller, E. F. (2015). The postgenomic genome. In Stevens, H., & Richardson, S. S. (Eds.) Postgenomics: Perspectives on Biology after the Genome. Durham & London: Duke University Press, 931.Google Scholar
Keren, H., Lev-Maor, G., & Ast, G. (2010). Alternative splicing and evolution: diversification, exon definition and function. Nature Reviews Genetics, 11(5), 345355.Google Scholar
Kevles, D. J. (1995). In the Name of Eugenics: Genetics and the Uses of Human Heredity. Cambridge MA: Harvard University Press.Google Scholar
Keys, A., Kimura, N., Kusukawa, A. et al. (1958). Lessons from serum cholesterol studies in Japan, Hawaii and Los Angeles. Annals of Internal Medicine, 48(1), 8394.Google Scholar
Kioussis, D., Vanin, E., DeLange, T., Flavell, R. A., & Grosveld, F. G. (1983). β-globin gene inactivation by DNA translocation in γ β-thalassaemia. Nature, 306, 662666.Google Scholar
Kirby, D. A. (2000). The new eugenics in cinema: genetic determinism and gene therapy in GATTACA. Science Fiction Studies, 27(2), 193215.Google Scholar
Kirby, D. A. (2004). Extrapolating race in GATTACA: genetic passing, identity, and the science of race. Literature and Medicine, 23( 1), 184200.Google Scholar
Kitcher, P. (1982). Genes. British Journal for the Philosophy of Science, 33, 337359.Google Scholar
Kitcher, P. (1997). The Lives to Come: The Genetic Revolution and Human Possibilities. New York: Touchstone.Google Scholar
Kitcher, P. (2003). Battling the undead: how (and how not) to resist genetic determinism. In Kitcher, P. In Mendel’s Mirror: Philosophical Reflections on Biology. Oxford: Oxford University Press, 283300.Google Scholar
Klitzman, R. L. (2012). Am I My Genes?: Confronting Fate and Family Secrets in the Age of Genetic Testing. Oxford and New York: Oxford University Press.Google Scholar
Knoll, J. H. M., Nicholls, R. D., Magenis, R. E. et al. (1989). Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. American Journal of Medical Genetics, 32(2), 285290.Google Scholar
Kohler, R. E. (1994). Lords of the Fly: Drosophila Genetics and the Experimental Life. Chicago: University of Chicago Press.Google Scholar
Koller, B. H., Marrack, P., Kappler, J. W., & Smithies, O. (1990). Normal development of mice deficient in β2M, MHC class I proteins, and CD8+ T cells. Science, 248, 12271230.Google Scholar
Kong, A., Frigge, M. L., Masson, G. et al. (2012). Rate of de novo mutations and the importance of father’s age to disease risk. Nature, 488(7412), 471475.Google Scholar
Kornberg, R. D. (1974). Chromatin structure: a repeating unit of histones and DNA. Science, 184, 868871.Google Scholar
Kornberg, R. D., & Thomas, J. O. (1974). Chromatin structure; oligomers of the histones. Science, 184, 865868.Google Scholar
Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693705.Google Scholar
Krimsky, S., & Gruber, J. (Eds.) (2013). Genetic Explanations: Sense and Nonsense. Cambridge MA: Harvard University Press.Google Scholar
Krimsky, S., & Simoncelli, T. (2011). Genetic Justice: DNA Data Banks, Criminal Investigations, and Civil Liberties. New York: Columbia University Press.Google Scholar
Kruglyak, L. (2008). The road to genome-wide association studies. Nature Reviews Genetics, 9(4), 314318.Google Scholar
Kurian, A. W., Hare, E. E., Mills, M. A. et al. (2014). Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. Journal of Clinical Oncology, 32(19), 20012009.Google Scholar
Lachance, C. R., Erby, L. A., Ford, B. M., Allen, V. C., & Kaphingst, K. A. (2010). Informational content, literacy demands, and usability of websites offering health-related genetic tests directly to consumers. Genetics in Medicine, 12(5), 304312.Google Scholar
Lander, E. S. (2011). Initial impact of the sequencing of the human genome. Nature, 470(7333), 187197.Google Scholar
Lander, E. S. (2015). Cutting the Gordian helix–regulating genomic testing in the era of precision medicine. New England Journal of Medicine, 372(13), 11851186.Google Scholar
Lander, E. S., Linton, L. M., Birren, B. et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860921.Google Scholar
Lannoy, N., & Hermans, C. (2010). The “royal disease”: haemophilia A or B? A haematological mystery is finally solved. Haemophilia, 16(6), 843847.Google Scholar
Lee, J. T., & Bartolomei, M. S. (2013). X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell, 152(6), 13081323.Google Scholar
Leighton, J. W., Valverde, K., & Bernhardt, B. A. (2012). The general public’s understanding and perception of direct-to-consumer genetic test results. Public Health Genomics. 15(1), 1121.Google Scholar
Lek, M., Karczewski, K., Minikel, E., Samocha, K., Banks, E., Fennell, T., et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536, 285291.Google Scholar
Lettice, L. A., Horikoshi, T., Heaney, S. J. H. et al. (2002). Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proceedings of the National Academy of Sciences, 99, 75487553.Google Scholar
Lettre, G., Jackson, A. U., Gieger, C. et al. (2008). Identification of ten loci associated with height highlights new biological pathways in human growth. Nature Genetics, 40(5), 584591.Google Scholar
Levins, R., & Lewontin, R. C. (1985). The Dialectical Biologist. Cambridge MA: Harvard University Press.Google Scholar
Levy, S., Sutton, G., Ng, P. C. et al. (2007). The diploid genome sequence of an individual human. PLoS Biology 5(10), e254.Google Scholar
Lewin, B. (1980). Alternatives for splicing: recognizing the ends of introns. Cell, 22, 324326.Google Scholar
Lewis, J. D., Meehan, R. R., Henzel, W. J. et al. (1992). Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell, 69(6), 905914.Google Scholar
Lewis, J., Leach, J., & Wood-Robinson, C. (2000). All in the genes? – young people’s understanding of the nature of genes. Journal of Biological Education, 34(2), 7479.Google Scholar
Lewontin, R. C. (1970a). Further remarks on race and the genetics of intelligence. Bulletin of the Atomic Scientists, 26(5), 2325.Google Scholar
Lewontin, R. C. (1970b). Race and intelligence. Bulletin of Atomic Scientists, 26, 28.Google Scholar
Lewontin, R. C. (1974). The analysis of variance and the analysis of causes. American Journal of Human Genetics, 26, 400411.Google Scholar
Lewontin, R. C. (1993). The Doctrine of DNA: Biology as Ideology. London: Penguin.Google Scholar
Lewontin, R. C. (2000). The Triple Helix: Gene, Organism, and Environment. Cambridge MA: Harvard University Press.Google Scholar
Ley, B. L., Jankowski, N., & Brewer, P. R. (2012) Investigating CSI: portrayals of DNA testing on a forensic crime show and their potential effects. Public Understanding of Science, 21 (1), 5167.Google Scholar
Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473, 317325.Google Scholar
Lichtenstein, P., Holm, N. V., Verkasalo, P. K. et al. (2000). Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. New England Journal of Medicine, 343(2), 7885.Google Scholar
Lindee, S. (2005) Moments of Truth in Genetic Medicine. Baltimore: Johns Hopkins University Press.Google Scholar
Link, K. P. (1959). The discovery of dicumarol and its sequels. Circulation, 19(1), 97107.Google Scholar
Lipkin, S. M., & Luoma, J. (2016). The Age of Genomes: Tales from the Front Lines of Genetic Medicine. Boston: Beacon Press.Google Scholar
López Beltrán, C. (2004). In the cradle of heredity: French physicians and l’hérédité naturelle in the early nineteenth century. Journal of the History of Biology, 37, 3972.Google Scholar
López-Beltrán, C. (2007). The medical origins of heredity. In Müller-Wille, S. & Rheinberger, H. (Eds.) Heredity Produced: At the Crossroad of Biology, Politics and Culture, 1500 to 1870. Cambridge MA: MIT Press.Google Scholar
Loukopoulos, D. (2014). Milestones in the history of thalassemia and sickle cell disease. Thalassemia Reports, 4(3), 2932.Google Scholar
Lupski, J. R. (2013). Genome mosaicism: one human, multiple genomes. Science, 341(6144), 358359.Google Scholar
Lynch, K. W. (2004). Consequences of regulated pre-mRNA splicing in the immune system. Nature Reviews Immunology, 4(12), 931940.Google Scholar
Lynch, M., Cole, S. A., McNally, R., & Jordan, K. (2008). Truth Machine: The Contentious History of DNA Fingerprinting. Chicago: University of Chicago Press.Google Scholar
MacArthur, D. G., Balasubramanian, S., Frankish, A. et al. (2012). A systematic survey of loss-of-function variants in human protein-coding genes. Science, 335, 823828.Google Scholar
MacArthur, D. G., Manolio, T. A., Dimmock, D. P. et al. (2014). Guidelines for investigating causality of sequence variants in human disease. Nature, 508(7497), 469476.Google Scholar
Maienschein, J. (2012). “Epigenesis and Preformationism.The Stanford Encyclopedia of Philosophy (Spring 2012 Edition), Edward N. Zalta, (Ed.), http://plato.stanford.edu/archives/spr2012/entries/epigenesis/.Google Scholar
Maienschein, J. (2014). Embryos under the Microscope: The Diverging Meanings of Life. Cambridge MA: Harvard University Press.Google Scholar
Mak, T. W., Penninger, J. M., & Ohashi, P. S. (2001). Knockout mice: a paradigm shift in modern immunology. Nature Reviews Immunology, 1(1), 1119.Google Scholar
Makalowska, I., Lin, C. F., & Makalowski, W. (2005). Overlapping genes in vertebrate genomes. Computational Biology and Chemistry, 29(1), 112.Google Scholar
Margarit, E., Coll, M. D., Oliva, R. et al. (2000). SRY gene transferred to the long arm of the X chromosome in a Y-positive XX true hermaphrodite. American Journal of Medical Genetics, 90(1), 2528.Google Scholar
Marks, J. (2008). The construction of Mendel’s laws. Evolutionary Anthropology, 17, 250253.Google Scholar
Mathews, D. J. H., Kalfoglou, A., & Hudson, K. (2005). Geneticists’ views on science policy formation and public outreach. American Journal of Medical Genetics, 137A, 161169.Google Scholar
Mattick, J. S., & Dinger, M. E. (2013). The extent of functionality in the human genome. HUGO Journal, 7(1), 2.Google Scholar
McCarthy, M. I., Abecasis, G. R., Cardon, L. R. et al. (2008). Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Reviews Genetics, 9(5), 356369.Google Scholar
McClintock, B. (1953). Induction of instability at selected loci in maize. Genetics, 38(6), 579.Google Scholar
McClintock, B. (1956). Controlling elements and the gene. Cold Spring Harbor Symposia on Quantitative Biology, 21, 197216.Google Scholar
McClintock, B. (1961). Some parallels between gene control systems in maize and in bacteria. American Naturalist, 95 (884), 265277.Google Scholar
Meli, C., Garozzo, R., Mollica, F., Romano, V., & Cali, F. (1998). A20-Different clinical manifestations in siblings with identical phenylalanine hydroxylase gene mutations. Journal of Inherited Metabolic Disease, 21(2), 10.Google Scholar
Mendel, G. (1866). Versuche über Pflanzen-Hybriden, translation by Hall, Kersten and Müller-Wille, Staffan, available at http://centimedia.org/bshs-translations/mendel.Google Scholar
Meselson, M., & Stahl, F. W. (1958). The replication of DNA in Escherichia coli. Proceedings of the National Academy of Sciences, 44, 671682.Google Scholar
Miko, I. (2008). Gregor Mendel and the principles of inheritance. Nature Education, 1(1), 134.Google Scholar
Miller, K. F., Smith, C. M., Zhu, J., & Zhang, H. (1995). Preschool origins of cross-national differences in mathematical competence: the role of number-naming systems. Psychological Science, 6(1), 5660.Google Scholar
Miller, K. R., & Levine, J. S. (2010). Miller & Levine Biology. USA: Pearson Education.Google Scholar
Minikel, E. V., Vallabh, S. M., Lek, M., Estrada, K., Samocha, K. E., Sathirapongsasuti, J. F., et al. (2016). Quantifying prion disease penetrance using large population control cohorts. Science Translational Medicine, 8(322), 322329.Google Scholar
Mills Shaw, K. R., Van Horne, K., Zhang, H., & Boughman, J. (2008). Essay contest reveals misconceptions of high school students in genetics content. Genetics, 178(3), 11571168.Google Scholar
Moore, D. S. (2002). The Dependent Gene: The Fallacy of “Nature vs. Nurture.” New York: Times Books/Henry Holt & Co.Google Scholar
Moore, D. S. (2008). Espousing interactions and fielding reactions: addressing laypeople’s beliefs about genetic determinism. Philosophical Psychology, 21(3), 331348.Google Scholar
Moore, D. S. (2013a). Big B, little b: myth #1 is that Mendelian genes actually exist. In Krimsky, S., & Gruber, J. (Eds.) Genetic Explanations: Sense and Nonsense. Cambridge MA: Harvard University Press, 4350.Google Scholar
Moore, D. S. (2013b). Current thinking about nature and nurture. In Kampourakis, K. (Ed.) The Philosophy of Biology: A Companion for Educators. Dordrecht: Springer, 629652.Google Scholar
Moore, D. S. (2015). The Developing Genome: An Introduction to Behavioral Epigenetics. Oxford: Oxford University Press.Google Scholar
Morange, M. (1998). A History of Molecular Biology. Cambridge MA: Harvard University Press.Google Scholar
Morange, M. (2002). The Misunderstood Gene. Cambridge MA: Harvard University Press.Google Scholar
Morell, V. (1993). Evidence found for a possible aggression gene. Science, 260(5115), 17221723.Google Scholar
Morgan, T. H. (1913). Factors and unit characters in Mendelian heredity. American Naturalist, 47, 516.Google Scholar
Morgan, T. H. (1917). The theory of the gene. American Naturalist, 51, 513544.Google Scholar
Morgan, T. H. (1926). The Theory of the Gene. New Haven: Yale University Press.Google Scholar
Morgan, T. H., Sturtevant, A. H., Muller, H. J., & Bridges, C. B. (1915). The Mechanism of Mendelian Heredity. New York: Henry Holt and Company.Google Scholar
Morin-Chassé, A. (2014). Public (mis)understanding of news about behavioral genetics research: a survey experiment. BioScience, 64(12), 11701177.Google Scholar
Morris, C., Shen, A., Pierce, K., & Beckwith, J. (2007). Deconstructing violence. GeneWatch, 20(2), 39.Google Scholar
Morris, K. V., & Mattick, J. S. (2014). The rise of regulatory RNA. Nature Reviews Genetics, 15(6), 423.Google Scholar
Moss, L. (2003). What Genes Can’t Do. Cambridge MA: MIT Press.Google Scholar
Muela, F. J., & Abril, A. M. (2014) Genetics and cinema: personal misconceptions that constitute obstacles to learning. International Journal of Science Education, Part B: Communication and Public Engagement, 4(3), 260280.Google Scholar
Müller, C. (1938). Xanthomata, hypercholesterolemia, angina pectoris. Acta Medica Scandinavica, 95(S89), 7584.Google Scholar
Muller, H. J. (1927). Artificial transmutation of the gene. Science, 46, 8487.Google Scholar
Müller-Wille, S., & Rheinberger, H-J. (2012). A Cultural History of Heredity. Chicago: University of Chicago Press.Google Scholar
Mukherjee, S. (2016). The Gene: An Intimate History. New York: Scribner.Google Scholar
Murray, A. B. V., Carson, M. J., Morris, C. A., & Beckwith, J. (2010). Illusions of scientific legitimacy: misrepresented science in the direct-to-consumer genetic testing marketplace. Trends in Genetics, 26, 459461.Google Scholar
Nägeli von, C. (1898/1884). A Mechanico- Physiological Theory of Organic Evolution. Chicago: Open Court Publishing Co.Google Scholar
Neel, J. V. (1949). The inheritance of sickle cell anemia. Science, 110, 6466.Google Scholar
Nelkin, D. (1995). Selling Science: How the Press Covers Science and Technology (Revised Edition). New York: W.H. Freeman & Company.Google Scholar
Nelkin, D., & Lindee, S. M. (2004). The DNA Mystique: The Gene as a Cultural Icon. Ann Arbor: University of Michigan Press.Google Scholar
Nersessian, N. J. (2008). Creating Scientific Concepts. Cambridge MA: MIT Press.Google Scholar
Neumann-Held, E. M. (2006). Genes – causes – codes: deciphering DNA’s ontological privilege. In Neumann-Held, E. M., & Rehmann-Sutter, C. (Eds.) Genes in Development: Re-Reading the Molecular Paradigm. Durham and London: Duke University Press, 238271.Google Scholar
Neumann-Held, E. M., & Rehmann-Sutter, C. (Eds.) (2006). Genes in Development: Re-Reading the Molecular Paradigm. Durham and London: Duke University Press.Google Scholar
Ng, P. C., Murray, S. S., Levy, S., & Venter, J. C. (2009). An agenda for personalized medicine. Nature, 461(7265), 724726.Google Scholar
Ng, S. B., Bigham, A. W., Buckingham, K. J. et al. (2010). Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nature Genetics, 42(9), 790793.Google Scholar
Nicholls, R. D., Knoll, J. H., Butler, M. G., Karam, S., & Lalande, M. (1989). Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature, 342(6247), 281285.Google Scholar
Nilsen, T. W., & Graveley, B. R. (2010). Expansion of the eukaryotic proteome by alternative splicing. Nature, 463 (7280), 457463.Google Scholar
Nirenberg, M., Leder, P., Bernfield, M. et al. (1965). RNA codewords and protein synthesis, VII: on the general nature of the RNA code. Proceedings of the National Academy of Sciences, 53, 11611168.Google Scholar
Nirenberg, M. W., & Matthaei, H. J. (1961). The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proceedings of the National Academy of Sciences, 47 (10), 15881602.Google Scholar
Nishikura, K. (2016). A-to-I editing of coding and non-coding RNAs by ADARs. Nature Reviews Molecular Cell Biology, 17, 8396.Google Scholar
Noble, D. (2006). The Music of Life: Biology beyond Genes. Oxford: Oxford University Press.Google Scholar
Nowicki, S. (2012). Holt McDougal Biology. Holt McDougal.Google Scholar
Nuinoon, M., Makarasara, W., Mushiroda, T. et al. (2010). A genome-wide association identified the common genetic variants influence disease severity in β0-thalassemia/hemoglobin E. Human Genetics, 127(3), 303314.Google Scholar
Núñez-Farfán, J., & Schlichting, C. D. (2001). Evolution in changing environments: the “synthetic” work of Clausen, Keck, and Hiesey. Quarterly Review of Biology, 76(4), 433457.Google Scholar
Ogilvie, M. B., & Choquette, C. J. (1981). Nettie Maria Stevens (1861–1912): her life and contributions to cytogenetics. Proceedings of the American Philosophical Society, 125(4), 292311.Google Scholar
Ohno, S. (1972). So much “junk” DNA in our genome. Brookhaven Symposium on Biology, 23, 366370.Google Scholar
Olby, R. (1970). Francis Crick, DNA, and the central dogma. Daedalus, 99(4), 938987.Google Scholar
Olby, R. (1994/1974). The Path to the Double Helix. New York: Dover.Google Scholar
Olby, R. (2003). Quiet debut for the double helix. Nature, 421, 402405.Google Scholar
Olby, R. (2009). Francis Crick, Hunter of Life’s Secrets. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Olby, R. C. (1966). Origins of Mendelism. New York: Schocken Books.Google Scholar
Olby, R. C. (1979). Mendel no Mendelian? History of Science, 17, 5372.Google Scholar
Olby, R. C. (1985). Origins of Mendelism (2nd ed.). Chicago: University of Chicago Press.Google Scholar
Olby, R. C. (2000). Horticulture: the font for the baptism of Genetics. Nature Reviews Genetics, 1, 6570.Google Scholar
Old, J. M. (2003). Screening and genetic diagnosis of haemoglobin disorders. Blood Reviews, 17(1), 4353.Google Scholar
Olesko, K. M. (2015). Myth 25: that science has been largely a solitary enterprise. In Numbers, R. L., & Kampourakis, K. (Eds.) Newton’s Apple and Other Myths about Science. Cambridge MA: Harvard University Press, 202209.Google Scholar
Ollikainen, M., Smith, K. R., Joo, E. J. H. et al. (2010). DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Human Molecular Genetics, 19(21), 41764188.Google Scholar
Orel, V. (1984) Mendel. New York: Oxford University Press.Google Scholar
Orel, V., & Wood, R. J. (2000). Essence and origin of Mendel’s discovery. Comptes Rendus de l’Académie des Sciences, Series III Sciences de la Vie, 323, 10371041.Google Scholar
Pace, L. E., & Keating, N. L. (2014). A systematic assessment of benefits and risks to guide breast cancer screening decisions. Journal of the American Medical Association, 311(13), 13271335.Google Scholar
Palade, G. E. (1955). A small particulate component of the cytoplasm. Journal of Biophysical and Biochemical Cytology, 1, 5968.Google Scholar
Palazzo, A. F., & Gregory, T. R. (2014) The case for junk DNA. PLoS Genetics, 10(5), e1004351.Google Scholar
Pan, Q., Shai, O., Lee, L. J., Frey, B. J., Blencowe, B. J. (2008). Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genetics, 40, 14131415.Google Scholar
Parrington, J. (2015). The Deeper Genome: Why There Is More to the Human Genome than Meets the Eye. Oxford: Oxford University Press.Google Scholar
Paul, D. B. (1995). Controlling Human Heredity: 1865 to the Present. New York: Humanity Books.Google Scholar
Paul, D. B. (1998). The Politics of Heredity: Essays on Eugenics, Biomedicine, and the Nature-Nurture Debate. New York: SUNY Press.Google Scholar
Paul, D. B. (2014). What was wrong with eugenics? Conflicting narratives and disputed interpretations. Science & Education, 23(2), 259271.Google Scholar
Paul, D. B., & Brosco, J. P. (2013). The PKU Paradox: A Short History of a Genetic Disease. Baltimore: Johns Hopkins Universtiy Press.Google Scholar
Pauling, L., Itano, H. A., Singer, S. J., & Wells, I. C. (1949). Sickle cell anemia, a molecular disease. Science, 110 (2865), 543548.Google Scholar
Pennisi, E. (2001). The human genome. Science, 291(5507), 11771180.Google Scholar
Penrose, L. S. (1935). Inheritance of phenylpyruvic amentia (phenylketonuria). Lancet, 2, 192194.Google Scholar
Penrose, L. S., & Quastel, J. H. (1937). Metabolic studies in phenylketonuria. Biochemical Journal, 31, 266271.Google Scholar
Peters, J. (2014). The role of genomic imprinting in biology and disease: an expanding view. Nature Reviews Genetics, 15(8), 517530.Google Scholar
Pigliucci, M. (2001). Phenotypic Plasticity: Beyond Nature and Nurture. Baltimore: Johns Hopkins University Press.Google Scholar
Pigliucci, M. (2005). Evolution of phenotypic plasticity: where are we going now?. Trends in Ecology & Evolution, 20(9), 481486.Google Scholar
Pontecorvo, G. (1952). The genetic formulation of gene structure and action. Advances in Enzymology, 13, 121149.Google Scholar
Prader, A., Labhart, A., & Willi, H. (1956). A syndrome with adiposity, stunted growth, cryptocordia and oligophrenia after myotonia entitled in newborn. Schweiz Med Wochenschr, 86, 12601261.Google Scholar
Preußer, C., & Bindereif, A. (2013). Exo-endo trans splicing: a new way to link. Cell Research, 23(9), 1071.Google Scholar
Ptashne, M. (1967). Isolation of the λ phage repressor. Proceedings of the National Academy of Sciences, 57(2), 306313.Google Scholar
Qiu, J. (2006). Epigenetics: unfinished symphony. Nature, 441(7090), 143145.Google Scholar
Reece, J. B., Urry, L. A., Cain, M. L. et al. (2012). Campbell Biology (9th ed.). New York: Pearson Education.Google Scholar
Reid, J. B., & Ross, J. J. (2011). Mendel’s genes: toward a full molecular characterization. Genetics, 189(1), 310.Google Scholar
Renwick, C. (2011). From political economy to sociology: Francis Galton and the social-scientific origins of eugenics. British Journal for the History of Science, 44(162 Pt 3), 343369.Google Scholar
Resch, B. (Ed.). (2011). BSCS Biology: A Human Approach (4th ed.). Dubuque IA: Kendall Hunt.Google Scholar
Retzbach, J., Retzbach, A., Maier, M., Otto, L., & Rahnke, M. (2013). Effects of repeated exposure to science TV shows on beliefs about scientific evidence and interest in science. Journal of Media Psychology, 25(1), 313.Google Scholar
Reydon, T. R., Kampourakis, K., & Patrinos, G. P. (2012). Genetics, genomics and society: the responsibilities of scientists for science communication and education. Personalized Medicine, 9(6), 633643.Google Scholar
Rheinberger, H. J., & Müller-Wille, S. (in press) The Gene: From Genetics to Postgenomics. Chicago: University of Chicago Press.Google Scholar
Rheinberger, H. J., Müller-Wille, S., & Meunier, R. (2015). “Gene.” The Stanford Encyclopedia of Philosophy (Spring 2015 Edition), Zalta, Edward N. (Ed.), http://plato.stanford.edu/archives/spr2015/entries/gene/.Google Scholar
Richards, R. A. (2010). The Species Problem: A Philosophical Analysis. Cambridge: Cambridge University Press.Google Scholar
Roberts, H. F. (1929) Plant Hybridisation Before Mendel. Princeton: Princeton University Press.Google Scholar
Roll-Hansen, N. (2014). Commentary: Wilhelm Johannsen and the problem of heredity at the turn of the 19th century. International Journal of Epidemiology, 43(4), 10071013.Google Scholar
Rollin, B. E. (2006). Science and Ethics. Cambridge: Cambridge University Press.Google Scholar
Rose, H., & Rose, S. (2012). Genes, Cells and Brains: The Promethean Promises of the New Biology. London & New York: Verso.Google Scholar
Rothbart, S. B., & Strahl, B. D. (2014). Interpreting the language of histone and DNA modifications. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1839(8), 627643.Google Scholar
Sabol, S. Z., Hu, S., & Hamer, D. (1998). A functional polymorphism in the monoamine oxidase A gene promoter. Human Genetics, 103(3), 273279.Google Scholar
Sadava, D., Hillis, D. M., Heller, H. C., & Berenbaum, M. (2011). Life: The Science of Biology. Gordonsville: WH Freeman Publishers.Google Scholar
Sakai., D., & Trainor, P. A. (2009) Treacher Collins syndrome: unmasking the role of Tcof1/treacle. The International Journal of Biochemistry & Cell Biology, 41(6), 12291232.Google Scholar
Sapp, J. (2003). Genesis: The Evolution of Biology. Oxford: Oxford University Press.Google Scholar
Sarkar, S. (2006). From genes as determinants to DNA as resource: historical notes on development and genetics. In Neumann-Held, E. M., & Rehmann-Sutter, C. (Eds.) Genes in Development: Re-Reading the Molecular Paradigm. Durham and London: Duke University Press, 7795.Google Scholar
Sato, Y., Morita, R., Nishimura, M., Yamaguchi, H., & Kusaba, M. (2007). Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proceedings of the National Academy of Sciences, 104(35), 1416914174.Google Scholar
Schmidt, J. L., Castellanos-Brown, K., Childress, S. et al. (2012). The impact of false-positive newborn screening results on families: a qualitative study. Genetics in Medicine, 14(1), 7680.Google Scholar
Schmucker, D., Clemens, J. C., Shu, H., et al. (2000). Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell, 101, 671684.Google Scholar
Schoenfeld, J. D., & Ioannidis, J. P. (2013). Is everything we eat associated with cancer? A systematic cookbook review. American Journal of Clinical Nutrition, 97(1), 127134.Google Scholar
Schulte, J., Rothaus, C. S., Adler, J. N., & Phimister, E. G. (2014). Screening an asymptomatic person for genetic risk – polling results. New England Journal of Medicine, 371(20), 24422445.Google Scholar
Schwartz, S. (2000). The differential concept of the gene: past and present. In Beurton, P. J., Falk, R. & Rheinberger, H. J. (Eds.) The Concept of the Gene in Development and Evolution. Cambridge: Cambridge University Press, 2639.Google Scholar
Schweitzer, N. J., & Saks, M. J. (2007). The CSI Effect: popular fiction about forensic science affects the public’s expectations about real forensic science. Jurimetrics, 47, 357364.Google Scholar
Scotti, M., & Swanson, M. S. (2016). RNA mis-splicing in disease. Nature Reviews Genetics, 17(1): 19–32.Google Scholar
Scriver, C. R. (2007). The PAH gene, phenylketonuria, and a paradigm shift. Human Mutation, 28(9), 831845.Google Scholar
Scriver, C. R., & Waters, P. J. (1999). Monogenic traits are not simple: lessons from phenylketonuria. Trends in Genetics, 15(7), 267272.Google Scholar
Seisenberger, S., Peat, J. R., Hore, T. A. et al. (2013). Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1609), 20110330.Google Scholar
Sekido, R., & Lovell-Badge, R. (2009). Sex determination and SRY: down to a wink and a nudge? Trends in Genetics, 25(1), 1929.Google Scholar
Sermon, K., Van Steirteghem, A., & Liebaers, I. (2004). Preimplantation genetic diagnosis. The Lancet, 363(9421), 16331641.Google Scholar
Shaheen, R., Faqeih, E., Ansari, S. et al. (2014). Genomic analysis of primordial dwarfism reveals novel disease genes. Genome Research, 24(2), 291299.Google Scholar
Sharp, P. A. (2005). The discovery of split genes and RNA splicing. Trends in Biochemical Sciences, 30(6), 279280.Google Scholar
Shull, G. H. (1935). The word “allele.” Science, 82 (2115), 3738.Google Scholar
Slack, J. (2014). Genes: A Very Short Introduction. Oxford: Oxford University Press.Google Scholar
Slatkin, M. (2008). Linkage disequilibrium – understanding the evolutionary past and mapping the medical future. Nature Reviews Genetics, 9(6), 477485.Google Scholar
Smith, I., & Lloyd, J. (1974). Atypical phenylketonuria accompanied by a severe progressive neurological illness unresponsive to dietary treatment. Archives of Disease in Childhood, 49(3), 245.Google Scholar
Smith, I., Clayton, B. E., & Wolff, O. H. (1975). New variant of phenylketonuria with progressive neurological illness unresponsive to phenylalanine restriction. The Lancet, 305(7916), 11081111.Google Scholar
Snyder, M. (2016). Genomics and Personalized Medicine: What Everyone Needs to Know. Oxford: Oxford University Press.Google Scholar
Snyder, M., & Gerstein, M. (2003). Defining genes in the genomics era. Science, 300, 258260.Google Scholar
Sober, E., & Lewontin, R. C. (1982). Artifact, cause and genic selection. Philosophy of Science, 49(2),157180.Google Scholar
Söll, D., Ohtsuka, E., Jones, D. S., et al. (1965). Studies on polynucleotides, XLIX. Stimulation of the binding of aminoacyl-sRNA’s to ribosomes by ribotrinucleotides and a survey of codon assignments for 20 amino acids. Proceedings of the National Academy of Sciences, 54, 13781385.Google Scholar
Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M., & Smoller, J. W. (2013). Pleiotropy in complex traits: challenges and strategies. Nature Reviews Genetics, 14(7), 483495.Google Scholar
Sommer, B., Köhler, M., Sprengel, R., & Seeburg, P. H. (1991). RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell, 67(1), 1119.Google Scholar
Sonnenschein, C., & Soto, A. M. (2013). Cancer genes: the vestigial remains of a fallen theory. In Krimsky, S., & Gruber, J. (Eds.) Genetic Explanations: Sense and Nonsense. Cambridge MA: Harvard University Press, 8193.Google Scholar
Spencer, H. (1864). Principles of Biology. London and Edinburgh: Williams and Norgate.Google Scholar
Stamatoyannopoulos, J. A. (2012). What does our genome encode? Genome Research, 22, 16021611.Google Scholar
Stanek, E. J., Sanders, C. L., Johansen Taber, K. A. et al. (2012). Adoption of pharmacogenomic testing by US physicians: results of a nationwide survey. Clinical Pharmacology & Therapy, 91(3), 450458.Google Scholar
Stevens, H., & Richardson, S. S. (Eds.) (2015a). Beyond the genome. In Stevens, H., & Richardson, S. S. (Eds.) Postgenomics: Perspectives on Biology after the Genome. Durham and London: Duke University Press, 18.Google Scholar
Stevens, H., & Richardson, S. S. (2015b). Postgenomics: Perspectives on Biology after the Genome. Durham & London: Duke University Press.Google Scholar
Stotz, K., Griffiths, P. E., & Knight, R. (2004). How biologists conceptualize genes: an empirical study. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 35(4), 647673.Google Scholar
Strasser, B. J. (1999). Sickle cell anemia, a molecular disease. Science, 286 (5444), 14881490Google Scholar
Strasser, B. J. (2003). Who cares about the double helix? Nature, 422, 803804.Google Scholar
Strasser, B. J. (2006). A world in one dimension: Linus Pauling, Francis Crick and the central dogma of molecular biology. History and Philosophy of the Life Sciences, 28, 491512.Google Scholar
Strasser, B. J. (2015). Myth 22: that Linus Pauling’s discovery of the molecular basis of sickle-cell anemia revolutionized medical practice. In Numbers, R. L. & Kampourakis, K. (Eds.) Newton’s Apple and Other Myths about Science. Cambridge MA: Harvard University Press, 178185.Google Scholar
Stratton, M. R., Campbell, P. J., & Futreal, P. A. (2009). The cancer genome. Nature, 458(7239), 719724.Google Scholar
Sturm, R. A., & Frudakis, T. N. (2004). Eye colour: portals into pigmentation genes and ancestry. TRENDS in Genetics, 20(8), 327332.Google Scholar
Sturm, R. A., & Larsson, M. (2009). Genetics of human iris colour and patterns. Pigment Cell & Melanoma Research, 22(5), 544562.Google Scholar
Sturm, R. A., Duffy, D. L., Zhao, Z. Z. et al. (2008). A single SNP in an evolutionary conserved region within intron 86 of the HERC2 gene determines human blue-brown eye color. American Journal of Human Genetics, 82, 424431.Google Scholar
Sturtevant, A. H. (1913). The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. Journal of Experimental Zoology, 14, 4359.Google Scholar
Sturtevant, A. H. (2001/1965). A History of Genetics. New York: Electronic Scholarly Publishing project & Cold Spring Harbor Laboratory Press (available at www.esp.org).Google Scholar
Sulem, P., Gudbjartsson, D. F., Stacey, S. N. et al. (2007). Genetic determinants of hair, eye and skin pigmentation in Europeans. Nature Genetics 39(12), 14431452.Google Scholar
Sulem, P., Helgason, H., Oddson, A. et al. (2015). Identification of a large set of rare complete human knockouts. Nature Genetics, 47(5), 448452.Google Scholar
Sullivan, L. G. (1995). Myth, metaphor and hypothesis: how anthropomorphism defeats science. Philosophical Transactions: Biological Sciences, 349(1328), 215218.Google Scholar
Sun, J. X., Helgason, A., Masson, G. et al. (2012). A direct characterization of human mutation based on microsatellites. Nature Genetics, 44(10), 11611165.Google Scholar
Sutton, R. E., & Boothroyd, J. C. (1986). Evidence for trans-splicing in trypanosomes. Cell, 47, 527535.Google Scholar
Sutton, W. S. (1903). The chromosomes in heredity. Biological Bulletin, 4, 231251.Google Scholar
Suvà, M. L., Riggi, N., & Bernstein, B. E. (2013). Epigenetic reprogramming in cancer. Science, 339(6127), 15671570.Google Scholar
Tabery, J. (2014). Beyond Versus: The Struggle to Understand the Interaction of Nature and Nurture. Cambridge MA: MIT Press.Google Scholar
Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663676.Google Scholar
Temin, H., & Mizutani, S. (1970). RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature, 226, 12111213.Google Scholar
Thein, S. L. (2013). The molecular basis of β-thalassemia. Cold Spring Harbor Perspectives in Medicine, 3(5), a011700.Google Scholar
Thein, S. L., Old, J. M., Wainscoat, J. S. et al. (1984). Population and genetic studies suggest a single origin for the Indian deletion βο thalassaemia. British Journal of Haematology, 57, 271278.Google Scholar
Thompson, W. C. (2013). Forensic DNA evidence: the myth of infallibility. In Krimsky, S., & Gruber, J. (Eds.) Genetic Explanations: Sense and Nonsense. Cambridge MA: Harvard University Press, 227255.Google Scholar
Thöny, B., & Blau, N. (2006). Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase. Human Mutation, 27(9), 870878.Google Scholar
Tomasetti, C., & Vogelstein, B. (2015). Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science, 347(6217), 7881.Google Scholar
Tschermak, E. (1950/1900). Concerning artificial crossing in Pisum sativum. Genetics, 35, 4247.Google Scholar
Usifo, E., Leigh, S. E. A., Whittall, R. A., et al. (2012). Low-density lipoprotein receptor gene familial hypercholesterolemia variant database: update and pathological assessment. Annals of Human Genetics, 76, 387401.Google Scholar
Varmus, H. (2006). The new era in cancer research. Science, 312(5777), 11621165.Google Scholar
Vassos, E., Collier, D. A., & Fazel, S. (2014). Systematic meta-analyses and field synopsis of genetic association studies of violence and aggression. Molecular Psychiatry, 19(4), 471477.Google Scholar
Veeramachaneni, V., Makalowski, W., Galdzicki, M., Sood, R., & Makalowska, I. (2004). Mammalian overlapping genes: the comparative perspective. Genome Research, 14, 280286.Google Scholar
Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001). The sequence of the human genome. Science, 291(5507), 13041351.Google Scholar
Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., et al. (1996). Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO Journal, 15(10), 2508.Google Scholar
Vicedo, M. (1992). The human genome project: towards an analysis of the empirical, ethical, and conceptual issues involved. Biology and Philosophy, 7(3), 255278.Google Scholar
Vickery, H. B. (1950). The origin of the word protein. Yale Journal of Biology and Medicine, 22(5), 387393.Google Scholar
Visscher, P. M. (2008). Sizing up human height variation. Nature Genetics, 40(5), 489490.Google Scholar
Visscher, P. M., Hill, W. G., & Wray, N. R. (2008). Heritability in the genomics era – concepts and misconceptions. Nature Reviews Genetics, 9(4), 255266.Google Scholar
Visscher, P. M., Brown, M. A., McCarthy, M. I., & Yang, J. (2012). Five years of GWAS discovery. American Journal of Human Genetics, 90(1), 724.Google Scholar
Visscher, P. M., Medland, S. E., Ferreira, M. A. R., et al. (2006). Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genetics, 2(3), e41. doi:10.1371/journal.pgen.0020041Google Scholar
Vogelstein, B., Papadopoulos, N., Velculescu, V. E., et al. (2013). Cancer genome landscapes. Science, 339(6127), 15461558.Google Scholar
Voit, E. O. (2016). The Inner Workings of Life: Vignettes in Systems Biology. Cambridge: Cambridge University Press.Google Scholar
von Meyenn, F., & Reik, W. (2015). Forget the parents: epigenetic reprogramming in human germ cells. Cell, 161(6), 12481251.Google Scholar
Waddington, C. H. (1942). The epigenotype. Endeavour,1, 1820 (reprinted in International Journal of Epidemiology, 41(1), 1013).Google Scholar
Waddington, C. H. (1957). The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology. London: Allen & Unwin.Google Scholar
Wain, H. M., Bruford, E. A., Lovering, R. C. et al. (2002). Guidelines for human gene nomenclature. Genomics, 79(4), 464470.Google Scholar
Waller, J. C. (2001). Ideas of heredity, reproduction and eugenics in Britain, 1800–1875. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 32(3), 457489.Google Scholar
Walpole, B., Merson-Davies, A., & Dann, L. (2011). Biology for the IB Diploma Coursebook. Cambridge: Cambridge University Press.Google Scholar
Walsh, D. (2006). Evolutionary essentialism. British Journal for the Philosophy of Science 57(2), 425448.Google Scholar
Walsh, R., Thomson, K., Ware, J. S. et al. (2016). Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genetics in Medicine (advance online publication).Google Scholar
Wang, E. T., Sandberg, R., Luo, S., et al. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470476.Google Scholar
Wang, X., Miller, D. C., Harman, R., Antczak, D. F., & Clark, A. G. (2013). Paternally expressed genes predominate in the placenta. Proceedings of the National Academy of Sciences, 110(26), 1070510710.Google Scholar
Ward, W., McGonegal, R., Tostas, P., & Damon, A. (2008). Pearson Baccalaureate: Higher level Biology for the IB diploma. Harlow GB: Pearson Education Limited.Google Scholar
Waters, C. K. (1994). Genes made molecular. Philosophy of Science, 61, 163–85.Google Scholar
Waters, C. K. (2007). Causes that make a difference. Journal of Philosophy, 104, 551579.Google Scholar
Watson, J. D. (1992) A personal view of the project. In Kevles, D. J. & Hood, L. (Eds.) The Code of Codes: Scientific and Social Issues in the Human Genome Project. Cambridge MA: Harvard University Press, 164173.Google Scholar
Watson, J. D. (1996/1968). The Double Helix: A Personal Account of the Discovery of the Structure of DNA. New York: Touchstone.Google Scholar
Watson, J. D., & Crick, F. H. C. (1953a). Molecular structure of nucleic acids. Nature, 171, 737738.Google Scholar
Watson, J. D., & Crick, F. H. C. (1953b). Genetical implications of the structure of deoxyribonucleic acid. Nature, 171, 964967.Google Scholar
Weatherall, D. J. (2001). Phenotype – genotype relationships in monogenic disease: lessons from the thalassaemias. Nature Reviews Genetics, 2(4), 245255.Google Scholar
Weatherall, D. J. (2004). The thalassemias: the role of molecular genetics in an evolving global health problem. American Journal of Human Genetics, 74(3), 385392.Google Scholar
Weedon, M. N., Lango, H., Lindgren, C. M. et al. (2008). Genome-wide association analysis identifies 20 loci that influence adult height. Nature Genetics, 40(5), 575583.Google Scholar
Weischenfeldt, J., Symmons, O., Spitz, F., & Korbel, J. O. (2013). Phenotypic impact of genomic structural variation: insights from and for human disease. Nature Reviews Genetics, 14, 125138.Google Scholar
Weismann, A. (1893/1892). The Germ-Plasm: A Theory of Heredity. New York: Charles Scribner’s Sons.Google Scholar
Weldon, W. F. R. (1902). Mendel’s laws of alternative inheritance in peas. Biometrika, 1, 228254.Google Scholar
Wheeler, D. A., Srinivasan, M., Egholm, M. et al. (2008). The complete genome of an individual by massively parallel DNA sequencing. Nature, 452(7189), 872876.Google Scholar
Whipple, G. H., & Bradford, W. L. (1936). Mediterranean disease-thalassemia (erythroblastic anemia of Cooley): associated pigment abnormalities simulating hemochromatosis. Journal of Pediatrics, 9(3), 279311.Google Scholar
Wilkins, J. S. (2009). Species: A History of the Idea. Berkeley CA: University of California Press.Google Scholar
Wilkins, J. S. (2013). Essentialism in biology. In Kampourakis, K. (Ed.) The Philosophy of Biology: A Companion for Educators. Dordrecht: Springer, 395419.Google Scholar
Wilkins, M. H. F., Stokes, A. R., & Wilson, H. R. (1953). Molecular structure of deoxypentose nucleic acids. Nature, 171, 738740.Google Scholar
Wilson, E. B. (1896). The Cell in Development and Inheritance. London: Macmillan & Co. Ltd.Google Scholar
Winchester, A. M. (2013). The Work of Mendel. Encyclopedia Britannica, Retrieved February 20, 2014, www.britannica.com/EBchecked/topic/228936/genetics/261528/The-work-of-Mendel.Google Scholar
Witkin, H. A., Mednick, S., Schulsinger, F. et al. (1976). Criminality in XYY and XXY men: the elevated crime rate of XYY males is not related to aggression. It may be related to low intelligence. Science, 193(4253), 547555.Google Scholar
Wolffe, A. P., & Pruss, D. (1996). Targeting chromatin disruption: transcription regulators that acetylate histones. Cell, 84(6), 817819.Google Scholar
Wolpert, L. (1992). The Unnatural Nature of Science: Why Science Does Not Make (Common) Sense. Cambridge MA: Harvard University Press.Google Scholar
Wolpert, L. (2009). How We Live and Why We Die: The Secret Lives of Cells. London: Faber & Faber.Google Scholar
Wolpert, L. (2011). Developmental Biology: A Very Short Introduction. Oxford: Oxford University Press.Google Scholar
Wood, R. J., & Orel, V. (2005). Scientific breeding in Central Europe during the early nineteenth century: background to Mendel’s later work. Journal of the History of Biology, 38, 239272.Google Scholar
Wood, A. R., Esko, T., Yang, J., Vedantam, S., et al. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 46(11), 11731186.Google Scholar
Wu, S., Powers, S., Zhu, W., & Hannun, Y. A. (2016). Substantial contribution of extrinsic risk factors to cancer development. Nature, 529(7584), 4347.Google Scholar
Wu, C. S., Yu, C. Y., Chuang, C. Y. et al. (2014). Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency. Genome Research, 24(1), 2536.Google Scholar
Yamanaka, S. (2009). Elite and stochastic models for induced pluripotent stem cell generation. Nature, 460(7251), 49.Google Scholar
Yanai, I., & Lercher, M. (2016). The Society of Genes. Cambridge MA: Harvard University Press.Google Scholar
Yang, J., Benyamin, B., McEvoy, B. P. et al. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42(7), 565569.Google Scholar
Yang, J., Manolio, T. A., Pasquale, L. R. et al. (2011). Genome partitioning of genetic variation for complex traits using common SNPs. Nature Genetics, 43(6), 519525.Google Scholar
Yu, P., Ma, D., & Xu, M. (2005). Nested genes in the human genome. Genomics, 86, 414422.Google Scholar
Zhang, D.-W., Lagace, T. A., Garuti, R. et al. (2007). Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. Journal of Biological Chemistry, 282, 1860218612.Google Scholar
Zijlstra, M., Bix, M., Simister, N. E. et al. (1990). β2-microglobulin deficient mice lack CD4–8+ cytolytic T cells. Nature, 344, 742746.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Kostas Kampourakis, Université de Genève
  • Book: Making Sense of Genes
  • Online publication: 13 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316422939.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Kostas Kampourakis, Université de Genève
  • Book: Making Sense of Genes
  • Online publication: 13 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316422939.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Kostas Kampourakis, Université de Genève
  • Book: Making Sense of Genes
  • Online publication: 13 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316422939.016
Available formats
×