Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T01:53:00.987Z Has data issue: false hasContentIssue false

14 - The Effect of Climate Change on the Distribution of the Genera Colobus and Cercopithecus

from Part III - Climate Change in the Anthropocene

Published online by Cambridge University Press:  25 January 2019

Alison M. Behie
Affiliation:
Australian National University, Canberra
Julie A. Teichroeb
Affiliation:
University of Toronto, Scarborough
Nicholas Malone
Affiliation:
University of Auckland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asensio, N., Korstjens, A. H., Schaffner, C. M. & Aureli, F. (2008). Intragroup aggression, fission–fusion dynamics and feeding competition in spider monkeys. Behaviour, 145(7), 9831001.Google Scholar
Asensio, N., Korstjens, A. H. & Aureli, F. (2009). Fissioning minimizes ranging costs in spider monkeys: a multiple-level approach. Behavioral Ecology and Sociobiology, 63(5), 649–59.Google Scholar
Bartoń, K. (2016). MuMIn: multi-model inference. R package version 1.15.6.Google Scholar
Beaudrot, L. H. & Marshall, A. J. (2011). Primate communities are structured more by dispersal limitation than by niches. Journal of Animal Ecology, 80(2), 332–41.CrossRefGoogle ScholarPubMed
Beaudrot, L. H., Struebig, M. J., Meijaard, E., et al. (2013). Co-occurrence patterns of Bornean vertebrates suggest competitive exclusion is strongest among distantly related species. Oecologia, 173(3), 1053–62.Google Scholar
Beaudrot, L. H., Kamilar, J. M., Marshall, A. J. & Reed, K. E. (2014). African primate assemblages exhibit a latitudinal gradient in dispersal limitation. International Journal of Primatology, 35(6), 1088–104.CrossRefGoogle Scholar
Behie, A. M. & Pavelka, M. S. (2013). Interacting roles of diet, cortisol levels, and parasites in determining population density of Belizean howler monkeys in a hurricane damaged forest fragment. In Marsh, L. K. & Chapman, C. A. (eds) Primates in Fragments: Complexity and Resilience. New York: Springer, pp. 459–74.Google Scholar
Bettridge, C. M. & Dunbar, R. I. M. (2012). Modeling the biogeography of fossil baboons. International Journal of Primatology, 33(6), 1278–308.Google Scholar
Bettridge, C. M., Lehmann, J. & Dunbar, R. I. M. (2010). Trade-offs between time, predation risk and life history, and their implications for biogeography: a systems modelling approach with a primate case study. Ecological Modelling, 221, 777–90.Google Scholar
Bramer, I. Anderson, B., Bennie, J., et al. (2018). Advances in monitoring and modelling climate at ecologically relevant scales. Advances in Ecological Sciences, 48, 101–61.Google Scholar
Brands, S., Herrera, S., Fernández, J. & Gutiérrez, J. M. (2013). How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa? Climate Dynamics, 41(3–4), 803–17.Google Scholar
Bruorton, M. R., Davis, C. L. & Perrin, M. R. (1991). Gut microflora of vervet and samango monkeys in relation to diet. Applied and Environmental Microbiology, 57(2), 573–8.CrossRefGoogle ScholarPubMed
Burnham, K. P. & Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edn. New York: Springer.Google Scholar
Carne, C., Semple, S. & Lehmann, J. (2012). The effects of climate change on orangutans: a time budget model. In Druyan, L. M. (ed.) Climate Models, Rijeka: InTech, pp. 313–36.Google Scholar
Chapman, C. A., Chapman, L. J., Cords, M., et al. (2002). Variation in the diets of Cercopithecus species: differences within forests, among forests, and across species. In Glenn, M. E. & Cords, M. (eds) The Guenons: Diversity and Adaptation in African Monkeys. New York: Kluwer Academic, pp. 325–50.Google Scholar
Chapman, C. A., Chapman, L. J., Struhsaker, T. T., et al. (2005). A long-term evaluation of fruiting phenology: importance of climate change. Journal of Tropical Ecology, 21(1), 3145.Google Scholar
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024–6.Google Scholar
Chivers, D. J. (1994). Functional anatomy of the gastrointestinal tract. In Davies, A. G. & Oates, J. F. (eds) Colobine Monkeys. Cambridge: Cambridge University Press, pp. 205–27.Google Scholar
Clark, D. A., Clark, D. B. & Oberbauer, S. F. (2013). Field‐quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997–2009. Journal of Geophysical Research: Biogeosciences, 118(2), 783–94.Google Scholar
Cohen, J. (1968). Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213–20.Google Scholar
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., et al. (2008). Evaluation of HadGEM2 Model. Exeter: Meteorological Office Hadley Centre.Google Scholar
Dunbar, R. I. M. (1992). Time: a hidden constraint on the behavioural ecology of baboons. Behavioral Ecology and Sociobiology, 31(1), 3549.Google Scholar
Dunbar, R. I. M. (1993). Socioecology of the extinct theropiths: a modelling approach. In Jablonski, N. G. (ed.) Theropithecus: The Rise and Fall of a Primate Genus. Cambridge: Cambridge University Press, pp. 465–86.Google Scholar
Dunbar, R. I. M. (1998). Impact of global warming on the distribution and survival of the gelada baboon: a modelling approach. Global Change Biology, 4(3), 293304.Google Scholar
Dunbar, R. I. M. & Dunbar, P. (1988). Maternal time budgets of gelada baboons. Animal Behaviour, 36, 970–80.Google Scholar
Dunbar, R. I. M., Korstjens, A. H. & Lehmann, J. (2009). Time as an ecological constraint. Biological Reviews, 84(3), 413–29.Google Scholar
Dunbar, R. I. M., Gamble, C. & Gowlett, J. A. J. (2014). Lucy to Language: The Benchmark Papers. Oxford: Oxford University Press.Google Scholar
Elith, J. & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology Evolution and Systematics, 40, 677–97.Google Scholar
Estrada, A., Raboy, B. E. & Oliveira, L. C. (2012). Agroecosystems and primate conservation in the tropics: a review. American Journal of Primatology, 74(8), 696711.Google Scholar
Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. (2016). Usefulness of species traits in predicting range shifts. Trends in Ecology & Evolution, 31(3), 190203.CrossRefGoogle ScholarPubMed
Fashing, P. J. (2005). African colobine monkeys: patterns of between-group interaction. In Campbell, C. J., Fuentes, A. F., MacKinnon, K. C., Panger, M. & Bearder, S. (eds) Primates in Perspective. Oxford: Oxford University Press, pp. 201–24.Google Scholar
Fashing, P. J., Mulindahabi, F., Gakima, J. B., et al. (2007). Activity and ranging patterns of Colobus angolensis ruwenzorii in Nyungwe forest, Rwanda: possible costs of large group size. International Journal of Primatology, 28(3), 529–50.Google Scholar
Fleagle, J. G. & Reed, K. E. (1996). Comparing primate communities: a multivariate approach. Journal of Human Evolution, 30(6), 489510.Google Scholar
Garcia, R. A., Cabeza, M., Altwegg, R. & Araújo, M. B. (2016). Do projections from bioclimatic envelope models and climate change metrics match?. Global Ecology and Biogeography, 25(1), 6574.CrossRefGoogle Scholar
González-Zamora, A., Arroyo-Rodríguez, V., Chaves, O. M., et al. (2011). Influence of climatic variables, forest type, and condition on activity patterns of Geoffroyi’s spider monkeys throughout Mesoamerica. American Journal of Primatology, 73(12), 1189–98.CrossRefGoogle ScholarPubMed
Gouveia, S. F., Villalobos, F., Dobrovolski, R., Beltrão-Mendes, R. & Ferrari, S. F. (2014). Forest structure drives global diversity of primates. Journal of Animal Ecology, 83, 1523–30.Google Scholar
Graham, T. L., Matthews, H. D. & Turner, S. E. (2016). A global-scale evaluation of primate exposure and vulnerability to climate change. International Journal of Primatology, 37(2), 158–74.CrossRefGoogle Scholar
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. (2014). Unifying niche shift studies: insights from biological invasions. Trends in Ecology & Evolution, 29(5), 260–9.Google Scholar
Hartley, A. J., Nelson, A. & Mayaux, P. (2007). The Assessment of African Protected Areas: A Characterisation of Biodiversity Value, Ecosystems and Threats, to Inform the Effective Allocation of Conservation Funding. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
Hijmans, R. J. & Elith, J. (2016). Species Distribution Modeling with R. n.p.: R CRAN Project.Google Scholar
Hurlbert, A. H. & Jetz, W. (2007). Species richness, hotspots and the scale dependence of range maps in ecology and conservation. PNAS, 104(33), 13384–9.Google Scholar
Hutchinson, G. E. (1978). An Introduction to Population Ecology. New Haven, CT: Yale University Press.Google Scholar
IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Summaries, Frequently Asked Questions, and Cross-Chapter Boxes. A Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: World Meteorological Organization.Google Scholar
IUCN (2017). The IUCN Red List of Threatened Species. Version 2017-3. Available at: www.iucnredlist.org (accessed 19 September 2017).Google Scholar
Iverson, L. R. & McKenzie, D. (2013). Tree-species range shifts in a changing climate: detecting, modeling, assisting. Landscape Ecology, 28(5), 879–89.Google Scholar
Iwamoto, T. & Dunbar, R. I. M. (1983). Thermoregulation, habitat quality and the behavioural ecology of Gelada baboons. Journal of Animal Ecology, 52(2), 357–66.Google Scholar
Kamilar, J. M. & Beaudrot, L. H. (2017). Quantitative methods for primate biogeography and macroecology. In Shaffer, C. A., Dolins, F., Hickey, J. R., Nibbelink, N. P. & Porter, L. M. (eds) GPS and GIS for Primatologists: A Practical Guide to Spatial Analysis. New York: Cambridge University Press.Google Scholar
Kamilar, J. M. & Muldoon, K. M. (2010). The climatic niche diversity of Malagasy primates: a phylogenetic perspective. PLoS One, 5(6), e11073.CrossRefGoogle ScholarPubMed
Kamilar, J. M. & Tecot, S. R. (2016). Anthropogenic and climatic effects on the distribution of Eulemur species: an ecological niche modeling approach. International Journal of Primatology, 37(1), 4768.Google Scholar
Kingdon, J. & Groves, C. P. (2013a). Genus Colobus black-and-white colobus monkeys. In Butynski, T. M., Kingdon, J. & Kalina, J. (eds) Mammals of Africa: Volume II Primates. London: Bloomsbury Publishing, pp. 95–6.Google Scholar
Kingdon, J. & Groves, C. P. (2013b). Tribe cercopithecini. In Butynski, T. M., Kingdon, J. & Kalina, J. (eds) Mammals of Africa: Volume II Primates. London: Bloomsbury, pp. 245–7.Google Scholar
Korstjens, A. H. (2001). The mob, the secret sorority, and the phantoms: an analysis of the socio-ecological strategies of the three colobines of Taï. PhD Thesis, Utrecht University.Google Scholar
Korstjens, A. H. & Dunbar, R. I. M. (2007). Time constraints limit group sizes and distribution in red and black-and-white colobus monkeys. International Journal of Primatology, 28(3), 551–75.Google Scholar
Korstjens, A. H. & Hillyer, A. P. (2016). Primates and climate change: a review of current knowledge. In Wich, S. A. & Marshall, A. J. (eds) An Introduction to Primate Conservation. Oxford: Oxford University Press, pp. 175–92.Google Scholar
Korstjens, A. H. & Noë, R. (2004). Mating system of an exceptional primate, the olive colobus (Procolobus verus). American Journal of Primatology, 62(4), 261–73.Google Scholar
Korstjens, A. H. & Schippers, E. P. (2003). Dispersal patterns among olive colobus in Taï National Park. International Journal of Primatology, 24(3), 515–40.CrossRefGoogle Scholar
Korstjens, A., Sterck, E. H. M. & Noë, R. (2002). How adaptive or phylogenetically inert is primate social behaviour? A test with two sympatric colobines. Behaviour, 139(2), 203–25.Google Scholar
Korstjens, A. H., Nijssen, E. C. & Noë, R. (2005). Inter-group relationships in western black-and-white colobus, Colobus polykomos polykomos. International Journal of Primatology, 26(6), 1267–89.Google Scholar
Korstjens, A. H., Lugo Verhoeckx, I. & Dunbar, R. I. M. (2006). Time as a constraint on group size in spider monkeys. Behavioral Ecology and Sociobiology, 60(5), 683–94.Google Scholar
Korstjens, A. H., Bergmann, K., Deffernez, C., et al. (2007). How small-scale differences in food competition lead to different social systems in three closely related sympatric colobines. In McGraw, S., Zuberbuhler, K. & Noë, R. (eds) The Monkeys of the Taï Forest, Ivory Coast: An African Primate Community. Cambridge: Cambridge University Press, pp. 72108.Google Scholar
Korstjens, A. H., Lehmann, J. & Dunbar, R. I. M. (2010). Resting time as an ecological constraint on primate biogeography. Animal Behaviour, 79(2), 361–74.Google Scholar
Korstjens, A. H., Lehmann, J. & Dunbar, R. I. M. (2018). Time constraints do not limit group size in arboreal guenons but do explain community size and distribution patterns. International Journal of Primatology. https://doi.org/10.1007/s10764-018-0048-4Google Scholar
Lambert, J. E. (1998). Primate frugivory in Kibale National Park, Uganda, and its implications for human use of forest resources. African Journal of Ecology, 36(3), 234–40.Google Scholar
Lambert, J. E. (2002). Resource switching and species coexistence in guenons: a community analysis of dietary flexibility. In Glenn, M. E. & Cords, M. (eds) The Guenons: Diversity and Adaptation in African Monkeys. New York: Springer, pp. 309–23.Google Scholar
Lehman, S. M. & Fleagle, J. G. (2006). Biogeography and primates: a review. In Primate Biogeography: Progress and Prospects, Boston, MA: Springer, pp. 158.Google Scholar
Lehmann, J., Korstjens, A. H. & Dunbar, R. I. M. (2007). Fission–fusion social systems as a strategy for coping with ecological constraints: a primate case. Evolutionary Ecology, 21(5), 613–34.Google Scholar
Lehmann, J., Korstjens, A. H. & Dunbar, R. I. M. (2008a). Time and distribution: a model of ape biogeography. Ethology Ecology & Evolution, 20(4), 337–59.Google Scholar
Lehmann, J., Korstjens, A. H. & Dunbar, R. I. M. (2008b). Time management in great apes: implications for gorilla biogeography. Evolutionary Ecology Research, 10(4), 517–36.Google Scholar
Lehmann, J., Korstjens, A. H. & Dunbar, R. I. M. (2010). Apes in a changing world: the effects of global warming on the behaviour and distribution of African apes. Journal of Biogeography, 37(12), 2217–31.Google Scholar
Liu, C., White, M. & Newell, G. (2011). Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography, 34(2), 232–43.Google Scholar
Maibeche, Y., Moali, A., Yahi, N. & Menard, N. (2015). Is diet flexibility an adaptive life trait for relictual and peri-urban populations of the endangered primate Macaca sylvanus? PLoS One, 10(2), e0118596.Google Scholar
Moss, R., Babiker, M., Brinkman, S., et al. (2008). Towards new scenarios for analysis of emissions, climate change, impacts and response strategies. IPCC Expert Meeting Report.Google Scholar
Nowak, K. & Lee, P. C. (2013). ‘Specialist’ primates can be flexible in response to habitat alteration. In Marsh, K. L. & Chapman, A. C. (eds) Primates in Fragments: Complexity and Resilience. New York: Springer, pp. 199211.Google Scholar
Polansky, L. & Boesch, C. (2013). Long-term changes in fruit phenology in a West African lowland tropical rain forest are not explained by rainfall. Biotropica, 45(4), 434–40.Google Scholar
Pruetz, J. D. (2007). Evidence of cave use by savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal: implications for thermoregulatory behavior. Primates, 48, 316.Google Scholar
QGIS Development Team (2016). QGIS Geographic Information System. Available at: www.qgis.org.Google Scholar
R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Rothman, J. M., Chapman, C. A., Struhsaker, T. T., et al. (2014). Long-term declines in nutritional quality of tropical leaves. Ecology, 96(3), 873–8.Google Scholar
Sato, H. & Ise, T. (2012). Effect of plant dynamic processes on African vegetation responses to climate change: analysis using the spatially explicit individual-based dynamic global vegetation model (SEIB-DGVM). Journal of Geophysical Research, 117(G3), G03017.Google Scholar
Schloss, C. A., Nuñez, T. A. & Lawler, J. J. (2012). Dispersal will limit ability of mammals to track climate change in the western hemisphere. Proceedings of the National Academy of Sciences, 109(22), 8606–11.Google Scholar
Soberón, J. & Arroyo-Peña, B. (2017) Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. PLoS One 12(4): e0175138.Google Scholar
Teichroeb, J. A., Saj, T. L., Paterson, J. D. & Sicotte, P. (2003). Effect of group size on activity budgets of Colobus vellerosus in Ghana. International Journal of Primatology, 24(4), 743–58.CrossRefGoogle Scholar
Willems, E. P. & Hill, R. A. (2009). A critical assessment of two species distribution models: a case study of the vervet monkey (Cercopithecus aethiops). Journal of Biogeography, 36(12), 2300–12.Google Scholar
Williamson, D. K. & Dunbar, R. (1999). Energetics, time budgets and group size. In Lee, P. (ed.) Primate Socioecology. Cambridge: Cambridge University Press, pp. 321–38.Google Scholar
Wisz, M. S., Pottier, J., Kissling, W. D., et al. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88(1), 1530.Google Scholar
Zvereva, E. L. & Kozlov, M. V. (2006). Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a metaanalysis. Global Change Biology, 12(1), 2741.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×