Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-19T11:18:42.288Z Has data issue: false hasContentIssue false

20 - Therapeutic Genome Editing in Human Hematopoietic Stem and Progenitor Cells

from Part IV - Genome Editing in Stem Cells and Regenerative Biology

Published online by Cambridge University Press:  30 July 2018

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 301 - 312
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bak, RO, Porteus, MH. 2017. CRISPR-mediated integration of large gene cassettes using AAV donor vectors. Cell Rep 20(3): 750756.CrossRefGoogle ScholarPubMed
Butler, JM, Gars, EJ, James, DJ, et al. 2012. Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells. Blood 120: 13441347.CrossRefGoogle ScholarPubMed
Canver, MC, Smith, EC, Sher, F, et al. 2015. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527: 192197.CrossRefGoogle ScholarPubMed
De Ravin, SS, Reik, A, Liu, PQ, et al. 2016. Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease. Nature Biotechnol 34: 424429.CrossRefGoogle ScholarPubMed
Dever, DP, Bak, RO, Reinisch, A, et al. 2016. CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 539: 384389.CrossRefGoogle ScholarPubMed
DeWitt, MA, Magis, W, Bray, NL, et al. 2016. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med 8: 360ra134.CrossRefGoogle ScholarPubMed
DiGiusto, DL, Cannon, PM, Holmes, MC, et al. 2016. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Mol Ther Methods Dev 3: 16067.CrossRefGoogle ScholarPubMed
Doulatov, S, Notta, F, Laurenti, E, Dick, JE. 2012. Hematopoiesis: a human perspective. Cell Stem Cell 10: 120136.CrossRefGoogle ScholarPubMed
Fares, I, Chagraoui, J, Gareau, Y, et al. 2014. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345: 15091512.CrossRefGoogle ScholarPubMed
Genovese, P, Schiroli, G, Escobar, G, et al. 2014. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510: 235240.CrossRefGoogle ScholarPubMed
Hendel, A, Bak, RO, Clark, JT, et al. 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33: 985989.CrossRefGoogle ScholarPubMed
Hoban, MD, Cost, GJ, Mendel, MC, et al. 2015. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 125: 25972604.CrossRefGoogle ScholarPubMed
Holt, N, Wang, J, Kim, K, et al. 2010. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28: 839847.CrossRefGoogle ScholarPubMed
Hubbard, N, Hagin, D, Sommer, K, et al. 2016. Targeted gene editing restores regulated CD40 L function in X-linked hyper-IgM syndrome. Blood 127: 25132522.CrossRefGoogle Scholar
Hutter, G. 2016. HIV+ patients and HIV eradication: allogeneic transplantation. Exp Rev Hematol 9: 615616.CrossRefGoogle ScholarPubMed
Lombardo, A, Cesana, D, Genovese, P, et al. 2011. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods 8: 861869.CrossRefGoogle ScholarPubMed
Lombardo, A, Genovese, P, Beausejour, CM, et al. 2007. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25: 12981306.CrossRefGoogle ScholarPubMed
Majeti, R, Park, CY, Weissman, IL. 2007. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1: 635645.CrossRefGoogle ScholarPubMed
Mandal, PK, Ferreira, LM, Collins, R, et al. 2014. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 15: 643652.CrossRefGoogle ScholarPubMed
Milyavsky, M, Gan, OI, Trottier, M, et al. 2010. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell 7: 186197.CrossRefGoogle ScholarPubMed
Mohrin, M, Bourke, E, Alexander, D, et al. 2010. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7: 174185.CrossRefGoogle ScholarPubMed
Mussolino, C, Alzubi, J, Fine, EJ, et al. 2014. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 42: 67626773.CrossRefGoogle ScholarPubMed
Nagai, Y, Garrett, KP, Ohta, S, et al. 2006. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24: 801812.CrossRefGoogle ScholarPubMed
Nelson, CE, Hakim, CH, Ousterout, DG, et al. 2016. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351: 403407.CrossRefGoogle Scholar
Notta, F, Doulatov, S, Laurenti, E, et al. 2011. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333: 218221.CrossRefGoogle ScholarPubMed
Perez, EE, Wang, J, Miller, JC, et al. 2008. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26: 808816.CrossRefGoogle ScholarPubMed
Porteus, M. 2016. Genome editing: a new approach to human therapeutics. Annu Rev Pharmacol Toxicol 56: 163190.CrossRefGoogle ScholarPubMed
Porteus, MH, Connelly, JP, Pruett, SM. 2006. A look to future directions in gene therapy research for monogenic diseases. PLoS Genet 2: e133.CrossRefGoogle ScholarPubMed
Rossi, DJ, Bryder, D, Seita, J, et al. 2007. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447: 725729.CrossRefGoogle ScholarPubMed
Sather, BD, Romano Ibarra, GS, Sommer, K, et al. 2015. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med 7: 307ra156.CrossRefGoogle ScholarPubMed
Tebas, P, Stein, D, Tang, WW, et al. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370: 901910.CrossRefGoogle ScholarPubMed
Traxler, EA, Yao, Y, Wang, YD, et al. 2016. A genome-editing strategy to treat beta-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med 22(9): 987990.CrossRefGoogle ScholarPubMed
van Galen, P, Kreso, A, Mbong, N, et al. 2014. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature 510: 268272.CrossRefGoogle ScholarPubMed
Voit, RA, Hendel, A, Pruett-Miller, SM, Porteus, MH. 2014. Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Res 42: 13651378.CrossRefGoogle ScholarPubMed
Voit, RA, McMahon, MA, Sawyer, SL, Porteus, MH. 2013. Generation of an HIV resistant T-cell line by targeted “stacking” of restriction factors. Mol Ther 21: 786795.CrossRefGoogle ScholarPubMed
Wang, J, Exline, CM, DeClercq, JJ, et al. 2015. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 33: 12561263.CrossRefGoogle ScholarPubMed
Wang, W, Ye, C, Liu, J, et al. 2014. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One 9: e115987.CrossRefGoogle ScholarPubMed
Yahata, T, Takanashi, T, Muguruma, Y, et al. 2011. Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118: 29412950.CrossRefGoogle ScholarPubMed
Yanez, A, Murciano, C, O’Connor, JE, Gozalbo, D, Gil, ML. 2009. Candida albicans triggers proliferation and differentiation of hematopoietic stem and progenitor cells by a MyD88-dependent signaling. Microbes Infect 11: 531535.CrossRefGoogle ScholarPubMed
Ye, L, Wang, J, Beyer, AI, et al. 2014. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. Proc Natl Acad Sci USA 111: 95919596.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×