Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T16:28:18.375Z Has data issue: false hasContentIssue false

Part III - Probability, Correlations, and Information

Published online by Cambridge University Press:  04 July 2017

Olimpia Lombardi
Affiliation:
University of Buenos Aires, Argentina, and National Council of Scientific and Technical Research
Sebastian Fortin
Affiliation:
University of Buenos Aires, Argentina, and National Council of Scientific and Technical Research
Federico Holik
Affiliation:
National University of La Plata, Argentina, and National Council of Scientific and Technical Research
Cristian López
Affiliation:
University of Buenos Aires, Argentina, and National Council of Scientific and Technical Research
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aharonov, Y. and Albert, D. (1981). “Can We Make Sense of the Measurement Process in Relativistic Quantum Mechanics?Physical Review D, 24: 359370.CrossRefGoogle Scholar
Aharonov, Y., Anandan, J., and Vaidman, L. (1993). “Meaning of the Wave Function.” Physical Review A, 47: 46164626.CrossRefGoogle ScholarPubMed
Albert, D. (1983). “On Quantum Mechanical Automata.” Physics Letters A, 98: 249252.CrossRefGoogle Scholar
Albert, D. (2000). Time and Chance. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Aspect, A., Grangier, P., and Roger, G. (1982). “Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities.” Physical Review Letters, 49: 9194.Google Scholar
Bell, J. (1987). “The Theory of Local Beables.” Pp. 5262; “How to Teach Special Relativity.” Pp. 6780 in Speakable and Unspeakable in Quantum. Cambridge: Cambridge University Press.Google Scholar
Bell, J. (1990). “Against Measurement.” Pp. 1732 in Miller, A. (ed.), Sixty-Two Years of Uncertainty. New York: Plenum Press.Google Scholar
Beller, M. (1999). Quantum Dialogues. Chicago: University of Chicago Press.Google Scholar
Bohr, N. (1983). “Discussion with Einstein on Epistemological Problems in Atomic Physics.” Pp. 949 in Wheeler, J. and Zurek, W. (eds.), Quantum Theory and Measurement. Princeton, NJ: Princeton University Press.Google Scholar
Bohr, N. and Rosenfeld, L. (1957). “On the Question of the Measurability of Electromagnetic Field Quantities.” Pp. 357400 in Cohen, R. and Stachel, J. (eds.), The Selected Papers of Leon Rosenfeld. Dordrecht: Reidel [1933].Google Scholar
Born, M. (1926). “Zur Quantenmechanik der Stossvorgänge.” Zeitschrift für Physik, 37: 863867.Google Scholar
Bricmont, J. (1996). “Science of Chaos or Chaos in Science.” Pp. 113175 in Gross, P. et al. (eds.), The Flight from Science and Reason. New York: The New York Academy of Science.Google Scholar
Bronstein, M. (1936). “Quantentheorie Schwacher Gravitationsfelder.” Physikalische Zeitschrift der Sowjetunion, 9: 140157.Google Scholar
Brown, H. and Redhead, M. (1981). “A Critique of the Disturbance Theory of the Indeterminacy of Quantum Mechanics.” Foundations of Physics, 11: 120.CrossRefGoogle Scholar
Buks, E., Schuster, E., Heiblum, M., Mahalu, D., and Umansky, V. (1998). “Dephasing in Electron Interference by a ‘Which-Path’ Detector.” Nature, 391: 871874.CrossRefGoogle Scholar
Busch, P., Heinoen, T., and Lahti, P. J. (2007). “Heisenberg’s Uncertainty Principle.” Physics Reports, 452: 155176.Google Scholar
Carazza, B. and Kragh, H. (1995). “Heisenberg’s Lattice World: The 1930 Theory Sketch.” American Journal of Physics, 63: 595605.Google Scholar
Caves, C., Fuchs, C., and Schack, R. (2002). “Quantum Probabilities as Bayesian Probabilities.” Physical Review A, 65: 022305.Google Scholar
Darrigol, O. (1992). From C-numbers to Q-numbers: The Classical Analogy in the History of Quantum Theory. Berkeley: University of California Press.Google Scholar
de Finetti, B. (1980). “Foresight. Its Logical Laws, Its Subjective Sources.” Pp. 53118 in Kyburg, H. E. Jr. and Smokler, H. E. (eds.), Studies in Subjective Probability. Huntington, NY: Robert E. Krieger Publishing Company [1937].Google Scholar
Dirac, P. (1927). “The Physical Interpretation of Quantum Dynamics.” Proceedings of the Royal Society of London A, 118: 621641.Google Scholar
Dirac, P. (1929). “Quantum Mechanics of Many Electron Systems.” Proceedings of the Royal Society of London A, 123: 714733.Google Scholar
Dirac, P. (1938). “Classical Theory of Radiating Electrons.” Proceedings of the Royal Society of London A, 167: 148169.Google Scholar
Dirac, P. (1963). “The Evolution of the Physicist’s Picture of Nature.” Scientific American, 208: 4553.Google Scholar
Duncan, A. and Janssen, M. (2013). “(Never) Mind Your p’s and q’s: Von Neumann versus Jordan on the Foundations of Quantum Theory.” European Journal of Physics H, 38: 175259.CrossRefGoogle Scholar
Earman, J. and Redei, M. (1996). “Why Ergodic Theory Does not Explain the Success of Equilibrium Statistical Mechanics.” British Journal of Philosophy of Science, 47: 6378.Google Scholar
Feynman, R. (1965). The Character of Physical Law. Cambridge, MA: MIT Press.Google Scholar
Feynman, R. and Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals. New York: Dover Publications.Google Scholar
Fredkin, E. (1990). “Digital Mechanics: An Informational Process Based on Reversible Universal Cellular Automata.” Physica D, 45: 254270.Google Scholar
Frigg, R. (2007). “Probability in Boltzmannian Statistical Mechanics.” Pp. 92118 in Ernst, G. and Üttemann, H. (eds.), Time, Chance and Reduction, Philosophical Aspects of Statistical Mechanics. Cambridge: Cambridge University Press.Google Scholar
Gieser, S. (2005). The Innermost Kernel: Depth Psychology and Quantum Physics: Wolfgang Pauli’s Dialogue with C.G. Jung. Berlin: Springer.Google Scholar
Goldstein, S. (2012). “Typicality and Notions of Probability in Physics.” Pp. 5971 in Ben-Menahem, Y. and Hemmo, M. (eds.), Probability in Physics. Berlin: Springer.Google Scholar
Goldstein, S., Dürr, D., and Zanghi, N. (1992). “Quantum Equilibrium and the Origin of Absolute Uncertainty.” The Journal of Statistical Physics, 67: 843907.Google Scholar
Hacking, I. (1975). The Emergence of Probability. Cambridge: Cambridge University Press.Google Scholar
Hagar, A. (2003). “A Philosopher Looks at Quantum Information Theory.” Philosophy of Science, 70: 752775.Google Scholar
Hagar, A. (2008). “Length Matters: The Einstein-Swann Correspondence.” Studies in the History and Philosophy of Modern Physics, 39: 532556.Google Scholar
Hagar, A. (2014). The Quest for the Smallest Length in Modern Physics. Cambridge: Cambridge University Press.Google Scholar
Hagar, A. and Hemmo, M. (2006). “Explaining the Unobserved. Why Quantum Theory Ain’t Only about Information.” Foundations of Physics, 36: 12951324.Google Scholar
Hagar, A. and Hemmo, M. (2013). “The Primacy of Geometry.” Studies in the History and Philosophy of Modern Physics, 44: 357364.Google Scholar
Hagar, A. and Sergioli, G. (2014). “Counting Steps: A New Interpretation of Objective Chance in Statistical Physics.” Epistemologia, 37: 262275. See appendix in arXiv:1101.3521.Google Scholar
Heisenberg, W. (1930). The Physical Principles of Quantum Mechanics. New York: Dover Publications.Google Scholar
Heisenberg, W. (1983). “The Physical Content of Quantum Kinematics and Mechanics.” Pp. 6284 in Wheeler, J. and Zurek, W. (eds.), Quantum Theory and Measurement. Princeton, NJ: Princeton University Press [1927].Google Scholar
Hemmo, M. and Shenker, O. (2012). The Road to Maxwell’s Demon. Cambridge: Cambridge University Press.Google Scholar
Hilgevoord, J. and Uffink, J. (1983). “Overall Width, Mean Peak Width, and the Uncertainty Principle.” Physics Letters A, 95: 474476.CrossRefGoogle Scholar
Hilgevoord, J. and Uffink, J. (1988a). “Interference and Distinguishability in Quantum Mechanics.” Physica B, 151: 309313.Google Scholar
Hilgevoord, J. and Uffink, J. (1988b). “The Mathematical Expression of the Uncertainty Principle.” Pp. 91114 in van der Merwe, A., Selleri, F., and Tarozzi, G., (eds.), Microphysical Reality and Quantum Description. Dordrecht: Kluwer.CrossRefGoogle Scholar
Hilgevoord, J. and Uffink, J. (1989). “Spacetime Symmetries and the Uncertainty Principle.” Nuclear Physics B (Proc. Sup.), 6: 246248.Google Scholar
Hilgevoord, J. and Uffink, J. (1990). “A New View on the Uncertainty Principle.” Pp. 121139 in Miller, A. E. (ed.), Sixty-Two Years of Uncertainty, Historical and Physical Inquiries into the Foundations of Quantum Mechanics. New York: Plenum Press.Google Scholar
Ismael, J. (2009). “Probability in Deterministic Physics.” Journal of Philosophy, 106: 89108.Google Scholar
Jammer, M. (1974). The Philosophy of Quantum Mechanics. New York: John Wiley & Sons.Google Scholar
Kennard, E. H. (1927). “Zur Quantenmechanik Einfacher Bewegungstypen.” Zeitschrift für Physik, 44: 326352.Google Scholar
Kochen, S. and Specker, E. (1967). “The Problem of Hidden Variables in Quantum Mechanics.” Journal of Mathematics and Mechanics, 17: 5987.Google Scholar
Kragh, H. (1995). “The Search for a Smallest Length.” Revue d’Histoire des Sciences (Paris), 48: 401434.CrossRefGoogle Scholar
Landau, L. and Peierls, R. (1983). “Extensions of the Uncertainty Principle to Relativistic Quantum Theory.” Pp. 465476 in Wheeler, J. and Zurek, W. (eds.), Quantum Theory and Measurement. Princeton, NJ: Princeton University Press [1931].Google Scholar
Laplace, P. S. (1902). A Philosophical Essay on Probabilities. New York: John Wiley [1814].Google Scholar
Lewis, D. (1986). Philosophical Papers Vol. 2. Oxford: Oxford University Press.Google Scholar
Loewer, B. (2001). “Determinism and Chance.” Studies in History and Philosophy of Modern Physics, 32: 609620.Google Scholar
March, A. (1951). Quantum Mechanics of Particles and Wave Fields. New York: John Wiley.Google Scholar
Maudlin, T. (2007). “What Could Be Objective about Probabilities?Studies in the History and Philosophy of Modern Physics, 38: 275291.CrossRefGoogle Scholar
Mead, C. (1964). “Possible Connection between Gravitation and Fundamental Length.” Physical Review, 135: 849862.Google Scholar
Messiah, A. (1961). Quantum Mechanics Volume II. New York: Interscience Publishers.Google Scholar
Pauli, W. (1979). In Meyenn, K. (ed.), Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg. Band I: 1919–1929. Berlin: Springer Verlag.Google Scholar
Pauli, W. (1985). In Meyenn, K. (ed.), Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg. Band II: 1930–1939. Berlin: Springer Verlag.Google Scholar
Pauli, W. (1994). Writings on Physics and Philosophy. Berlin: Springer.Google Scholar
Pitowsky, I. (1985). “On the Status of Statistical Inferences.” Synthese, 63: 233247.Google Scholar
Pitowsky, I. (1989). Quantum Probability–Quantum Logic. Berlin: Springer Verlag.Google Scholar
Pitowsky, I. (1994). “George Boole’s ‘Conditions of Possible Experience’ and the Quantum Puzzle.” British Journal for the Philosophy of Science, 45: 95125.Google Scholar
Pitowsky, I. (1996). “Laplace’s Demon Consults and Oracle: The Computational Complexity of Prediction.” Studies in the History and Philosophy of Modern Physics, 27: 161180.Google Scholar
Pitowsky, I. (2012). “Typicality and the Role of the Lebesgue Measure in Statistical Mechanics.” Pp. 4158 in Ben-Menahem, Y. and Hemmo, M. (eds.), Probability in Physics. Berlin: Springer.Google Scholar
Robertson, H. P. (1929). “The Uncertainty Principle.” Physical Review, 34: 163164.Google Scholar
Ruark, A. (1928). “The Limits of Accuracy in Physical Measurements.” Proceedings of the National Academy of Sciences, 14: 322328.Google Scholar
Schrödinger, E. (1930). “Zum Heisenbergschen Unschärfeprinzip.” Berliner Berichte, 296303.Google Scholar
Sklar, L. (1993). Physics and Chance. Cambridge: Cambridge University Press.Google Scholar
Stachel, J. (1993). “The Other Einstein.” Science in Context, 6: 275290.Google Scholar
Toffoli, T. (1984). “Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations.” Physica D, 10: 117127.Google Scholar
Uffink, J. (1985). “Verification of the Uncertainty Principle in Neutron Interferometry.” Physics Letters A, 108: 5962.Google Scholar
Uffink, J. (2011). “Subjective Probability and Statistical Physics.” Pp. 2550 in Beisbart, C. and Hartmann, S. (eds.), Probabilities in Physics. Oxford: Oxford University Press.Google Scholar
Uffink, J. and Hilgevoord, J. (1985). “Uncertainty Principle and Uncertainty Relations.” Foundations of Physics, 15: 925944.Google Scholar
von Liechtenstern, C. R. (1955). “Die Beseitigung von Wlderspruchen bei der Ableitung der Unsch£rferelation.” Pp. 6770 in Proceedings of the Second International Congress of the International Union for the Philosophy of Science (Zurich 1954). Neuchatel: Editions du Griffon.Google Scholar
von Neumann, J. (1932). Mathematical Foundations of Quantum Theory. Princeton, NJ: Princeton University Press.Google Scholar
Wataghin, G. (1930). “Über die Unbestimmtheitsrelationen der Quantentheorie.” Zeitschrift für Physik, 65: 285288.Google Scholar
Wataghin, G. (1934a). “Bemerkung über die Selbstenergie der Elektronen.” Zeitschrift für Physik, 88: 9298.Google Scholar
Wataghin, G. (1934b). “Über die Relativitiche Quantenelectrdynamik und die Ausstarhlung bei Stösen sher Energierecher Elektronen.” Zeitschrift für Physik, 92: 547560.Google Scholar
Wigner, E (1979). Symmetries and Reflections. Woodbridge, CT: Ox Bow Press.Google Scholar

References

Albert, D. Z. (2000). Time and Chance. Cambridge, MA: Harvard University Press.Google Scholar
Ballentine, L. E. (1970). “The Statistical Interpretation of Quantum Mechanics.” Reviews of Modern Physics, 42: 358381.Google Scholar
Ballentine, L. E. (1990). Quantum Mechanics. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Brown, H. R., Myrvold, W., and Uffink, J. (2009). “Boltzmann’s H-theorem, Its Discontents, and the Birth of Statistical Mechanics.” Studies in History and Philosophy of Modern Physics, 40: 174191.Google Scholar
Bub, J. (1997). Interpreting the Quantum World. Cambridge: Cambridge University Press.Google Scholar
Callender, C. (2001). “Taking Thermodynamics Too Seriously.” Studies in the History and Philosophy of Modern Physics, 32: 539553.Google Scholar
Caves, C., Fuchs, C., Manne, K., and Renes, J. (2004). “Gleason-Type Derivations of the Quantum Probability Rule for Generalized Measurements.” Foundations of Physics, 34: 193209.Google Scholar
Fuchs, C. (2002). “Quantum Mechanics as Quantum Information (and Only a Little More).” Pp. 463543 in Khrennikov, A. (ed.), Quantum Theory: Reconsideration of Foundations. Växjö: Växjö University Press. Available online at http://arXiv.org/abs/quant-ph/0205039.Google Scholar
Gell-Mann, M. and Hartle, J. B. (1993). “Classical Equations for Quantum Systems.” Physical Review D, 47: 33453382.Google Scholar
Ghirardi, G., Rimini, A., and Weber, T. (1986). “Unified Dynamics for Micro and Macro Systems.” Physical Review D, 34: 470491.Google Scholar
Gleason, A. (1957). “Measures on the Closed Subspaces of a Hilbert Space.” Journal of Mathematics and Mechanics, 6: 885893.Google Scholar
Goldstein, S. (2001). “Boltzmann’s Approach to Statistical Mechanics.” Pp. 3954 in Bricmont, J., Dürr, D., Galavotti, M., Petruccione, F., and Zanghi, N. (eds.), Chance in Physics: Foundations and Perspectives. Berlin: Springer. Available online at http://arxiv.org/abs/cond-mat/0105242.Google Scholar
Greaves, H. (2007). “Probability in the Everett Interpretation.” Philosophy Compass, 38: 120152.Google Scholar
Griffiths, R. B. (1984). “Consistent Histories and the Interpretation of Quantum Mechanics.” Journal of Statistical Physics, 36: 219272.Google Scholar
Griffiths, R. B. (1996). “Consistent Histories and Quantum Reasoning.” Physical Review A, 54: 27592773.Google Scholar
Griffiths, R. B. (2002). Consistent Quantum Theory. Cambridge: Cambridge University Press.Google Scholar
Hajek, A. (1996). “‘Mises Redux’ – Redux – Fifteen Arguments against Finite Frequentism.” Erkenntnis, 45: 209227.Google Scholar
Hajek, A. (2009). “Fifteen Arguments against Hypothetical Frequentism.” Erkenntnis, 70: 211235.Google Scholar
Halliwell, J. J. (1998). “Decoherent Histories and Hydrodynamic Equations.” Physical Review D, 35: 105015.Google Scholar
Halliwell, J. J. (2010). “Macroscopic Superpositions, Decoherent Histories and the Emergence of Hydrodynamic Behaviour.” Pp. 99120 in Saunders, S., Barrett, J., Kent, A., and Wallace, D. (eds.), Many Worlds? Everett, Quantum Theory, and Reality. Oxford: Oxford University Press.Google Scholar
Harrigan, N. and Spekkens, R. W. (2010). “Einstein, Incompleteness, and the Epistemic View of States.” Foundations of Physics, 40: 125157.Google Scholar
Hartle, J. (2010). “Quasiclassical Realms.” Pp. 7398 in Saunders, S., Barrett, J., Kent, A., and Wallace, D. (eds.), Many Worlds? Everett, Quantum Theory, and Reality. Oxford: Oxford University Press.Google Scholar
Hawthorne, J. (2010). “A Metaphysician Looks at the Everett Interpretation.” Pp. 144153 in Saunders, S., Barrett, J., Kent, A., and Wallace, D. (eds.), Many Worlds? Everett, Quantum Theory, and Reality. Oxford: Oxford University Press.Google Scholar
Jaynes, E. (1957a). “Information Theory and Statistical Mechanics.” Physical Review, 106: 620630.Google Scholar
Jaynes, E. (1957b). “Information Theory and Statistical Mechanics II.” Physical Review, 108: 171190.Google Scholar
Jaynes, E. (1965). “Gibbs vs Boltzmann Entropies.” American Journal of Physics, 5: 391398.Google Scholar
Joos, E., Zeh, H. D., Kiefer, C., Giulini, D., Kupsch, J., and Stamatescu, I. O. (2003). Decoherence and the Appearance of a Classical World in Quantum Theory (2nd Edition). Berlin: Springer.Google Scholar
Lavis, D. A. (2005). “Boltzmann and Gibbs: An Attempted Reconciliation.” Studies in the History and Philosophy of Modern Physics, 36: 245273.Google Scholar
Lebowitz, J. (2007). “From Time-Symmetric Microscopic Dynamics to Time-Asymmetric Macroscopic Behavior: An Overview.” Available online at http://arxiv.org/abs/0709.0724.Google Scholar
Liboff, R. L. (2003). Kinetic Theory: Classical, Quantum, and Relativistic Descriptions (3rd Edition). New York: Springer-Verlag.Google Scholar
Malament, D. and Zabell, S. L. (1980). “Why Gibbs Phase Space Averages Work: The Role of Ergodic Theory.” Philosophy of Science, 47: 339349.Google Scholar
Maroney, O. (2012). “How Statistical Are Quantum States?” Available online at http://arxiv.org/abs/1207.6906.Google Scholar
Maudlin, T. (2010). “Can the World be Only Wavefunction?” Pp. 121143 in Saunders, S., Barrett, J., Kent, A., and Wallace, D. (eds.), Many Worlds? Everett, Quantum Theory, and Reality. Oxford: Oxford University Press.CrossRefGoogle Scholar
Myrvold, W. (2016). “Probabilities in Statistical Mechanics.” Pp. 573600 in Hitchcock, C. and Hajek, A. (eds.), Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press.Google Scholar
Ney, A. and Albert, D. (eds.) (2013). The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford: Oxford University Press.Google Scholar
Omnés, R. (1988). “Logical Reformulation of Quantum Mechanics. I. Foundations.” Journal of Statistical Physics, 53: 893932.Google Scholar
Omnés, R. (1992). “Consistent Interpretations of Quantum Mechanics.” Reviews of Modern Physics, 64: 339382.Google Scholar
Omnés, R. (1994). The Interpretation of Quantum Mechanics. Princeton, NJ: Princeton University Press.Google Scholar
Pearle, P. (1989). “Combining Stochastic Dynamical State-Vector Reduction with Spontaneous Localization.” Physical Review A, 39: 22772289.CrossRefGoogle ScholarPubMed
Peres, A. (1993). Quantum Theory: Concepts and Methods. Dordrecht: Kluwer Academic Publishers.Google Scholar
Prigogine, I. (1984). Order Out of Chaos. New York: Bantam Books.Google Scholar
Pusey, M. F., Barrett, J., and Rudolph, T. (2011). “On the Reality of the Quantum State.” Nature Physics, 8: 476479. Available online at arXiv:1111.3328v2.Google Scholar
Russell, B. (1919). Introduction to Mathematical Philosophy. New York: Routledge.Google Scholar
Saunders, S., Barrett, J., Kent, A., and Wallace, D. (eds.) (2010). Many Worlds? Everett, Quantum Theory, and Reality. Oxford: Oxford University Press.Google Scholar
Schlosshauer, M. (2007). Decoherence and the Quantum-to-Classical Transition. Berlin: Springer.Google Scholar
Sklar, L. (1993). Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Spekkens, R. W. (2007). “In Defense of the Epistemic View of Quantum States: A Toy Theory.” Physical Review A, 75: 032110.Google Scholar
Timpson, C. (2008). “Quantum Bayesianism: A Study.” Studies in the History and Philosophy of Modern Physics, 39: 579609.Google Scholar
Tolman, R. C. (1938). The Principles of Statistical Mechanics. Oxford: Oxford University Press.Google Scholar
Uducec, C., Wiebe, N., and Emerson, J. (2012). “Equilibration of Measurement Statistics under Complex Dynamics.” Available online at http://arxiv.org/abs/1208.3419.Google Scholar
Uffink, J. (2007). “Compendium of the Foundations of Classical Statistical Physics.” Pp. 9231074 in Butterfield, J. and Earman, J. (eds.), Handbook for Philosophy of Physics. Amsterdam: Elsevier.Google Scholar
Vranas, P. B. M. (1998). “Epsilon-Ergodicity and the Success of Equilibrium Statistical Mechanics.” Philosophy of Science, 65: 688708.CrossRefGoogle Scholar
Wallace, D. (2010a). “Decoherence and Ontology, or: How I learned to Stop Worrying and Love FAPP.” Pp. 5372 in Saunders, S., Barrett, J., Kent, A., and Wallace, D. (eds.), Many Worlds? Everett, Quantum Theory, and Reality. Oxford: Oxford University Press.Google Scholar
Wallace, D. (2010b). “The Logic of the Past Hypothesis.” Available online at http://philsci-archive.pitt.edu/8894/.Google Scholar
Wallace, D. (2012a). “Decoherence and Its Role in the Modern Measurement Problem.” Philosophical Transactions of the Royal Society A, 370: 45764593.Google Scholar
Wallace, D. (2012b). The Emergent Multiverse: Quantum Theory According to the Everett Interpretation. Oxford: Oxford University Press.Google Scholar
Wallace, D. (2014). “Probability in Physics: Statistical, Stochastic, Quantum.” Pp. 194220 in Wilson, A. (ed.), Chance and Temporal Asymmetry. Oxford: Oxford University Press.Google Scholar
Wallace, D. (2015). “The Quantitative Content of Statistical Mechanics.” Studies in History and Philosophy of Modern Physics, 52: 285293.Google Scholar
Wallace, D. (2016a). “Probability in Modern Statistical Mechanics: Classical and Quantum.” Forthcoming.Google Scholar
Wallace, D. (2016b). “Reconciling Gibbsian and Boltzmannian Statistical Mechanics from a Dynamical Perspective.” Forthcoming.Google Scholar
Zeh, H. D. (1993). “There Are no Quantum Jumps, nor Are There Particles!Physics Letters A, 172: 189192.Google Scholar
Zurek, W. H. (1991). “Decoherence and the Transition from Quantum to Classical.” Physics Today, 43: 3644. Revised version available online at http://arxiv.org/abs/quant-ph/0306072.Google Scholar
Zurek, W. H. (1998). “Decoherence, Einselection, and the Quantum Origins of the Classical: The Rough Guide.” Philosophical Transactions of the Royal Society of London A, 356: 17931820. Available online at http://arxiv.org./abs/quant-ph/98050.Google Scholar
Zurek, W. H. (2003). “Decoherence, Einselection, and the Quantum Origins of the Classical.” Reviews of Modern Physics, 75: 715775.Google Scholar
Zwanzig, R. (1961). “Memory Effects in Irreversible Thermodynamics.” Physical Review, 124: 983992.Google Scholar

References

Aaronson, S. and Arkhipov, A. (2011). “The Computational Complexity of Linear Optics.” Pp. 333342 in Proceedings of the 43rd Annual ACM Symposium on Theory of Computing. New York: Association for Computing Machinery.Google Scholar
Aerts, D. (1998). “The Hidden Measurement Formalism: What can Be Explained and Where Quantum Paradoxes Remain.” International Journal of Theoretical Physics, 37: 291304.Google Scholar
Aiello, A., Töppell, F., Marquardt, C., Giacobino, E., and Leuchs, G. (2015). “Quantum-Like Non-separable Structures in Optical Beams.” New Journal of Physics, 17: 043024.Google Scholar
Amaral, B., Terra Cunha, M., and Cabello, A. (2014). “Exclusivity Principle Forbids Sets of Correlations Larger than the Quantum Set.” PhysicsReview A, 89: 030101.Google Scholar
Barnum, H., Barrett, J., Clark, L., Leifer, M., Spekkens, R., Stepanik, N., Wilce, A., and Wilke, R. (2010). “Entropy and Information Causality in General Probabilistic Theories.” New Journal of Physics, 12: 033024.Google Scholar
Beltrametti, E. and Cassinelli, G. (1981). The Logic of Quantum Mechanics. Encyclopedia of Mathematics and its Applications, Volume 15. Reading MA: Addison-Wesley.Google Scholar
Bennett, C. (1995). “Quantum Information and Computation.” Physics Today, 48: 2430.Google Scholar
Bhattacharya, N., Van Linbiden, H., Van den Heuvell, L., and Spreeuw, R. (2002). “Implementation of Quantum Search Algorithm Using Classical Fourier Optics.” Physics Review Letters, 88: 137901.Google Scholar
Brady, R. and Anderson, R. (2014). “Why Bouncing Droplets Are a Pretty Good Model of Quantum Mechanics.” arXiv:1401.4356v1 [quant-ph].Google Scholar
Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., and Wehner, S. (2014). “Bell Nonlocality.” Reviews of Modern Physics, 86: 419478.Google Scholar
Bub, J. (2007). “Quantum Computation from a Quantum Logical Perspective.” Quantum Information & Computation, 7: 281296.Google Scholar
Cabello, A. (2014). “Exclusivity Principle and the Quantum Bound of the Bell Inequality.” Physics Review A, 90: 062125.CrossRefGoogle Scholar
Carolan, J., Harrold, C., Sparrow, C., Martín-López, E., and Russell, N. J. (2015). “Universal Linear Optics.” Science, 349: 711716.Google Scholar
Cerf, N., Adami, C., and Kwiat, P. (1998). “Optical Simulation of Quantum Logic.” Physical Review A, 57: 14771480.Google Scholar
Clifton, R., Bub, J., and Halvorson, H. (2003). “Characterizing Quantum Theory in Terms of Information-Theoretic Constraints.” Foundations of Physics, 33: 15611591.Google Scholar
Couder, Y. and Fort, E. (2006). “Single-Particle Diffraction and Interference at a Macroscopic Scale.” Physical Review Letters, 97: 154101.Google Scholar
Couder, Y., Fort, E., Gautier, C., and Boudaoud, A. (2005). “From Bouncing to Floating: Noncoalescence of Drops on a Fluid Bath.” Physical Review Letters, 94: 177801.Google Scholar
Cox, R. T. (1946). “Probability, Frequency and Reasonable Expectation.” American Journal of Physics, 14: 113.Google Scholar
Cox, R. T. (1961). The Algebra of Probable Inference. Baltimore, MD: Johns Hopkins University Press.Google Scholar
de Barros, J. A. and Oas, G. (2014). “Negative Probabilities and Counter-factual Reasoning in Quantum Cognition.” Physica Scripta, 163: 014008.Google Scholar
de Barros, J. and Oas, G. (2015). “Some Examples of Contextuality in Physics: Implications to Quantum Cognition.” Pp. 153184 in Dzhafarov, E., Jordan, S., Zhang, R., and Cervantes, V. (eds.), Contextuality from Quantum Physics to Psychology. Singapore: World Scientific.Google Scholar
De Finetti, B. (1937).“La Prévision: ses Lois Logiques, ses Sources Subjectives.” Annales de l’Institut Henri Poincaré. Reprinted as “Foresight: Its Logical Laws, Its Subjective Sources.” In Kyburg, H. E. and Smokler, H. E. (eds.), Studies in Subjective Probability, 1964. New York: Wiley.Google Scholar
Deutsch, D. and Ekert, A. (2000). “Introduction to Quantum Computation.” Pp. 92131 in Boumeester, D., Ekert, A. and Zeilinger, A. (eds.), The Physics of Quantum Information. Berlin-Heidelberg: Springer.Google Scholar
Di Vicenzo, D. (1995). “Quantum Computation.” Science, 270: 255261.Google Scholar
Everett, H. (1957). “Relative State Formulation of Quantum Mechanics.” Reviews of Modern Physics, 29: 454462.Google Scholar
Feynman, R. (1951). “The Concept of Probability in Quantum Mechanics.” Pp. 533541 in Neyman, J. (ed.), Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press.Google Scholar
Francisco, D., Iemmi, C., Paz, J. P., and Ledesma, S. (2006a). “Optical Simulation of the Quantum Hadamard Operator.” Optics Communications, 268: 340345.Google Scholar
Francisco, D., Iemmi, C., Paz, J. P., and Ledesma, S. (2006b). “Simulating a Quantum Walk with Classical Optics.” Physical Review A, 74: 052327.Google Scholar
Francisco, D. and Ledesma, S. (2008). “Classical Optics Analogy of Quantum Teleportation.” Journal of the Optical Society of America B, 25: 383390.Google Scholar
Fuchs, C. and Schack, R. (2013). “Quantum-Bayesian Coherence.” Reviews of Modern Physics, 85: 16931715.Google Scholar
Gleason, A. (1957). “Measures on the Closed Subspaces of a Hilbert Space.” Journal of Mathematics and Mechanics, 6: 885893.Google Scholar
Goldin, M., Francisco, D., and Ledesma, S. (2010). “Simulating Bell Inequality Violations with Classical Optics Encoded Qubits.” Journal of the Optical Society of America B, 27: 779786.Google Scholar
Gühne, O., Kleinmann, M., Cabello, A., Larsson, J., Kirchmair, G., Zahringer, F., Gerritsma, R., and Roos, C. (2010). “Compatibility and Noncontextuality for Sequential Measurements.” Physical Review A, 81: 022121.Google Scholar
Holik, F. (2014). “Logic, Geometry and Probability Theory.” SOP Transactions on Theoretical Physics, 1: 128137.Google Scholar
Holik, F., Bosyk, G. M., and Bellomo, G. (2015). “Quantum Information as a Non-Kolmogorovian Generalization of Shannon’s Theory.” Entropy, 17: 73497373.Google Scholar
Holik, F. and Plastino, A. (2014). “Quantum Mechanics: A New Turn in Probability Theory.” Pp. 399414 in Ezziane, Z. (ed.), Contemporary Research in Quantum Systems. New York: Nova Science.Google Scholar
Holik, F., Plastino, A., and Sáenz, M. (2014). “A Discussion on the Origin of Quantum Probabilities.” Annals of Physics, 340: 293310.Google Scholar
Holik, F., Plastino, A., and Sáenz, M. (2016). “Natural Information Measures for Contextual Probabilistic Models.” Quantum Information & Computation, 16: 115133.Google Scholar
Jozsa, R. (2000). “Quantum Algorithms.” Pp. 104125 in Boumeester, D., Ekert, A., and Zeilinger, A. (eds.), The Physics of Quantum Information. Berlin-Heidelberg: Springer.Google Scholar
Kolmogorov, A. (1933). Foundations of Probability Theory. Berlin: Julius Springer.Google Scholar
Kwiat, P., Mitchell, J., Schwindt, P., and White, A. (2000). “Grover’s Search Algorithm: An Optical Approach.” Journal of Modern Optics, 47: 257266.Google Scholar
Landauer, R. (1996). “The Physical Nature of Information.” Physics Letters A, 217: 188193.Google Scholar
Lombardi, O., Holik, F., and Vanni, L. (2016a). “What Is Quantum Information?Studies in History and Philosophy of Modern Physics, 56: 1726.Google Scholar
Lombardi, O., Holik, F., and Vanni, L. (2016b). “What Is Shannon Information?Synthese, 193: 19832012.Google Scholar
Maassen, H. and Uffink, J. (1988). “Generalized Entropic Uncertainty Relations.” Physical Review Letters, 60: 11031106.Google Scholar
Man’ko, M. A., Man’ko, V. I., and Vilela Mendes, R. (2001). “Quantum Computation by Quantumlike Systems.” Physics Letters A, 288: 132138.Google Scholar
Nielsen, M. and Chuang, I. (2010). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press.Google Scholar
Oas, G. and de Barros, J. A. (2015). “Principles Defining Quantum Mechanics.” Pp. 335366 in Dzhafarov, E., Jordan, S., Zhang, R., and Cervantes, V. (eds.), Contextuality from Quantum Physics to Psychology. Singapore: World Scientific.Google Scholar
Popescu, S. (1994). “Bell’s Inequalities versus Teleportation: What Is Nonlocality?Physical Review Letters, 72: 797799.Google Scholar
Popescu, S. (2014). “Nonlocality Beyond Quantum Mechanics.” Nature Physics, 10: 264270.Google Scholar
Puentes, G., La Mela, C., Ledesma, S., Iemmi, C., Paz, J. P., and Saraceno, M. (2004). “Optical Simulation of Quantum Algorithms Using Programmable Liquid-Crystal Displays.” Physical Review A, 69: 042319.Google Scholar
Qian, X.-F., Little, B., Howell, J. C., and Eberly, J. H. (2015). “Shifting the Quantum-Classical Boundary: Theory and Experiment for Statistically Classical Optical Fields.” Optica, 2: 611615.Google Scholar
Renes, J. (2013). “The Physics of Quantum Information: Complementarity, Uncertainty and Entanglement.” International Journal of Quantum Information, 11: 1330002.Google Scholar
Schumacher, B. (1995). “Quantum Coding.” Physical Review A, 51: 27382747.Google Scholar
Shannon, C. (1948). “The Mathematical Theory of Communication.” Bell System Technical Journal, 27: 379423, 623656.Google Scholar
Short, A. and Wehner, S. (2010). “Entropy in General Physical Theories.” New Journal of Physics, 12: 033023.Google Scholar
Spreeuw, R. (1998). “A Classical Analogy of Entanglement.” Foundations of Physics, 28: 361374.Google Scholar
Spreeuw, R. (2001). “Classical Wave-Optics Analogy of Quantum-Information Processing.” Physical Review A, 63: 062302.Google Scholar
Steane, A. (1998). “Quantum Computing.” Reports on Progress in Physics, 61: 117173.Google Scholar

References

Bacciagaluppi, G. (2012). “The Role of Decoherence in Quantum Mechanics.” In Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/archives/win2012/entries/qm-decoherence/.Google Scholar
Balachandran, A. P., Govindarajan, T. R., de Queiroz, A. R., and Reyes-Lega, A. F. (2013a). “Algebraic Approach to Entanglement and Entropy.” Physical Review A, 88: 022301.Google Scholar
Balachandran, A. P., Govindarajan, T. R., de Queiroz, A. R., and Reyes-Lega, A. F. (2013b). “Entanglement and Particle Identity: A Unifying Approach.” Physical Review Letters, 110: 080503.Google Scholar
Barnum, H., Knill, E., Ortiz, G., Somma, R., and Viola, L. (2003). “Generalizations of Entanglement Based on Coherent States and Convex Sets.” Physical Review A, 68: 032308.Google Scholar
Barnum, H., Knill, E., Ortiz, G., Somma, R., and Viola, L. (2004). “A Subsystem-Independent Generalization of Entanglement.” Physical Review Letters, 92: 107902.Google Scholar
Barnum, H., Ortiz, G., Somma, R., and Viola, L. (2005). “A Generalization of Entanglement to Convex Operational Theories: Entanglement Relative to a Subspace of Observables.” International Journal of Theoretical Physics, 44: 2127.Google Scholar
Baumgratz, T., Cramer, M., and Plenio, M. B. (2014). “Quantifying Coherence.” Physical Review Letters, 113: 140401.Google Scholar
Bell, J. S. (1964). “On the Einstein-Podolsky-Rosen Paradox.” Physics, 1: 195200.Google Scholar
Bellomo, G., Majtey, A. P., Plastino, A. R., and Plastino, A. (2014). “Quantum Correlations from Classically-Correlated States.” Physica A: Statistical Mechanics and Its Applications, 405: 260266.Google Scholar
Bellomo, G., Plastino, A., and Plastino, A. R. (2015). “Classical Extension of Quantum-Correlated Separable States.” International Journal of Quantum Information, 13: 1550015.Google Scholar
Bellomo, G., Plastino, A., and Plastino, A. R. (2016). “Quantumness and the role of locality on quantum correlations.” Physical Review A, 93: 062322.Google Scholar
Benatti, F., Floreanini, R., and Marzolino, U. (2010). “Sub-Shot-Noise Quantum Metrology with Entangled Identical Particles.” Annals of Physics, 325: 924935.Google Scholar
Benatti, F., Floreanini, R., and Marzolino, U. (2014a). “Entanglement in Fermion Systems and Quantum Metrology.” Physical Review A, 89: 032326.Google Scholar
Benatti, F., Floreanini, R., and Titimbo, K. (2014b). “Entanglement of Identical Particles.” Open Systems & Information Dynamics, 21: 1440003.Google Scholar
Bengtsson, I. and Zyczkowski, K. (2006). Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge: Cambridge University Press.Google Scholar
Bennett, C. H., Bernstein, H. J., Popescu, S., and Schumacher, B. (1996). “Concentrating Partial Entanglement by Local Operations.” Physical Review A, 53: 2046.Google Scholar
Bennett, C. H., Di Vincenzo, D. P., Fuchs, C. A., Mor, T., Rains, E., Shor, P. W., and Wootters, W. K. (1999). “Quantum Nonlocality without Entanglement.” Physical Review A, 59: 1070.Google Scholar
Born, M. (1926). “Quantenmechanik der Stoßvorgänge.” Zeitschrift für Physik, 38: 803827.Google Scholar
Bratteli, O. and Robinson, D. W. (2012). Operator Algebras and Quantum Statistical Mechanics: Volume 1: C*-and W*-Algebras. Symmetry Groups. Decomposition of States. Berlin: Springer-Verlag.Google Scholar
Brunner, N., Gisin, N., and Scarani, V. (2005). “Entanglement and Non-locality Are Different Resources.” New Journal of Physics, 7: 88.Google Scholar
Bruß, D. (1999). “Entanglement Splitting of Pure Bipartite Quantum States.” Physical Review A, 60: 4344.Google Scholar
Castagnino, M., Fortin, S., Laura, R., and Lombardi, O. (2008). “A General Theoretical Framework for Decoherence in Open and Closed Systems.” Classical and Quantum Gravity, 25: 154002.Google Scholar
Castagnino, M., Fortin, S., and Lombardi, O. (2009). “Decoherence as a Relative Phenomenon: A Generalization of the Spin-Bath Model.” arXiv preprint, arXiv:0907.1933.Google Scholar
Castagnino, M., Fortin, S., and Lombardi, O. (2010a). “Suppression of Decoherence in a Generalization of the Spin-Bath Model.” 43: 065304.Google Scholar
Castagnino, M., Fortin, S., and Lombardi, O. (2010b). “Is the Decoherence of a System the Result of Its Interaction with the Environment?Modern Physics Letters A, 25: 14311439.Google Scholar
De la Torre, A. C., Goyeneche, D., and Leitao, L. (2010). “Entanglement for All Quantum States.” European Journal of Physics, 31: 325332.Google Scholar
Derkacz, Ł., Gwóźdź, M., and Jakóbczyk, L. (2012). “Entanglement beyond Tensor Product Structure: Algebraic Aspects of Quantum Non-separability.” Journal of Physics A: Mathematical and Theoretical, 45: 025302.Google Scholar
Devi, A. U. and Rajagopal, A. K. (2008). “Generalized Information Theoretic Measure to Discern the Quantumness of Correlations.” Physical Review Letters, 100: 140502.Google Scholar
Earman, J. (2014). “Some Puzzles and Unresolved Issues about Quantum Entanglement.” Erkenntnis, 80: 303337.Google Scholar
Fock, V. (1932). “Konfigurationsraum und Zweite Quantelung.” Zeitschrift für Physik, 75: 622647.Google Scholar
Girolami, D. (2014). “Observable Measure of Quantum Coherence in Finite Dimensional Systems.” Physical Review Letters, 113: 170401.Google Scholar
Girolami, D., Tufarelli, T., and Adesso, G. (2013). “Characterizing Nonclassical Correlations via Local Quantum Uncertainty.” Physical Review Letters, 110: 240402.Google Scholar
Haag, R. (2012). Local Quantum Physics: Fields, Particles, Algebras. Berlin: Springer.Google Scholar
Hamhalter, J. (2003). “Generalized Gleason Theorem.” Pp. 121175 in Quantum Measure Theory. Dordrecht: Springer.Google Scholar
Harshman, N. L. (2012). “Observables and Entanglement in the Two-Body System.” Pp. 386390 in AIP Conference Proceedings, Quantum Theory: Reconsideration of Foundations 6, Linnaeus University, June 11–14.Google Scholar
Harshman, N. L. and Ranade, K. S. (2011). “Observables Can Be Tailored to Change the Entanglement of Any Pure State.” Physical Review A, 84: 012303.Google Scholar
Harshman, N. L. and Wickramasekara, S. (2007a). “Galilean and Dynamical Invariance of Entanglement in Particle Scattering.” Physical Review Letters, 98: 080406.Google Scholar
Harshman, N. L. and Wickramasekara, S. (2007b). “Tensor Product Structures, Entanglement, and Particle Scattering.” Open Systems & Information Dynamics, 14: 341351.Google Scholar
Hasse, C. L. (2013). “On the Individuation of Physical Systems in Quantum Theory.” PhD Thesis, University of Adelaide.Google Scholar
Henderson, L. and Vedral, V. (2001). “Classical, Quantum and Total Correlations.” Journal of Physics A: Mathematical and General, 34: 68996905.Google Scholar
Horodecki, R., Horodecki, P., Horodecki, M., and Horodecki, K. (2009). “Quantum Entanglement.” Reviews of Modern Physics, 81: 865942.Google Scholar
Jeknić-Dugić, J., Arsenijević, M., and Dugić, M. (2013). Quantum Structures: A View of the Quantum World. Saarbrücken: Lambert Academic Publishing.Google Scholar
Li, N. and Luo, S. (2008). “Classical States versus Separable States.” Physical Review A, 78: 024303.Google Scholar
Lombardi, O., Ardenghi, J. S., Fortin, S., and Castagnino, M. (2011). “Compatibility between Environment-Induced Decoherence and the Modal-Hamiltonian Interpretation of Quantum Mechanics.” Philosophy of Science, 78: 10241036.Google Scholar
Lombardi, O., Fortin, S., and Castagnino, M. (2012). “The Problem of Identifying the System and the Environment in the Phenomenon of Decoherence.” In de Regt, H. W., Hartmann, S., and Okasha, S. (eds.), EPSA Philosophy of Science: Amsterdam 2009. Berlin: Springer.Google Scholar
Luo, S. (2003). “Wigner-Yanase Skew Information and Uncertainty Relations.” Physical Review Letters, 91: 180403.Google Scholar
Lychkovskiy, O. (2013). “Dependence of Decoherence-Assisted Classicality on the Way a System Is Partitioned into Subsystems.” Physical Review A, 87: 022112.Google Scholar
Messiah, A. M. L. and Greenberg, O. W. (1964). “Symmetrization Postulate and Its Experimental Foundation.” Physical Review, 136: B248B267.Google Scholar
Modi, K., Brodutch, A., Cable, H., Paterek, T., and Vedral, V. (2012). “The Classical-Quantum Boundary for Correlations: Discord and Related Measures.” Reviews of Modern Physics, 84: 16551707.Google Scholar
Nielsen, M. A. and Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press.Google Scholar
Ollivier, H. and Zurek, W. H. (2001). “Quantum Discord: A Measure of the Quantumness of Correlations.” Physical Review Letters, 88: 017901.Google Scholar
Plastino, A., Bellomo, G., and Plastino, A. R. (2015). “Quantum State Space-Dimension as a Quantum Resource.” International Journal of Quantum Information, 13: 1550039.Google Scholar
Popescu, S. (1994). “Bell’s Inequalities versus Teleportation: What Is Nonlocality?Physical Review Letters, 72: 797799.Google Scholar
Raggio, G. A. (1988). “A Remark on Bell’s Inequality and Decomposable Normal States.” Letters in Mathematical Physics, 15: 2729.Google Scholar
Rédei, M. (2013). Quantum Logic in Algebraic Approach. Dordrecht: Springer.Google Scholar
Schlosshauer, M. A. (2007). Decoherence and the Quantum-to-Classical Transition. Dordrecht: Springer.Google Scholar
Schrödinger, E. (1935). “Discussion of Probability Relations between Separated Systems.” Mathematical Proceedings of the Cambridge Philosophical Society, 31: 555563.Google Scholar
Thirring, W., Bertlmann, R. A., Köhler, P., and Narnhofer, H. (2011). “Entanglement or Separability: The Choice of How to Factorize the Algebra of a Density Matrix.” The European Physical Journal D, 64: 181196.Google Scholar
Tommasini, P., Timmermans, E., and de Toledo Piza, A. (1998). “The Hydrogen Atom as an Entangled Electron-Proton System.” American Journal of Physics, 66: 881886.Google Scholar
Vidal, G., Hammerer, K., and Cirac, J. I. (2002). “Interaction Cost of Nonlocal Gates.” Physical Review Letters, 88: 237902.Google Scholar
Viola, L. and Barnum, H. (2010). “Entanglement and Subsystems, Entanglement beyond Subsystems and All That.” Pp. 1643 in Bokulich, A. and Jaeger, G. (eds.), Philosophy of Quantum Information and Entanglement. Cambridge: Cambridge University Press.Google Scholar
Viola, L., Barnum, H., Knill, E., Ortiz, G., and Somma, R. (2005). “Entanglement beyond Subsystems.” Contemporary Mathematics, 381: 117.Google Scholar
Wallace, D. (2003). “Everett and Structure.” Studies in History and Philosophy of Modern Physics, 34: 87105.Google Scholar
Wallace, D. (2012). “Decoherence and Its Role in the Modern Measurement Problem.” Philosophical Transactions of the Royal Society A, 370: 45764593.Google Scholar
Werner, W. F. (1989). “Quantum States with Einstein-Podolsky-Rosen Correlations Admitting a Hidden Variable Model.” Physical Review A, 40: 42774281.Google Scholar
Wigner, E. P. and Yanase, M. M. (1963). “Information Contents of Distributions.” Proceedings of the National Academy of Sciences of the United States of America, 49: 910918.Google Scholar
Zanardi, P. (2001). “Virtual Quantum Subsystems.” Physical Review Letters, 87: 077901.Google Scholar
Zanardi, P., Lidar, D. A., and Lloyd, S. (2004). “Quantum Tensor Product Structures Are Observable Induced.” Physical Review Letters, 92: 060402.Google Scholar
Zeh, D. H. (1970). “On the Interpretation of Measurement in Quantum Theory.” Foundations of Physics, 1: 6976.Google Scholar
Zurek, W. H. (1981). “Pointer Basis of Quantum Apparatus: Into what Mixture Does the Wave Packet Collapse?Physical Review D, 24: 15161525.Google Scholar
Zurek, W. H. (1982). “Environment-Induced Superselection Rules.” Physical Review D, 26: 18621880.Google Scholar
Zurek, W. H. (1998). “Decoherence, Einselection and the Existential Interpretation (The Rough Guide).” Philosophical Transactions of the Royal Society of London, Series A: Mathematical Physical and Engineering Sciences, 356: 17931821.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×