Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T22:23:04.776Z Has data issue: false hasContentIssue false

Appendices

Published online by Cambridge University Press:  16 February 2017

Kenneth C. Holmes
Affiliation:
Max-Planck-Institut für Medizinische Forschung, Heidelberg
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Aaron Klug - A Long Way from Durban
A Biography
, pp. 309 - 354
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Klug, A. 1947. ‘Crystal structure of para-bromochlorobenzeneNature 160, 570.CrossRefGoogle Scholar
Klug, A. 1950. ‘The crystal and molecular structure of triphenylene, C18H12Acta Cryst. 3, 165175.CrossRefGoogle Scholar
Klug, A. 1950. ‘The application of the Fourier-transform method to the analysis of the structure of triphenylene C18H12Acta Cryst. 3, 176181.CrossRefGoogle Scholar
Klug, A. 1952. The Kinetics of Phase Changes in Solids. Dissertation for the PhD degree, University of Cambridge,Google Scholar
Klug, A., Roughton, F.J.W. and 50 others. 1955. ‘General discussionFaraday Soc. Disc. No. 20, 278.Google Scholar
Franklin, R.E. and Klug, A. 1955. ‘The splitting of layer lines in X-ray fibre diagrams of helical structures; application to tobacco mosaic virusActa Cryst. 8, 777.CrossRefGoogle Scholar
Klug, A., Kreuzer, F. and Roughton, F.J.W. 1956. ‘Simultaneous diffusion and chemical reaction in thin layers of haemoglobin solutionProc. Roy. Soc. B 145, 452472.Google ScholarPubMed
Klug, A., Kreuzer, F. and Roughton, F.J.W. 1956. ‘The diffusion of oxygen in concentrated haemoglobin solutionsHelv. Physiol. Pharmacol. Acta 14, 121127.Google ScholarPubMed
Franklin, R.E. and Klug, A. 1956. ‘The nature of the helical groove on the tobacco mosaic virus particleBiochim. Biophys. Acta 19, 403419.Google Scholar
Franklin, R.E., Klug, A. and Holmes, K.C. 1956. ‘X-ray diffraction studies of the structure and morphology of tobacco mosaic virus’ CIBA Found. Symp., 39–52.Google Scholar
Klug, A., Finch, J.T. and Franklin, R.E. 1957. ‘Structure of turnip yellow mosaic virusNature 179, 683684.CrossRefGoogle ScholarPubMed
Gibson, Q.H. and Roughton, F.J.W. with an Appendix by Klug, A.. 1957. ‘The determination of the velocity constants of the four successive reactions of carbon monoxide with sheep haemoglobinProc. Roy. Soc. B 146, 205224.Google Scholar
Klug, A. and Franklin, R.E. 1957. ‘The reaggregation of the A-protein of tobacco mosaic virusBiochim. Biophys. Acta 23, 199201.Google Scholar
Klug, A., Finch, J.T. and Franklin, R.E. 1957. ‘The structure of turnip yellow mosaic virus; X-ray diffraction studiesBiochim, Biophys. Acta 25, 242252.CrossRefGoogle ScholarPubMed
Klug, A., Crick, F.H.C. and Wyckoff, H.W. 1958. ‘Diffraction by helical structuresActa Cryst. 11, Pt. 3, 199213.CrossRefGoogle Scholar
Klug, A. 1958. ‘Joint probability distributions of structure factors and the phase problemActa Cryst. 11, 515543.CrossRefGoogle Scholar
Klug, A. and Franklin, R.E. 1958. ‘Order-disorder transitions in structures containing helical moleculesFarad. Soc. Disc. No. 25.Google Scholar
Franklin, R.E., Klug, A., Finch, J.T. and Holmes, K.C. 1958. ‘On the structure of some ribonucleoprotein particlesFaraday Soc. Disc. No. 25.CrossRefGoogle Scholar
Finch, J.T. and Klug, A. 1959. ‘Structure of poliomyelitis virusNature 183, 17091714.CrossRefGoogle ScholarPubMed
Klug, A. 1959. ‘A reply to some comments by Karle and HauptmanActa Cryst. 12, 943.CrossRefGoogle Scholar
Klug, A., Franklin, R.E. and Humphreys-Owen, S.P.F. 1959. ‘The crystal structure of Tipula Iridescent virus as determined by Bragg reflection of visible lightBiochim. Biophys. Acta 32, 203219.CrossRefGoogle ScholarPubMed
Franklin, R.E., Caspar, D.L.D. and Klug, A. 1959. Plant Pathology: Problems and Progress, 1908–1958 (Golden Jubilee Volume of the American Phytopathological Society) (University of Wisconsin Press).Google Scholar
Finch, J.T., and Klug, A. 1960. ‘The form of crystals of mahoney poliovirus grown in phosphate-salineBiochim. Biophys. Acta 41, 430433.Google Scholar
Klug, A. and Finch, J.T. 1960. ‘The symmetries of the protein and nucleic acid in turnip yellow mosaic virus; X-ray diffraction studiesJ. Mol. Biol. 2, 201215.CrossRefGoogle Scholar
Klug, A. and Caspar, D.L.D. 1960. ‘The structure of small virusesAdv. Virus Res. 7, 225325.Google Scholar
Finch, J.T. and Klug, A. 1960. ‘X-ray “powder” diagrams of crystals of an artificial top component from turnip yellow mosaic virusJ. Mol. Biol. 2, 434435.Google Scholar
Klug, A., Holmes, K.C. and Finch, J.T. 1961. ‘X-ray diffraction studies on ribosomes from various sourcesJ. Mol. Biol. 3, 87100.Google Scholar
Caspar, D.L.D. and Klug, A. 1962. ‘Physical principles in the construction of regular virusesCold Spring Harb. Symp. Quant. Biol. 27, 124.Google Scholar
Caspar, D.L.D. and Klug, A. 1963. ‘Structure and assembly of regular virus particles’ MD Anderson Symp.: Viruses, Nucleic Acid and Cancer 27–39.Google Scholar
Klug, A. and Berger, J.E. 1964. ‘An optical method for the analysis of periodicities in electron micrographs, and some observations on the mechanism of negative stainingJ. Mol. Biol. 10, 565569.Google Scholar
Finch, J.T., Klug, A. and Stretton, A.O.W. 1964. ‘The structure of the “polyheads” of T4 bacteriophageJ. Mol. Biol. 10, 570575.CrossRefGoogle ScholarPubMed
Finch, J.T. and Klug, A. 1965. ‘The structure of viruses of the papilloma-polyoma type. III. Structure of rabbit papilloma virusJ. Mol. Biol. 13, 112.Google Scholar
Klug, A. and Finch, J.T. 1965. ‘Structure of viruses of the papilloma-polyoma type. I. Human wart virusJ. Mol. Biol. 11, 403423.CrossRefGoogle ScholarPubMed
Klug, A. 1965. ‘Structure of viruses of the papilloma-polyoma type. II. Comments on other workJ. Mol. Biol. 13, 424431.CrossRefGoogle Scholar
Klug, A. and Finch, J.T. 1965. ‘Structure of viruses of the papilloma-polyoma typeJ. Mol. Biol. 11, 961962.Google Scholar
Klug, A., Finch, J.T., Leberman, R. and Longley, W. 1966. ‘Design and structure of regular virus particles’. In: CIBA Found. Symp. 1966: Principles of Biomolecular Organisation (ed. G.E.W. Wolstenholme and M. O’Connor), 158–189.Google Scholar
Grimstone, A.V. and Klug, A. 1966. ‘Observations on the substructure of flagellar fibresJ. Cell Sci. 1, 351362.Google Scholar
Klug, A., Longley, W. and Leberman, R. 1966. ‘Arrangement of protein subunits and the distribution of nucleic acid in turnip yellow mosaic virus. I. X-ray diffraction studiesJ. Mol. Biol. 15, 315343.Google Scholar
Finch, J.T. and Klug, A. 1966. ‘Arrangement of protein subunits and the distribution of nucleic acid in turnip yellow mosaic virus. II. Electron microscope studiesJ. Mol. Biol. 15, 344364.Google Scholar
Klug, A. and DeRosier, D.J. 1966. ‘Optical filtering of electron micrographs: reconstruction of one-sided imagesNature 212, 2932.Google Scholar
Finch, J.T., Leberman, R., Chang, Y.-S. and Klug, A. 1966. ‘Rotational symmetry of the two turn disk aggregate of tobacco mosaic virus proteinNature 212, 349351.CrossRefGoogle ScholarPubMed
Harrison, B.D. and Klug, A. 1966. ‘Relation between length and sedimentation coefficient for particles of tobacco rattle virusesVirology 30, 738740.CrossRefGoogle ScholarPubMed
Finch, J.T. and Klug, A. 1967. ‘Structure of broad bean mottle virus. I. Analysis of electron micrographs and comparison with turnip yellow mosaic virus and its top componentJ. Mol. Biol. 24, 289302.CrossRefGoogle ScholarPubMed
Finch, J.T., Klug, A. and van Regenmortel, M.H.V. 1967. ‘The structure of cucumber mosaic virusJ. Mol. Biol. 24, 303305.Google Scholar
Klug, A. 1967. ‘The design of self-assembling systems of equal units.’ In Formation and Fate of Cell Organelles. Symp. Int. Soc. Cell Biol. Vol. 6, 118 (Academic Press).Google Scholar
Finch, J.T., Klug, A. and Nermut, M.V. 1967. ‘The structure of the macromolecular units on the cell walls of bacillus polymyxaJ. Cell Sci. 2, 587590.CrossRefGoogle Scholar
DeRosier, D.J. and Klug, A. 1968. ‘Reconstruction of three-dimensional structures from electron micrographsNature 217, 130134.CrossRefGoogle Scholar
Klug, A. and Finch, J.T. 1968. ‘Structure of viruses of the papilloma-polyoma type. IV. Analysis of tilting experiments in the electron microscopeJ. Mol. Biol. 31, 112.CrossRefGoogle ScholarPubMed
Kiselev, N.A., DeRosier, D.J. and Klug, A. 1968. ‘Structure of the tubes of catalase: analysis of electron micrographs by optical filteringJ. Mol. Biol. 35, 561566.Google Scholar
Klug, A. 1968. ‘Rosalind Franklin and the discovery of the structure of DNANature 219, 808810.CrossRefGoogle Scholar
Clark, B.F.C., Doctor, B.P., Holmes, K.C., Klug, A., Marcker, K.A. and Morris, S.J. 1968. ‘Crystallisation of transfer RNANature 219, 12221224.CrossRefGoogle Scholar
DeRosier, D.J. and Klug, A. 1969. ‘Positions of ribosomal subunitsScience 163, 1470.CrossRefGoogle ScholarPubMed
Kiselev, N.A. and Klug, A. 1969. ‘The structure of viruses of the papilloma-polyoma type. V. Tubular variants built of pentamersJ. Mol. Biol. 40, 155171.Google Scholar
Klug, A. 1968. ‘Symmetry and function of biological systems at the macromolecular level. Point groups and the design of aggregatesNobel Symp. 11.Google Scholar
Finch, J.T. and Klug, A. 1969. ‘Two double helical forms of polyriboadenylic acid and the pH-dependent transition between themJ. Mol. Biol. 46, 597598.Google Scholar
Fowle, L.G., Juritz, J.F.W., Klug, A. and Stephen, A.M. 1970. ‘Crystallinity of the gummy polysaccharide from Watsonia pyramidata corm-sacsSA Med. J. 44, 152.Google Scholar
Crowther, R.A., DeRosier, D.J. and Klug, A. 1970. ‘The reconstruction of a three-dimensional structure from projections and its application to electron microscopyProc. Roy. Soc. Lond. A 317, 319340.Google Scholar
Crowther, R.A., Amos, L.A., Finch, J.T., DeRosier, D.J. and Klug, A. 1970. ‘Three dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographsNature 226, 421425.Google Scholar
Finch, J.T., Klug, A. and Leberman, R. 1970. ‘The structures of turnip crinkle and tomato bushy stunt viruses. II. The surface structure; dimer clustering patternsJ. Mol. Biol. 50, 215222.Google Scholar
Erickson, H.P. and Klug, A. 1970. ‘The Fourier transform of an electron micrograph; effects of defocussing and aberrations, and implications for the use of underfocus contrast enhancementBer. Bunsen-Gesselsch. Phys. Chem. (früher Z. Electrochem.) 74, 11291137.CrossRefGoogle Scholar
Erickson, H.P. and Klug, A. 1971. ‘Measurement and compensation of defocusing and aberrations by Fourier processing of electron micrographsPhil. Trans. Roy. Soc. B 261, 105118.Google Scholar
Klug, A. 1971. ‘Applications of image analysis technique in electron microscopyPhil. Trans. Roy. Soc. B 261, 173179.Google Scholar
Finch, J.T. and Klug, A. 1971. ‘Three-dimensional reconstruction of the stacked-disk aggregate of tobacco mosaic virus protein from electron micrographsPhil. Trans. Roy. Soc. B 261, 211219.Google ScholarPubMed
Durham, A.C.H., Finch, J.T. and Klug, A. 1971. ‘States of aggregation of tobacco mosaic virus proteinNature New Biol. 229, 3742.CrossRefGoogle ScholarPubMed
Durham, A.C.H. and Klug, A. 1971. ‘Polymerisation of protein subunits and its controlNature New Biol. 229, 4246.Google Scholar
Butler, P.J.G. and Klug, A. 1971. ‘Assembly of the particles from RNA and disks of proteinNature New Biol. 229, 4750.CrossRefGoogle ScholarPubMed
Crowther, R.A. and Klug, A. 1971. ‘ART and science or conditions for three-dimensional reconstruction from electron microscope images’. J. Theor. Biol. 32, 199203.CrossRefGoogle ScholarPubMed
Klug, A. and Durham, A.C.H. 1971. ‘The disk of TMV protein and its relation to the helical and other modes of aggregationCold Spring Harb. Symp. Quant. Biol. 36, 449460.CrossRefGoogle Scholar
Klug, A. 1971. ‘Interpretation of the rotation function map of satellite tobacco necrosis virus; octahedral packing of icosahedral particlesCold Spring Harb. Symp. Quant. Biol. 36, 483486.CrossRefGoogle Scholar
Barrett, A.N., Barrington-Leigh, J., Holmes, K.C., Leberman, R., Mandelkow, E. von Sengbusch, P. and Klug, A. 1971. ‘An electron density map of tobacco mosaic virus at 10 Å resolutionCold Spring Harb. Symp. Quant. Biol. 36, 433448.CrossRefGoogle Scholar
DeRosier, D.J. and Klug, A. 1972. ‘Structure of the tubular variants of the head of bacteriophage T4 (polyheads). I. Arrangement of subunits in some classes of polyheadsJ. Mol. Biol. 65, 469488.Google Scholar
Yanagida, M., DeRosier, D.J. and Klug, A. 1972. ‘The structure of the tubular variants of the head of bacteriophage T5 (polyheads). II. Structural transition from a hexamer to a 6 + 1 morphological unitJ. Mol. Biol. 65, 489499.CrossRefGoogle Scholar
Klug, A. 1972. ‘Assembly of tobacco mosaic virusFed. Proc. 31, 1.Google ScholarPubMed
Durham, A.C.H. and Klug, A. 1972. ‘Structures and roles of the polymorphic forms of tobacco mosaic virus protein; III. A model for the association of A-protein into discsJ. Mol. Biol. 67, 315332.Google Scholar
Mirzabekov, A.D., Rhodes, D., Finch, J.T., Klug, A. and Clark, B.F.C. 1972. ‘Crystallization of tRNAs as cetyltrimethylammonium saltsNature New Biol. 237, 2728.Google Scholar
Crowther, R.A., Amos, L.A. and Klug, A. 1972. ‘Three-dimensional image reconstruction using functional expansionsProc. Fifth Eur. Congress on Electron Microscopy, Manchester, p. 539.Google Scholar
Amos, L.A. and Klug, A. 1972. ‘Image filtering by computerProc. Fifth Eur. Congress on Electron Microscopy, Manchester, p. 580.Google Scholar
Klug, A. 1972. ‘The polymorphism of tobacco mosaic virus protein and its significance for the assembly of the virusCIBA Found. Symp. 7.Google Scholar
Butler, P.J.G. and Klug, A. 1972. ‘Assembly of tobacco mosaic virus in vitro: effect of state of polymerisation of the protein componentProc. Natl Acad. Sci. USA. 69, 29502953.CrossRefGoogle ScholarPubMed
Klug, A. and Crowther, R.A. 1972. ‘Three-dimensional image reconstruction from the viewpoint of information theoryNature 238, 435440.Google Scholar
Mellema, J.E. and Klug, A. 1972. ‘Quaternary structure of gastropod haemocyaninNature 239, 146150.Google Scholar
Ladner, J.E., Finch, J.T., Klug, A. and Clark, B.F.C. 1972. ‘High resolution X-ray diffraction studies on a pure species of transfer RNAJ. Mol. Biol. 72, 99101.Google Scholar
Brown, R.S., Clark, B.F.C., Coulson, R.R., Finch, J.T., Klug, A. and Rhodes, D. 1972. ‘Crystallisation of pure species of bacterial tRNA for X-ray diffraction studiesEur. J. Biochem. 31, 130134.Google Scholar
Butler, P.J.G., Durham, A.C.H. and Klug, A. 1972. ‘Structures and roles of the polymorphic forms of tobacco mosaic virus protein. IV. Control of mode of aggregation of tobacco mosaic virus protein by proton bindingJ. Mol. Biol. 72, 118.Google Scholar
Finch, J.T. and Klug, A. 1972. ‘The helical surface lattice of bacterial flagella’. In: Proc. First John Innes Symp., Norwich. The Generation of Subcellular Structures (ed. R. Markham and J. Bancroft).Google Scholar
Butler, P.J.G. and Klug, A. 1973. ‘Effect of state of polymerisation of the protein component on the assembly of tobacco mosaic virusMolec. Gen. Genet. 120, 9193.CrossRefGoogle ScholarPubMed
Klug, A. and Butler, P.J.G. 1973. ‘Dislocations in tobacco mosaic virusNature 244, 115116.CrossRefGoogle ScholarPubMed
Amos, L.A. and Klug, A. 1974. ‘Arrangement of subunits in flagellar microtubulesJ. Cell Sci. 14, 523549.Google Scholar
Klug, A. 1974. ‘Rosalind Franklin and the double helixNature 248, 787788.Google Scholar
Leberman, R., Finch, J.T., Gilbert, P.F.C., Witz, J. and Klug, A. 1974. ‘X-ray analysis of the disk of tobacco mosaic virus proteinJ. Mol. Biol. 86, 179182.Google Scholar
Finch, J.T., Gilbert, P.F.C., Klug, A. and Leberman, R. 1974. ‘X-ray analysis of the disk of tobacco mosaic virus protein. II. The packing arrangement in the crystalJ. Mol. Biol. 86, 183192.Google Scholar
Gilbert, P.F.C. and Klug, A. 1974. ‘X-ray analysis of the disk of tobacco mosaic virus protein. III. A low resolution electron density mapJ. Mol. Biol. 86, 193207.Google Scholar
Unwin, P.N.T. and Klug, A. 1974. ‘Electron microscopy of the stacked disk aggregate of TMV protein. I. 3-dimensional image reconstructionJ. Mol. Biol. 87, 641656.CrossRefGoogle Scholar
Finch, J.T. and Klug, A. 1974. ‘The structural relationship between the stacked disk and helical polymers of TMV proteinJ. Mol. Biol. 87, 633640.Google Scholar
Robertus, J.D., Ladner, J., Finch, J.T., Rhodes, D., Brown, R., Clark, B.F.C. and Klug, A. 1974. ‘Structure of yeast phenylalanine tRNA at 3 Å resolutionNature 250, 546551.Google Scholar
Robertus, J.D., Ladner, J., Finch, J.T. Rhodes, D., Brown, R., Clark, B.F.C. and Klug, A. 1974. ‘Correlation between three-dimensional structure of tRNA and chemical reactivityNucleic Acids Res. 1, 7.Google Scholar
Klug, A., Robertus, J.D., Ladner, J., Brown, R, and Finch, J.T. 1974. ‘Conservation of the molecular structure of yeast phenylalanine transfer RNA in two crystal formsProc. Natl Acad. Sci. USA 71, 37113715.Google Scholar
Klug, A., Ladner, J. and Robertus, J.D. 1974. ‘The structural geometry of coordinated base changes in transfer RNAJ. Mol. Biol. 89, 511516.Google Scholar
Crowther, R.A. and Klug, A. 1974. ‘Three dimensional image reconstruction on an extended field – a fast, stable algorithmNature 251, 490492.Google Scholar
Branton, D. and Klug, A. 1975. ‘Capsid geometry of bacteriophage T2: a freeze-etching studyJ. Mol. Biol. 92, 559565.CrossRefGoogle ScholarPubMed
Sperling, R., Amos, L.A. and Klug, A. 1975. ‘A study of the pairing interaction between protein subunits in the tobacco mosaic virus family by image reconstruction from electron micrographsJ. Mol. Biol. 92, 541558.Google Scholar
Wakabayashi, T., Huxley, H.E., Amos, L.A. and Klug, A. 1975. ‘Three-dimensional image reconstruction of actin–tropomyosin complex and actin–tropomyosin–troponin T–troponin I complexJ. Mol. Biol. 93, 477497.Google Scholar
Sperling, R. and Klug, A. 1975. ‘States of aggregation of the Dahlemense strain of tobacco mosaic virus protein and their relation to crystal formationJ. Mol. Biol. 96, 425430.Google Scholar
Crowther, R.A. and Klug, A. 1975. ‘Structural analysis of macromolecular assemblies by image reconstruction from electron micrographsAnn. Rev. Biochem. 44, 161182.Google Scholar
Ladner, J.E., Jack, A., Robertus, J.D., Brown, R.S., Rhodes, D., Clark, B.F.C. and Klug, A. 1975. ‘Atomic co-ordinates for yeast phenylalanine tRNANucleic Acids Res. 2, 16291637.Google Scholar
Crick, F.H.C. and Klug, A. 1975. ‘Kinky helixNature 255, 530533.Google Scholar
Amos, L.A. and Klug, A. 1975. ‘Three-dimensional image reconstructions of the contractile tail of T4 bacteriophageJ. Mol. Biol. 99, 5173.Google Scholar
Ladner, J.E., Jack, A., Robertus, J.D., Brown, R.S., Rhodes, D., Clark, B.F.C. and Klug, A. 1975. ‘Structure of yeast phenylalanine transfer RNA at 2.5 Å resolutionProc. Natl Acad. Sci. USA 72, 44144418.Google Scholar
Clark, B.F.C. and Klug, A. 1975. ‘Structure and function of tRNA with special reference to the three dimensional structure of yeast phenylalanine tRNA’ Proc. 10th FEBS Meeting, 183–206.Google Scholar
Champness, J.N., Bloomer, A.C., Bricogne, G., Butler, P.L.G. and Klug, A. 1976. ‘The structure of the protein disk of tobacco mosaic virus to 5 Å resolutionNature 259, 2024.CrossRefGoogle Scholar
Laemmli, U.K., Amos, L.A. and Klug, A. 1976. ‘Correlation between structural transformation and cleavage of the major head protein of T4 bacteriophageCell 7, 191203.Google Scholar
Jack, A., Klug, A. and Ladner, J.E. 1976. ‘“Non-rigid” nucleotides in tRNA: a new correlation in the conformation of a riboseNature 261, 250251.Google Scholar
Finch, J.T. and Klug, A. 1976. ‘A solenoidal model for superstructure in chromatinProc. Natl Acad. Sci. USA 73, 18971901.Google Scholar
Butler, P.J.G., Bloomer, A.C., Bricogne, G., Champness, J.N., Graham, J., Guilley, H., Klug, A. and Zimmern, D. 1976. ‘Tobacco mosaic virus assembly – specificity and the transition in protein structure during RNA packaging’ in Proc. 3rd John Innes Symp. Structure–Function Relationships of Proteins (ed. Markham, R. and Horne, R. W.) 101110 (Elsevier).Google Scholar
Amos, L.A., Linck, R.W. and Klug, A. 1976. ‘Molecular structure of flagellar microtubules’ Cold Spring Harb. Symp. Cell Motility, 847–867.Google Scholar
Jack, A., Ladner, J.E. and Klug, A. 1976. ‘Crystallographic refinement of yeast phenylalanine transfer RNA at 2.5 Å resolutionJ. Mol. Biol. 108, 619649.Google Scholar
Crick, F.H.C., Brenner, S., Klug, A. and Pieczenik, G. 1976. ‘A speculation on the origin of protein synthesisOrigins Life 7, 389397.Google Scholar
Jack, A., Ladner, J.E., Rhodes, D. Brown, R.S. and Klug, A. 1977. ‘A crystallographic study of metal-binding to yeast phenylalanine transfer RNAJ. Mol. Biol. 111, 315328.CrossRefGoogle ScholarPubMed
Sperling, L. and Klug, A. 1977. ‘X-ray studies on “native” chromatinJ. Mol. Biol. 112, 253263.Google Scholar
Finch, J.T., Lutter, L.C., Rhodes, D., Brown, R.S. Rushton, B., Levitt, M. and Klug, A. 1977. ‘Structure of nucleosome core particles of chromatinNature 269, 2936.Google Scholar
Klug, A., Lutter, L.C., Rhodes, D., Brown, R.S., Rushton, B. and Finch, J.T. 1977. ‘X-ray crystallographic and enzymatic analysis of nucleosome coresFEBS 11th Meeting, Copenhagen, 1977. Gene Expression 43, Symp. A2, 233235.Google Scholar
Klug, A. 1978. ‘I. Structure of chromatin. Introductory remarksPhil. Trans. Roy. Soc. Lond. B 283, 233239.Google Scholar
Finch, J.T. and Klug, A. 1978. ‘X-ray and electron microscope analysis of crystals of nucleosome coresCold Spring Harb. Symp. Quant. Biol. 42, 19.Google Scholar
Butler, P.J.G. and Klug, A. 1978. ‘The assembly of a virusScient. Am. 239, 5259.Google Scholar
Bloomer, A.C., Champness, J.N., Bricogne, G., Staden, R. and Klug, A. 1978. ‘Protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunitsNature 276, 362368.Google Scholar
Finch, J.T., Lutter, L.C., Rhodes, D., Brown, R.S., Rushton, B. and Klug, A. 1978. ‘X-ray and electron microscope studies on nucleosome structureFEBS 12th Meeting, Dresden, Gene Functions 51, 193197.Google Scholar
Klug, A., Jack, A., Viswamitra, M.A., Kennard, O., Shakked, Z. and Steitz, T.A. 1979. ‘A hypothesis on a specific sequence-dependent conformation of DNA and its relation to the binding of the lac-repressor proteinJ. Mol. Biol. 131, 669680.Google Scholar
Prunell, A., Kornberg, R.D., Lutter, L.C., Klug, A., Levitt, M. and Crick, F.H.C. 1979. ‘Periodicity of deoxyribonuclease I digestion of chromatinScience 204, 855858.Google Scholar
Thoma, F., Koller, Th. and Klug, A. 1979. ‘Involvement of histone Hl in the organization of the nucleosome and of the salt dependent superstructures of chromatinJ. Cell Biol. 83, 403427.Google Scholar
Klug, A. 1979. ‘From Macromolecules to Biological Assemblies’. Address on award of Heineken Prize: Proc. Roy. Neth. Acad. Sci., April 1979.Google Scholar
Klug, A. 1978/79. ‘Image analysis and reconstruction in the electron microscope of biological macromoleculesChem. Scripta 14 (Proc. 47th Nobel Symp.) 245256.Google Scholar
Klug, A. 1978/79. ‘Direct imaging of atoms in crystals and molecules. Status and prospects for biological sciencesChem. Scripta 14 (Proc. 47th Nobel Symp.) 291293.Google Scholar
Klug, A. 1979. ‘The assembly of tobacco mosaic virus: Structure and specificityHarvey Lecture, 1978. The Harvey Lectures, Series 74, 141172.Google Scholar
Rhodes, D. and Klug, A. 1980. ‘Helical periodicity of DNA determined by enzyme digestionNature 286, 573578.Google Scholar
Klug, A., Rhodes, D., Smith, J., Finch, J.T. and Thomas, J.O. 1980. ‘A low resolution structure for the histone core of the nucleosomeNature 287, 509515.Google Scholar
Finch, J.T., Brown, R.S., Rhodes, D., Richmond, T.J., Rushton, B., Lutter, L.C. and Klug, A. 1980. ‘X-ray diffraction study of a new crystal form of the nucleosome core showing higher resolutionJ. Mol. Biol. 145, 757769.CrossRefGoogle Scholar
Bloomer, A.C., Graham, J., Hovmoller, S., Butler, P.J.G. and Klug, A. 1981. ‘Tobacco mosaic virus: Interaction of the protein disk with oligonucleotides and its implications for virus structure and assembly’. In: Structural Aspects of Recognition and Assembly in Biological Macromolecules. Proc. 7th Aharon Katzir-Katchalsky Conf., 851–864.Google Scholar
Kornberg, R.D. and Klug, A. 1981. ‘The nucleosomeScient. Am. 244, 5264.Google Scholar
Klug, A. and Lutter, L.C. 1981. ‘The helical periodicity of DNA on the nucleosomeNucleic Acids Res. 9, 42674283.Google Scholar
Richmond, T.J., Klug, A., Finch, J.T. and Lutter, L.C. 1981. ‘The organization of DNA in the nucleosome core particle’. In: Biomolecular Stereodynamics, Vol. II (ed. Sarma, R.H.), 109124 (Adenine Press).Google Scholar
Lomonossoff, G.P., Butler, P.J.G. and Klug, A. 1981. ‘Sequence-dependent variation in the conformation of DNAJ. Mol. Biol. 149, 745760.Google Scholar
Rhodes, D. and Klug, A. 1981. ‘Sequence dependent helical periodicity of DNANature 292, 378380.Google Scholar
Hingerty, B.E., Brown, R.S. and Klug, A. 1982. ‘Stabilization of the tertiary structure of yeast phenylalanine tRNA by [Co(NH3)6]. X-ray evidence for hydrogen bonding to pairs of guanine bases in the major grooveBiochim. Biophys. Acta 697, 7882.Google Scholar
Klug, A. Lutter, L.C. and Rhodes, D. 1982. ‘Helical periodicity of DNA on and off the nucleosome as probed by nucleasesCold Spring Harb. Symp. Quant. Biol. XLVII, 285292.Google Scholar
Richmond, T.J., Finch, J.T. and Klug, A. 1982. ‘Studies of nucleosome structureCold Spring Harb. Symp. Quant. Biol. XLVII, 493501.Google Scholar
Klug, A. ‘Structures of DNA: A summary’ Cold Spring Harb. Symp. Quant. Biol. XLVII, 1215–1223.Google Scholar
Brown, R.S., Hingerty, B.E., Dewan, J.C. and Klug, A. 1983. ‘Pb(II)-catalysed cleavage of the sugar-phosphate backbone of yeast tRNAPhe implications for lead toxicity and self-splicing RNANature 303, 543546.Google Scholar
Klug, A. 1983. ‘Architectural design of spherical virusesNature 303, 378379.Google Scholar
Klug, A. 1983. ‘From macromolecules to biological assemblies’. In: The Nobel Foundation, 93–125. Les Prix Nobel en 1982. Nobel lecture also published in: (a) Biosci. Rep. 3, 395430 (1983); (b) Angew. Chem. 22, 565–582 (1983) (Int edn), 95, 579–596 (German edn).Google Scholar
Cockell, M., Rhodes, D. and Klug, A. 1983. ‘Location of the primary sites of micrococcal nuclease cleavage on the nucleosome coreJ. Mol. Biol. 170, 423446.Google Scholar
Klug, A. 1983. ‘Nucleosome structure and chromatin superstructure’. In: Nucleic Acids Res. Proc. AMBO Symp., 91112 (Academic Press).Google Scholar
Klug, A. and Butler, P.J.G. 1983. ‘The structure of nucleosomes and chromatin’. In: Genes: Structure and Expression (ed. Kroon, A.M.), 141 (Wiley).Google Scholar
de Bruijn, M.H.L. and Klug, A. 1983. ‘A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire ‘dihydrouridine’ loop and stemEMBO J. 2, 13091321.Google Scholar
de Bruijn, M.H.L. and Klug, A. 1984, ‘A model for the structure of a small mitochondrial tRNA’. In: Gene Expression, Alfred Benzon Symp. 19 (ed. Clark, B.F.C. and Petersen, H.U.), 259278 (Munksgaard).Google Scholar
Westhof, E., Altschuh, D., Moras, D., Bloomer, A.C., Mondragon, A. Klug, A. and Van Regenmortel, M.H.V. 1984. ‘Correlation between segmental mobility and the location of antigenic determinants in proteinsNature 311, 123126.CrossRefGoogle ScholarPubMed
Richmond, T.J., Finch, J.T., Rushton, B., Rhodes, D. and Klug, A. 1984. ‘Structure of the nucleosome core particle at 7 Å resolutionNature 311, 532537.Google Scholar
Brown, R., Dewan, J.C. and Klug, A. 1985. ‘Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of yeast phenylalanine tRNABiochemistry 24, 4785.Google Scholar
Miller, J., McLachlan, A.D. and Klug, A. 1985. ‘Repetitive zinc-binding domains in the protein transcription factor III A from Xenopus oocytesEMBO J. 4, 16091614.Google Scholar
Widom, J. and Klug, A. 1985. ‘Structure of the 300 Å chromatin filament: X-ray diffraction from oriented samplesCell 43, 207213.Google Scholar
Klug, A. 1985. ‘The higher order structure of chromatin’. In: The Robert A. Welch Foundation Conf. Chem. Res. XXXIX. Genetic Chemistry: The Molecular Basis of Heredity, 133–160.Google Scholar
Klug, A., Finch, J.T. and Richmond, T.J. 1985. ‘Crystallographic structure of the octamer histone core of the nucleosomeScience 229, 11091110.Google Scholar
Van Regenmortel, M.H.V., Altschuh, D. and Klug, A. 1986. ‘Influence of local structure on the location of antigenic determinants in tobacco mosaic virus proteinCIBA Found. Symp. 119, 7684.Google Scholar
Rhodes, D. and Klug, A. 1986. ‘An underlying repeat in some transcriptional control sequences corresponding to half a double helical turn of DNACell 46, 123132.Google Scholar
Fairall, L., Rhodes, D. and Klug, A. 1986. ‘Mapping of the sites of protection on a 5S RNA gene by the Xenopus transcription factor IIIA: A model for the interactionJ. Mol. Biol. 192, 577591.Google Scholar
Diakun, G.P., Fairall, L. and Klug, A. 1986. ‘EXAFS study of the zinc-binding sites in the protein transcription factor IIIANature 324, 698699.CrossRefGoogle ScholarPubMed
Altschuh, D., Lesk, A.M., Bloomer, A.C. and Klug, A. 1987. ‘Correlation of co-ordinated amino acid substitutions with function in viruses related to tobacco mosaic virusJ. Mol. Biol. 193, 693707.Google Scholar
Nelson, H.C.M., Finch, J.T., Luisi, B.F. and Klug, A. 1987. ‘The structure of an oligo(dA) ∙ oligo(dT) tract and its biological implicationsNature 330, 221226.CrossRefGoogle ScholarPubMed
Travers, A.A. and Klug, A. 1987. ‘The bending of DNA in nucleosomes and its wider implicationsPhil. Trans. Roy. Soc. Lond. B 317, 537561.Google Scholar
Travers, A.A. and Klug, A. 1987. ‘Nucleoprotein complexes: DNA wrapping and writhingNature 327, 280281.Google Scholar
Klug, A. and Rhodes, D. 1987. ‘Zinc fingers, a novel protein motif for nucleic acid recognitionTrends Biochem. Sci. 12, 464469.Google Scholar
Rhodes, D. and Klug, A. 1988. ‘“Zinc fingers”: a novel motif for nucleic acid binding’. In: Nucleic Acids and Molecular Biology Vol. 2 (ed. Eckstein, F. and Lilley, D.M.J.), 149166 (Springer).Google Scholar
Klug, A. and Rhodes, D. 1987. ‘Zinc fingers: A novel protein fold for nucleic acid recognitionCold Spring Harbor Symp. Quant. Biol. LII, 473482.Google Scholar
O’Halloran, T.V., Lippard, S.J., Richmond, T.J. and Klug, A. 1987. ‘Multiple heavy-atom reagents for macromolecular X-ray structure determination. Application to the nucleosome core particleJ. Mol. Biol. 194, 705712.Google Scholar
Goedert, M., Wischik, C.M., Crowther, R.A., Walker, J.E. and Klug, A. 1988. ‘Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule associated protein tauProc. Natl Acad. Sci. USA 85, 40514055.Google Scholar
Wischik, C.M., Novak, M., Thogersen, H-C., Edwards, P.C., Runswick, M.J., Jakes, R., Walker, J.E., Milstein, C., Roth, M. and Klug, A. 1988. ‘Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer diseaseProc. Natl Acad. Sci. USA 85, 45064510.Google Scholar
Wischik, C.M., Novak, M., Edwards, P.C., Klug, A., Tichelaar, W. and Crowther, R.A. 1988. ‘Structural characterization of the core of the paired helical filament of Alzheimer diseaseProc. Natl Acad. Sci. USA 85, 48844888.Google Scholar
Klug, A. & Travers, A.A. 1989. ‘The helical repeat of nucleosome-wrapped DNACell 56, 911.Google Scholar
Klug, A. 1989. ‘Zinc fingers: ubiquitous protein modules for nucleic acid recognitionS. Afr. J. Sci. 85, 576581.Google Scholar
Sundquist, W.I. & Klug, A. 1989. ‘Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loopsNature 342, 825829.Google Scholar
Rhodes, D., Brown, R.S. and Klug, A. 1989. ‘Crystallisation of nucleosome core particlesMethods Enzymol. 170, 420428.Google Scholar
Spillantini, M.G., Goedert, M., Jakes, R. and Klug, A. 1990. ‘Different configurational states of b-amyloid and their distributions relative to plaques and tangles in Alzheimer diseaseProc. Natl Acad. Sci. USA 87, 39473951.Google Scholar
Spillantini, M.G., Goedert, M., Jakes, R. and Klug, A. 1990. ‘Topographical relationship between b-amyloid and tau protein epitopes in tangle-bearing cells in Alzheimer diseaseProc. Natl Acad. Sci. USA 87, 39523956.Google Scholar
Travers, A.A. and Klug, A. 1990. ‘Bending of DNA in nucleoprotein complexes’. In: DNA Topology and its Biological Effects (ed. Cozzarelli, N.R. and Wang, J.C.), 57106 (Cold Spring Harbor Laboratory Press).Google Scholar
Churchill, M.E.A., Tullius, T.D. and Klug, A. 1990. ‘Mode of interaction of the zinc finger protein TFIIIA with 5S RNA gene of XenopusProc. Natl Acad. Sci. USA 87, 55285532.Google Scholar
Neuhaus, D., Nakaseko, Y., Nagai, K. and Klug, A. 1990. ‘Sequence-specific 1H NMR resonance assignments and secondary structure identification for 1- and 2-zinc finger constructs from SWI5. A hydrophobic core involving four invariant residues.’ FEBS Lett. 262, 179184.Google Scholar
Bondareff, W., Wischik, C.M., Novak, M., Amos, W.B., Klug, A. and Roth, M. 1990. ‘Molecular analysis of neurofibrillary degeneration in Alzheimer’s diseaseAm. J. Path. 137, 711723.Google Scholar
Klug, A. 1990. ‘Reminiscences of Sir Lawrence Bragg’. In: Selections and Reflections: The Legacy of Sir Lawrence Bragg (ed. Thomas, J.M. and Sir Phillips, D.), 129133 (Science Reviews Limited).Google Scholar
Klug, A. 1991. ‘Order in molecular biology’. In: Evolutionary Trends in the Physical Sciences. Springer Proceedings in Physics, Vol. 57 (ed. Suzuki, M. and Kubo, R.), 225237 (Springer).Google Scholar
Struck, M-M., Klug, A. and Richmond, T.J. 1992. ‘Comparison of X-ray structures of the nucleosome core particle in two different hydration statesJ. Mol. Biol. 224, 253264.Google Scholar
Nakaseko, Y., Neuhaus, D., Klug, A. and Rhodes, D. 1992. ‘Adjacent zinc finger motifs in multiple zinc finger peptides from SWI5 form structurally independent, flexibly linked domainsJ. Mol. Biol. 228, 619636.Google Scholar
Neuhaus, D., Nakaseko, Y., Schwabe, J.W.R. and Klug, A. 1992. ‘Solution structures of two zinc finger domains from SWI5, obtained using two-dimensional 1H NMR spectroscopy: a zinc finger structure with a third strand of β-sheetJ. Mol. Biol. 228, 637651.Google Scholar
Klug, A., Neuhaus, D., Schwabe, J., Nakaseko, Y., Fairal, L., Nagai, K. and Rhodes, D. 1992. ‘The structures of two classes of zinc-finger domains and their modes of interaction with DNASci. Technol. Japan 33, 6080.Google Scholar
Rhodes, D. and Klug, A. 1993. ‘Zinc fingersScient. Am. 268, 5665.Google Scholar
Klug, A. 1993. ‘Transcription: Opening the gatewayNature 365, 486487.Google Scholar
Choo, Y. and Klug, A. 1993. ‘A role in DNA binding for the linker sequences of the first three zinc fingers of TFIIIANucleic Acids Res. 21, 33413346.Google Scholar
Klug, A. 1993. ‘Protein designs for the specific recognition of DNAGene 135, 8392.Google Scholar
Schwabe, J.W.R. and Klug, A. 1994. ‘Zinc mining for protein domainsNature Struct. Biol. 1, 345349.Google Scholar
Klug, A. 1994. ‘Macromolecular order in biology’ (a) Phil. Trans. Roy. Soc. Lond. A 348, 167–178; (b) 4th William and Mary Lecture, Leiden University, 30th October 1996.Google Scholar
Jakes, R., Harrington, C.R. Spillantini, M.G. Goedert, M. and Klug, A. 1995. ‘Characterisation of an antibody relevant to the neuropathology of Alzheimer diseaseAlzheimer Dis. Assoc. Disord. 9, 4751.Google Scholar
Choo, Y. and Klug, A. 1994. ‘Towards a code for the interactions of zinc fingers with DNA: selection of randomised fingers displayed on phageProc. Natl Acad. Sci. USA 91, 1116311167.Google Scholar
Choo, Y. and Klug, A. 1994. ‘Selection of DNA binding sites for zinc fingers using rationally randomised DNA reveals coded interactionsProc. Natl Acad. Sci. USA 91, 1116811172.Google Scholar
Choo, Y., Sánchez-García, I. and Klug, A. 1994. ‘In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequenceNature 372, 642645.Google Scholar
Klug, A. and Schwabe, J.W.R. 1995. ‘Zinc fingersFASEB J. 9, 597604.Google Scholar
Scott, W.G., Finch, J.T., Grenfell, R., Fogg, J., Smith, T., Gait, M.J. and Klug, A. 1995. ‘Rapid crystallization of chemically synthesized hammerhead RNAs using a double screening procedureJ. Mol. Biol. 250, 327332.Google Scholar
Scott, W.G., Finch, J.T. and Klug, A. 1995. ‘The crystal structure of an all-RNA hammerhead ribozyme: A proposed mechanism for RNA catalytic cleavageCell 81, 9911002.Google Scholar
Choo, Y. and Klug, A. 1995. ‘Designing DNA-binding proteins on the surface of filamentious phageCurr. Opin. Biotechnol. 6, 431436.Google Scholar
Klug, A. 1995. ‘Gene regulatory proteins and their interaction with DNA’. In: DNA: The Double Helix. Perspective and Prospective at Forty Years (ed. Chambers, D.A.) Ann. NY Acad. Sci. 758, 143160.Google Scholar
Klug, A.Protein designs for the specific recognition of DNA’ (a) 1995. In: Molecular Biology and Biotechnology. A Comprehensive Desk Reference (ed. Meyers, R.A.), 746753 (VCH); (b) 1996. In: Encyclopaedia of Molecular Biology and Molecular Medicine (ed. Meyers, R.A.), 127–135(VCH)Google Scholar
Scott, W.G., Finch, J.T. and Klug, A. 1995The crystal structure of an all-RNA hammerhead ribozyme’. In: Proc. 22nd Symp. Nucleic Acids Chemistry. Nucleic Acids Symp. Series 34, 214216 (Oxford University Press).Google Scholar
Goedert, M., Spillantini, M.G., Hasegawa, M., Jakes, R., Crowther, R.A. and Klug, A. 1996, ‘Molecular dissection of the neurofibrillary lesions of Alzheimer’s diseaseCold Spring Harb. Symp. Quant. Biol. 61, 565573.Google Scholar
Scott, W.G. and Klug, A. 1996. ‘Ribozymes: structure and mechanism in RNA catalysisTrends Biol. Sci. 21, 220224.Google Scholar
Scott, W.G., Murray, J.B., Arnold, J.R.P., Stoddard, B.L. and Klug, A. 1996. ‘Capturing the structure of a catalytic RNA intermediate: The hammerhead ribozymeScience 274, 20652069.Google Scholar
Choo, Y. and Klug, A. 1997. ‘Physical basis of a protein-DNA recognition codeCurr. Opin. Struct. Biol. 7, 117125.CrossRefGoogle ScholarPubMed
Isalan, M., Choo, Y. and Klug, A. 1997. ‘Synergy between adjacent zinc fingers in sequence-specific DNA recognitionProc. Natl Acad. Sci. USA 94, 56175621.Google Scholar
Choo, Y., Castellanos, A., García-Hernández, B., Sánchez-García, I. and Klug, A. 1997. ‘Promoter-specific activation of gene expression directed by bacteriophage-selected zinc fingersJ. Mol. Biol. 273, 525532.Google Scholar
Nowak, M., Krakauer, D., Klug, A. and May, R. 1998. ‘Prion infection dynamicsIntegr. Biol. 1, 315.Google Scholar
Spillantini, M.G., Murrell, J.R., Goedert, M., Farlow, M.R., Klug, A. and Ghetti, B. 1998. ‘Mutation in the tau gene in familial multiple system tauopathy with presenile dementiaProc. Natl Acad. Sci. USA 95, 77377741.Google Scholar
Isalan, M., Klug, A. and Choo, Y. 1998. ‘Comprehensive DNA recognition through concerted interactions from adjacent zinc fingersBiochemistry 37, 1202612033.Google Scholar
Klug, A. 1999. ‘Commentary on the two papers by Caspar and Franklin’. In Tobacco Mosaic Virus: One Hundred Years of Contribution to Virology (ed. Scholthof, K-B.G., Shaw, J.G. and Zaitlin, M.) 119121 (American Phytopathology Society Press).Google Scholar
Klug, A. 1999. ‘The tobacco mosaic virus particle: structure and assemblyPhil. Trans. Roy. Soc. Lond. 354, 531535.Google Scholar
Varani, L., Hasegawa, M., Spillantini, M.G., Smith, M.J., Murrell, J.R., Ghetti, B., Klug, A., Goedert, M. and Varani, G. 1999. ‘Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17Proc. Natl Acad. Sci. USA 96, 82298234.Google Scholar
Klug, A. 1999. ‘Zinc finger peptides for the regulation of gene expressionJ. Mol. Biol. 293, 215218.Google Scholar
Goedert, M. and Klug, A. 1999. ‘Tau protein and the paired helical filament of Alzheimer’s disease. Special Millennium Issue. A hundred years of neuroscienceBrain Res. Bull. 50, 469470.Google Scholar
Searles, M.A., Lu, D. and Klug, A. 2000. ‘The role of the central zinc fingers of transcription factor IIIA in binding to 5SRNAJ. Mol. Biol. 301, 4760.Google Scholar
Moore, M., Choo, Y. and Klug, A. 2001. ‘Design of polyzinc finger peptides with structured linkersProc. Natl Acad. Sci. USA 98, 14321436.Google Scholar
Moore, M., Klug, A. and Choo, Y. 2001. ‘Improved DNA binding specificity from polyzinc finger peptides by using strings of two-finger unitsProc. Natl Acad. Sci. USA 98, 14371441.Google Scholar
Klug, A. 2001. ‘The Human Genome ProjectIUBMB Life 51, 14.Google Scholar
Klug, A. 2001. ‘RNA polymerase II: A marvellous machine for making messagesScience 292, 17851952.Google Scholar
Isalan, M., Klug, A. and Choo, Y. 2001. ‘A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoterNature Biotechnol. 19, 656660.Google Scholar
Klug, A. 2002. ‘Retrospective: Max Perutz (1914–2002)Science 295, 23822383.Google Scholar
Klug, A. 2002. ‘Chris Calladine and biological structures: a personal account’. In New Approaches to Structural Mechanics, Shells and Biological Structures (ed. Drew, H.R. and Pellegrine, S.), 413419 (Springer).Google Scholar
Klug, A. 2002. ‘The development of image analysis and 3D-reconstruction in the electron microscopy of biomolecular assemblies’. Paper presented at ICEM-15, Durban.Google Scholar
Reynolds, L., Ullman, C., Moore, M., Isalan, M., West, M.J., Clapham, P., Klug, A. and Choo, Y. 2003. ‘Repression of the HIV-1 5 LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factorsProc. Natl Acad. Sci. USA 100, 16151620.Google Scholar
Papworth, M., Moore, M., Isalan, M., Minczuk, M., Choo, Y. and Klug, A. 2003. ‘Inhibition of herpes simplex virus 1 gene expression by designer zinc-finger transcription factorsProc. Natl Acad. Sci. USA 100, 16211626.Google Scholar
Klug, A. 2003. ‘The life of George Porter OM FRSNotes Rec. Roy. Soc. Lond. 57, 261264.Google Scholar
Lu, D., Searles, M.A. and Klug, A. 2003. ‘Crystal structure of a zinc finger RNA complex reveals two modes of molecular recognitionNature 426, 96100.Google Scholar
Klug, A. 2004. ‘The discovery of the DNA double helixJ. Mol. Biol. 335, 326.Google Scholar
Klug, A. 2004. ‘The discovery of zinc fingers and their practical applications in gene regulation: A personal account’. In: Zinc Finger Proteins: From Atomic Contact to Cellular Function (ed. Iuchi, S. and Kuldell, N.), 16 (Kluwer Academic/Plenum).Google Scholar
Klug, A. 2005. ‘Obituary: Francis Crick (8 June 1916–28 July 2004): A Memoir.’ FEBS Lett. 579, 852854. An expanded version of the Obituary which appeared in the September (2004) issue of Nature Cell Biology.Google Scholar
Klug, A. 2005. ‘Introduction to eukaryotic transcription and chromatinFEBS Lett. 579, 890891.Google Scholar
Klug, A. 2005. ‘Towards therapeutic applications of engineered zinc finger proteinsFEBS Lett. 579, 892894 (Proc. Nobel Symp. 130).Google Scholar
Klug, A. 2005. ‘Review: The discovery of zinc fingers and their development for practical applications in gene regulationProc. Japan Acad. 81, 87102.Google Scholar
Minczuk, M., Papworth, M.A., Kolasinska, P., Murphy, M.P. and Klug, A. 2006. ‘Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylaseProc. Natl Acad. Sci. USA 103, 1968919694.Google Scholar
Goedert, M., Klug, A.K., Crowther, R.A. 2006. ‘Tau protein, the paired helical filament and Alzheimer’s diseaseJ. Alzheimer’s Dis. 9, 195207.Google Scholar
Goedert, M., Grazia Spillantini, M., Ghetti, B., Crowther, R.A. and Klug, A. 2006. ‘Discovery of the tangle’. In Alzheimer: 100 Years and Beyond (ed. Jucker, M. et al.), 297304 (Springer),Google Scholar
Grazia Spillantini, M., Murrell, J.R., Goedert, M., Farlow, M., Klug, A. and Ghetti, B. 2006. ‘Mutations in the tau gene (MAPT) in FTDP-17: the family with multiple system tauopathy with presenile dementia (MSTD)J. Alzheimer’s Dis. 9, 373380.Google Scholar
Lu, D. and Klug, A. 2007. ‘Invariance of the zinc finger module: A comparison of the free structure with those in nucleic-acid complexesProteins 67, 508512.Google Scholar
Santiago, Y., Chan, E., Liu, P.Q., Orlando, S., Zhang, L., Urnov, F.D., Holmes, M.C., Guschin, D., Waite, A., Miller, J.C., Rebar, E. J., Gregory, P.D., Klug, A. and Collingwood, T.N. 2008. ‘Targeted gene knockout in mammalian cells using engineered zinc-finger nucleasesProc. Natl Acad. Sci. USA 105, 58095014.Google Scholar
Minczuk, M., Papworth, M. A., Miller, J. C., Murphy, M. P. and Klug, A. 2008. ‘Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNANucleic Acids Res. 36, 39263938.Google Scholar
Klug, A. 2010. ‘The discovery of zinc fingers and their applications in gene regulation and genome manipulationAnnu. Rev. Biochem. 79, 213231.Google Scholar
Klug, A. 2010. ‘From virus structure to chromatin: X-ray diffraction to three-dimensional electron microscopyAnnu. Rev. Biochem. 79, 135.Google Scholar
Klug, A. 2010. ‘The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulationQuart. Rev. Biophys. 43, 121.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×