Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-19T05:40:35.108Z Has data issue: false hasContentIssue false

9 - Interhabitat Variation in the Ecology of Extrafloral Nectar Production and Associated Ant Assemblages in Mexican Landscapes

from Part III - Ant-Plant Protection Systems under Variable Habitat Conditions

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 179 - 199
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, A. N. (2000). A global ecology of rainforest ants: functional groups in relation to environmental stress and disturbance. In Ants: standard methods for measuring and monitoring biodiversity, ed. Agosti, D., Majer, J. D., Alonso, L. E. & Schultz, T. R.: Smithsonian Institution Press, pp. 3544.Google Scholar
Bascompte, J., Aizen, M., Fontaine, C. et al. (2010). Symposium 6: mutualistic networks. Bulletin of the Ecological Society of America 91(3), 367370.Google Scholar
Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. (2003). The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences 100, 93839387.Google Scholar
Bascompte, J., Jordano, P. & Olesen, J. M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431433.Google Scholar
Bentley, B. L. (1976). Plants bearing extrafloral nectaries and the associated ant community: Interhabitat differences in the reduction of herbivore damage. Ecology 57, 815820.CrossRefGoogle Scholar
Blüthgen, N., Verhaagh, M., Goitía, W. et al. (2000). How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125(2), 229240.Google Scholar
Campos-Navarrete, M. J., Abdala-Roberts, L., Munguía-Rosas, M. A. & Parra-Tabla, V. (2015). Are tree species diversity and genotypic diversity effects on insect herbivores mediated by ants? PloS One 10(8): e0132671.Google Scholar
Chavarro-Rodríguez, N., Díaz-Castelazo, C. & Rico-Gray, V. (2013). Characterization and functional ecology of the extrafloral nectar of Cedrela odorata in contrasting growth environments in central Veracruz, Mexico. Botany 91, 695701.CrossRefGoogle Scholar
Cuautle, M. & Rico-Gray, V. (2003). The effect of wasps and ants on the reproductive success of the extrafloral nectaried plant. Turnera ulmifolia Turneraceae. Functional Ecology, 17, 417423.Google Scholar
Dáttilo, W., Díaz-Castelazo, C. & Rico-Gray, V. (2014a). Ant dominance hierarchy determines the nested pattern in ant-plant networks. Biological Journal of the Linnean Society 113, 405414.Google Scholar
Dáttilo, W., Fagundes, R., Gurka, C. A. Q. et al. (2014b). Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship. PLoS One 9(6), e99838.Google Scholar
Dáttilo, W., Guimarães, P. R., & Izzo, T. J. (2013a). Spatial structure of ant–plant mutualistic networks. Oikos, 122, 16431648.Google Scholar
Dáttilo, W., Marquitti, F. M. D., Guimarães, P. R. & Izzo, T. J. (2014c). The structure of ant-plant ecological networks: is abundance enough?. Ecology 95, 475485.CrossRefGoogle Scholar
Dáttilo, W., Rico-Gray, V., Rodrigues, D. J. & Izzo, T. J. (2013b). Soil and vegetation features determine the nested pattern of ant-plant networks in a tropical rainforest. Ecological Entomology 38, 374380.Google Scholar
Del-Claro, K., Rico-Gray, V., Torezan-Silingardi, H. M. et al. (2016). Loss and gains in ant–plant interactions mediated by extrafloral nectar: fidelity, cheats, and lies. Insectes Sociaux 63(2), 207221.Google Scholar
Díaz-Castelazo, C., Guimarães, P., Jordano, P. et al. (2010). Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology 91(3), 793801.CrossRefGoogle ScholarPubMed
Díaz-Castelazo, C., Rico-Gray, V., Oliveira, P. S. & Cuautle, M. (2004). Extrafloral nectary-mediated ant–plant interactions in the coastal vegetation of Veracruz, Mexico: richness, occurrence, seasonality and ant foraging patterns. Ecoscience 11, 472481.Google Scholar
Díaz-Castelazo, C., Rico-Gray, V., Ortega, F. & Ángeles, G. (2005). Morphological and secretory characterization of extrafloral nectaries in plants of coastal Veracruz, Mexico. Annals of Botany 96(7), 11751189.Google Scholar
Díaz-Castelazo, C., Sánchez-Galván, I. R., Guimarães, P. R., Raimundo, R. L. G. & Rico-Gray, V. (2013). Long–term temporal variation in the organization of an ant-plant network. Annals of Botany 111, 12851293.CrossRefGoogle ScholarPubMed
Fernández-Martínez, M. J. & Díaz-Castelazo, C. (2009). Caracterización ecológica de Cedrela odorata y patrones de infestación por Hypsipyla grandella en selvas y plantaciones de Veracruz. In Serie memorias científicas 15. XXII Reunión científica Tecnológica Forestal y Agropecuarias, ed. INIFAP, Veracruz, México, pp. 301310.Google Scholar
Guimarães, P. R. Jr., Rico-Gray, V., Oliveira, P. S. et al. (2007). Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Current Biology 17, 17971803.Google Scholar
Heil, M. (2015). Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annual Review of Entomology 60, 213232.Google Scholar
Hernández-Villanueva, M. A. (2010). Interacción insecto planta mediada por nectarios extraflorales del cedro rojo (Cedrela odorata, Meliaceae) en selvas y plantaciones del centro de Veracruz. BSc thesis, Benemérita Universidad de Puebla. Puebla, México.Google Scholar
Jordano, P., Bascompte, J., & Olesen, J. M. (2003). Invariant properties in coevolutionary networks of plant–animal interactions. Ecology Letters, 6, 6981.Google Scholar
Kersch, M. F. & Fonseca, C. R. (2005). Abiotic factors and the conditional outcome of an ant–plant mutualism. Ecology 86(8), 21172126.CrossRefGoogle Scholar
Koptur, S. (2005). Nectar as fuel for plant protectors. In Plant-provided food for carnivorous insects: a protective mutualism and its applications, ed. Wäckers, F. L., van Rijn, P. C. J. & Bruin, J.. Cambridge: Cambridge University Press, pp. 75108.Google Scholar
Koptur, S. & Lawton, J. H. (1988). Interactions among vetches bearing extrafloral nectaries, their biotic protective agents, and herbivores. Ecology 69, 278293.Google Scholar
López-Carretero, A., Díaz-Castelazo, C., Boege, K. & Rico-Gray, V. (2014). Evaluating the spatio-temporal factors that structure network parameters of plant-herbivore interactions. PLoS One 9(10), e110430.Google Scholar
Ness, J. H. & Bronstein, J. L. (2004). The effects of invasive ants on prospective ant mutualists. Biological Invasions 6, 445461.Google Scholar
Oliveira, P. S. & Freitas, A. V. L. (2004). Ant-plant-herbivore interactions in the neotropical cerrado savanna. Naturwissenschaften 91, 557570.Google Scholar
Oliveira, P. S., Rico-Gray, V., Díaz-Castelazo, C. & Castillo-Guevara, C. (1999). Interactions between ants, extrafloral nectaries and insect herbivores in neotropical coastal sand dunes: Herbivore deterrence by visiting ants increases fruit set in Opuntia stricta (Cactaceae). Functional Ecology 13, 623631.Google Scholar
Pacini, E. & Nepi, M. (2007). Nectar production and presentation. In Nectaries and nectar, ed. Nicolson, S. W., Nepi, M. & Pacini, E.. Dordrecht: Springer, pp. 167214.Google Scholar
Pemberton, R. W. (1988). The abundance of plants bearing extrafloral nectaries in Colorado and Mojave desert communities of Southern California. Madroño 35(3), 238246.Google Scholar
Pennington, T. D. & Sarukhán, J. (2005). Árboles tropicales de México: Manual para la identificación de las principales especies. 3rd ed. México, D. F. Fondo de cultura económica, UNAM.Google Scholar
Perfecto, I. (1990). Indirect and direct effects in a tropical agroecosystem: the maize-pest-ant system in Nicaragua. Ecology 71, 21252134.CrossRefGoogle Scholar
Perfecto, I. (1991). Ants (Hymenoptera: Formicidae) as natural control agents of pests in irrigated maize in Nicaragua. Journal of Economic Entomology 84, 6570.Google Scholar
Perfecto, I. & Sediles, A. (1992). Vegetational diversity, ants (Hymenoptera: Formicidae), and herbivorous pests in a neotropical agroecosystem. Environmental Entomology 21, 6167.Google Scholar
Perfecto, I. & Vandermeer, J. H. (1994). Understanding biodiversity loss in agroecosystems: reduction of ant diversity resulting from transformation of the coffee ecosystem in Costa Rica. Entomological Trends in Agricultural Science 2, 713.Google Scholar
Perfecto, I. & Vandermeer, J. H. (2002). Quality of agroecological matrix in a tropical montane landscape: ants in coffee plantations in southern Mexico. Conservation Biology 16, 174182.Google Scholar
Philpott, S. M., Greenberg, R., Bichier, P. & Perfecto, I. (2004a). Impacts of major predators on tropical agroforest arthropods: comparisons within and across taxa. Oecologia 140, 140149.Google Scholar
Philpott, S. M., Maldonado, J., Vandermeer, J. & Perfecto, I. (2004b). Taking trophic cascades up a level: behaviorally-modified effects of phorid flies on ants and ant prey in coffee agroecosystems. Oikos 105, 141147.Google Scholar
Rico-Gray, V., Díaz-Castelazo, C., Ramírez-Hernández, A., Guimarães, P. R. Jr. & Holland, J. N. (2012). Abiotic factors shape temporal variation in the structure of a mutualistic ant-plant network. Arthropod-Plant Interactions 6, 189295.Google Scholar
Rico-Gray, V., García-Franco, J. G., Palacios-Ríos, M. et al. (1998). Geographical and seasonal variation in the diversity of ant-plant association in Mexico. Biotropica 30, 190200.Google Scholar
Rico-Gray, V. & Oliveira, P. S. (2007). The ecology and evolution of ant–plant interactions. Chicago: University of Chicago Press.Google Scholar
Rudgers, J. A. & Gardener, M. (2004). Extrafloral nectar as a resource mediating multispecies interactions. Ecology 85, 14951502.Google Scholar
Rudgers, J. A. & Strauss, S. Y. (2004). A selection mosaic in the facultative mutualism between ants and wild cotton. Proceedings of the Royal Society of London B: Biological Sciences 271(1556), 24812488.Google Scholar
Sánchez-Galván, I. R., Díaz-Castelazo, C. & Rico-Gray, V. (2012). Effect of hurricane Karl on a plant–ant network occurring in coastal Veracruz, Mexico. Journal of Tropical Ecology 28, 603609.Google Scholar
Schupp, E. W. & Feener, D. H. (1991). Phylogeny, lifeform and habitat dependence of ant-defended plants in a Panamanian forest. In Ant-plant interactions, ed. Huxley, C. R. & Cutler, D. F., eds. Oxford: Oxford University Press, pp. 175197.Google Scholar
van Rijn, P. C., & Sabelis, M. W. (2005). Impact of plant-provided food on herbivore-carnivore dynamics. In Plant-provided food for carnivorous insects: a protective mutualism and its applications, ed. F. L. Wäckers, P. C. J. van Rijn & J. Bruin. Cambridge: Cambridge University Press, pp. 223266.Google Scholar
Waser, N. M. & Ollerton, J. (2006). Plant-pollinator interactions: from specialization to generalization. Chicago: University of Chicago Press.Google Scholar
Yamawo, A. & Hada, Y. (2010). Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits. Annals of Botany, 106(1), 143148.Google Scholar
Zimmerman, J. G. (1932). Uber die extrafloralen Nektarien der Angiospermen. Beihefte zum Botanischen Zentralblatt 49, 99196.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×