Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-15T22:16:00.887Z Has data issue: false hasContentIssue false

8 - Mid-IR Systems and the Future of Gas Absorption Spectroscopy

Published online by Cambridge University Press:  07 April 2021

George Stewart
Affiliation:
University of Strathclyde
Get access

Summary

The state-of-the-art of mid-IR laser absorption spectroscopy is reviewed to take advantage of the stronger absorption lines. The properties of mid-IR diode lasers are discussed, including quantum well, inter-band cascade and quantum cascade lasers for gas sensing at wavelengths beyond two microns. As an alternative to diode lasers, mid-IR laser sources based on down-conversion from the near-IR are reviewed using either difference frequency generation or optical parametric oscillation and examples are given of their design as tuneable mid-IR CW sources or as mid-IR frequency combs. Examples of compact mid-IR laser combs formed from micro-resonators in silicon are also discussed. The important spectroscopic techniques of wavelength modulation spectroscopy, cavity-enhanced, evanescent-wave and dual-comb spectroscopy are all discussed in the context of the mid-IR with examples of the performance that can be attained. The performance and limitations of the most common mid-IR transmitting fibres and mid-IR detectors are also reviewed. Finally a comparison is given of the relative merits of gas absorption spectroscopy in the near-IR and mid-IR and where each has an important role to play.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tittel, F. K., Lewicki, R., Lascola, R. and McWhorter, S., Emerging infrared laser absorption spectroscopic techniques for gas analysis, in Trace Analysis of Specialty and Electronic Gases, Geiger, W. M. and Raynor, M. W., Eds., Hoboken, New Jersey, John Wiley & Sons, Inc., ch. 4, 71109, 2013.Google Scholar
Hodgkinson, J. and Tatam, R. P., Optical gas sensing: a review, Meas. Sci. Technol., 24, (1), 159, 2013.Google Scholar
Goldenstein, C. S., Spearrin, R. M., Jeffries, J. B. and Hanson, R. K., Infrared laser-absorption sensing for combustion gases, Prog. Energy Combust. Sci., 60, 132176, 2016.Google Scholar
Picqué, N. and Hänsch, T. W., Mid-IR spectroscopic sensing, Opt. Photonics News, 26–33, 2019.CrossRefGoogle Scholar
Ebrahim-Zadeh, M. and Sorokina, I. T., Eds., Mid-Infrared Coherent Sources and Applications, Dordrecht, The Netherlands, Springer, 2008.Google Scholar
Eblana Photonics Ltd. Specialty laser diodes. 2019. [Online]. Available: www.eblanaphotonics.com/optical-sensing.php (accessed April 2020)Google Scholar
Nanosystems & Technologies GmbH. Distributed feedback lasers. 2019. [Online]. Available: https://nanoplus.com/en/products/distributed-feedback-lasers/ (accessed April 2020)Google Scholar
Sacher Lasertechnik Group. Laser diodes. 2019. [Online]. Available: www.sacher-laser.com/home/laser-diodes/distributed_feedback_laser/ (accessed April 2020)Google Scholar
Spott, A., Stanton, E. J., Torres, A., et al., Interband cascade laser on silicon, Optica, 5, (8), 9961005, 2018.Google Scholar
Capasso, F., Gmachl, C., Sivco, D. L. and Cho, A. Y., Quantum cascade lasers, Phys. Today, 55, (5), 3440, 2002.CrossRefGoogle Scholar
Faist, J., Quantum Cascade Lasers, Oxford, UK, Oxford University Press, 2013.Google Scholar
Pecharromán-Gallego, R.. An overview on quantum cascade lasers: origins and development. 2017. [Online]. Available: www.intechopen.com/books/quantum-cascade-lasers/an-overview-on-quantum-cascade-lasers-origins-and-development (accessed April 2020)Google Scholar
Rose, M., A history of the laser: a trip though the light fantastic, Photonics Spectra, 53, (6), 3949, 2019.Google Scholar
Vitiello, M. S., Scalari, G., Williams, B. and De Natale, P., Quantum cascade lasers: 20 years of challenges, Opt. Express, 23, (4), 51675182, 2015.Google Scholar
Thorlabs, Inc. Quantum cascade lasers. 2019. [Online]. Available: www.thorlabs.com/newgrouppage9.cfm?objectgroup_ID=6932 (accessed April 2020)Google Scholar
Hamamatsu Photonics K. K. Quantum cascade lasers. 2019. [Online]. Available: www.hamamatsu.com/eu/en/product/lasers/semiconductor-lasers/qcls/index.html (accessed April 2020)Google Scholar
Wallace, J., Commercial quantum-cascade laser technology matures, Laser Focus World, 53, (7), 2325, 2017.Google Scholar
Bizet, L., Vallon, R., Parvitte, B., et al., Multi‑gas sensing with quantum cascade laser array in the mid-infrared region, Appl. Phys. B, 123, (145), 16, 2017.Google Scholar
Hundt, P. M., Tuzson, B., Aseev, O., et al., Multi-species trace gas sensing with dual-wavelength QCLs, Appl. Phys. B, 124, (108), 19, 2018.CrossRefGoogle Scholar
Sacher Lasertechnik Group. Tunable external cavity quantum cascade lasers. 2019. [Online]. Available: www.sacher-laser.com/home/scientific-lasers/quantum_cascade_laser/quantum_cascade_lasers/tunable_external_cavity_quantum_cascade_laser.html (accessed April 2020)Google Scholar
DRS Daylight Solutions. About mid-IR quantum cascade lasers. 2017. [Online]. Available: www.daylightsolutions.com/home/technology/about-mid-ir-quantum-cascade-lasers/ (accessed April 2020)Google Scholar
Ghorbani, R. and Schmidt, F. M., Real‑time breath gas analysis of CO and CO2 using an EC‑QCL, Appl. Phys. B, 123, (144), 111, 2017.CrossRefGoogle Scholar
Heinrich, R., Popescu, A., Hangauer, A., Strzoda, R., Höfling, S., High performance direct absorption spectroscopy of pure and binary mixture hydrocarbon gases in the 6–11μm range, Appl. Phys. B, 123, (223), 19, 2017.Google Scholar
Tacke, M., New developments and applications of tunable IR lead salt lasers, Infrared Phys. Technol., 36, (1), 447463, 1995.CrossRefGoogle Scholar
Dong, L., Samson, B., Mid-infrared fibre lasers in Fiber Lasers: Basics, Technology and Applications, Boca Raton FL, CRC Press, Taylor & Francis Group, ch. 14, 255268, 2017.Google Scholar
Jackson, S. D., Towards high-power mid-infrared emission from a fibre laser, Nat. Photonics, 6, 423431, 2012.Google Scholar
Keopsys Group. CW thulium fiber laser. 2016. [Online]. Available: www.keopsys.com/products-services-lasers-amplifiers/continuous-thulium-fiber-laser/ (accessed April 2020)Google Scholar
Thorlabs, Inc. Mid-IR laser sources: 2.7μm. 2019. [Online]. Available: www.thorlabs.com/newgrouppage9.cfm?objectgroup_ID=10061 (accessed April 2020)Google Scholar
Cui, Y., Huang, W., Wang, Z., et al., 4.3μm fiber laser in CO2-filled hollow-core silica fibers, Optica, 6, (8), 951954, 2019.Google Scholar
Eksma Optics. Nonlinear and laser crystals. 2019. [Online]. Available: http://eksmaoptics.com/nonlinear-and-laser-crystals/ (accessed April 2020)Google Scholar
Armstrong, I., Johnstone, W., Duffin, K., et al., Detection of CH4 in the mid-IR using difference frequency generation with tunable diode laser spectroscopy, IEEE J. Lightwave Technol., 28, (10), 14351442, 2010.Google Scholar
Fischer, C. and Sigrist, M. W., Trace-gas sensing in the 3.3-μm region using a diode-based difference-frequency laser photoacoustic system, Appl. Phys. B, 75, 305310, 2002.Google Scholar
Giguère, M., Dang, V. N. and Salhany, J., Fibre lasers: mid-IR laser source is widely tuneable for standoff explosives detection, Laser Focus World, 51, (4), 5961, 2015.Google Scholar
Genia Photonics. Picosecond tunable mid-IR laser. 2019. [Online]. Available: www.geniaphotonics.com/products (accessed April 2020)Google Scholar
Toptica Photonics. FemtoFiber dichro midIR. 2019. [Online]. Available: www.toptica.com/products/psfs-fiber-lasers/femtofiber-dichro/femtofiber-dichro-midir/ (accessed April 2020)Google Scholar
APE-Berlin. Mid-IR laser Carmina. 2019. [Online]. Available: www.ape-berlin.de/en/ssnom-afm-ir-with-carmina/ (accessed April 2020)Google Scholar
Toptica Photonics. TOPO widely tunable high-power CW OPO laser system for mid-IR spectroscopy and applications. 2019. [Online]. Available: www.toptica.com/products/tunable-diode-lasers/frequency-converted-lasers/topo/ (accessed April 2020)Google Scholar
APE-Berlin. OPO – optical parametric oscillator. 2019. [Online]. Available: www.ape-berlin.de/en/opo-optical-parametric-oscillator/ (accessed April 2020)Google Scholar
von Basum, G., Halmer, D., Hering, P., et al., Parts per trillion sensitivity for ethane in air with an optical parametric oscillator cavity leak-out spectrometer, Opt. Lett., 29, (8), 797799, 2004.Google Scholar
Coddington, I., Newbury, N. R. and Swann, W. C., Dual-comb spectroscopy, Optica, 3, (4), 414426, 2016.CrossRefGoogle ScholarPubMed
Picqué, N. and Hänsch, T.W.. Frequency comb spectroscopy, Nat. Photonics, 13, 146157, 2019.CrossRefGoogle Scholar
Ruehi, A, Advances in Yb:fiber frequency comb technology, Opt. Photonics News, 23, (5), 3141, 2012.Google Scholar
Adler, F., Cossel, K. C., Thorpe, M. J., et al., Phase-stabilized, 1.5 W frequency comb at 2.8–4.8μm, Optics Lett., 34, (9), 13301332, 2009.Google Scholar
Zhang, Z., Gardiner, T. and Reid, D. T., Mid-infrared dual-comb spectroscopy with an optical parametric oscillator, Opt. Lett., 38, (16), 31483150, 2013.CrossRefGoogle ScholarPubMed
Jin, Y., Cristescu, S. M., Harren, F. J. M. and Mandon, J., Femtosecond optical parametric oscillators toward real‑time dual‑comb spectroscopy, Appl. Phys. B, 119, 6574, 2015.Google Scholar
Menlo Systems GmbH. Mid-IR optical frequency comb. 2019. [Online]. Available: www.menlosystems.com/products/optical-frequency-combs/mid-ir-comb/ (accessed April 2020)Google Scholar
Baumann, E., Giorgetta, F. R., Swann, W. C., et al., Spectroscopy of the methane ν3 band with an accurate mid infrared coherent dual-comb spectrometer, Phys. Rev. A, 84, (062513), 19, 2011.Google Scholar
Ycas, G., Giorgetta, F. R., Baumann, E., et al., High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2μm, Nat. Photonics, 12, 202208, 2018.Google Scholar
Ycas, G., Giorgetta, F. R., Cossel, K. C., et al., Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths, Optica, 6, 2, 165168, 2019.Google Scholar
Cappelli, F., Villares, G., Riedi, S. and Faist, J., Intrinsic linewidth of quantum cascade laser frequency combs, Optica, 2, (10), 836840, 2015.Google Scholar
Villares, G., Wolf, J., Kazakov, D., et al., On-chip dual-comb based on quantum cascade laser frequency combs, Appl. Phys. Lett., 107, (251104), 16, 2015.Google Scholar
Lu, Q. Y., Manna, S., Wu, D. H., Slivken, S. and Razeghia, M., Shortwave quantum cascade laser frequency comb for multi-heterodyne spectroscopy, Appl. Phys. Lett., 112, (141104) 16, 2018.Google Scholar
Hillbrand, J., Andrews, A. M., Detz, H., Strasser, G. and Schwarz, B., Coherent injection locking of quantum cascade laser frequency combs, Nat. Photonics, 13, 101104, 2019.Google Scholar
Scalari, G., Faist, J. and Picqué, N., On-chip mid-infrared and THz frequency combs for spectroscopy, Appl. Phys. Lett. 114, (150401), 15, 2019.Google Scholar
IRsweep. The IRis-cor –turnkey mid-IR dual comb source. 2019. [Online]. Available: https://irsweep.com/products/iris-core/ (accessed April 2020)Google Scholar
Hugi, A., Lyon, A. -M., Mangold, M., et al., Mid-Infrared spectrometer featuring μ-second time resolution based on dual-comb quantum cascade laser frequency combs in CLEO Conference Photonic Instrumentation & Techniques for Metrology & Industrial Process, San Jose, CA, 2017.Google Scholar
Griffith, A. G., Lau, R. K. W., Cardenas, J., et al., Silicon-chip mid-infrared frequency comb generation, Nat. Commun., 6, (6299), 15, 2015.CrossRefGoogle ScholarPubMed
Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. and Lipson, M., Battery-operated integrated frequency comb generator, Nature, 562, 401405, 2018.Google Scholar
Yu, M., Okawachi, Y., Griffith, A. G., Lipson, M. and Gaeta, A. L., Mode-locked mid-infrared frequency combs in a silicon microresonator, Optica, 3, (8), 854860, 2016.Google Scholar
Yu, M., Okawachi, Y., Griffith, A. G., et al., Silicon-chip-based mid-infrared dual-comb spectroscopy, Nat. Commun., 9, (1869), 16, 2018.Google ScholarPubMed
Tanaka, K., Akishima, K., Sekita, M., Tonokura, K. and Konno, M., Measurement of ethylene in combustion exhaust using a 3.3μm distributed feedback interband cascade laser with wavelength modulation spectroscopy,  Appl. Phys. B, 123, (219), 18, 2017.CrossRefGoogle Scholar
Golston, L. M., Tao, L., Brosy, C., et al., Lightweight mid-infrared methane sensor for unmanned aerial systems, Appl. Phys. B, 123, (170), 19, 2017.Google Scholar
Upadhyay, A., Wilson, D., Lengden, M., et al., Calibration-free WMS using a cw-DFB-QCL, a VCSEL, and an edge-emitting DFB laser with in-situ real-time laser parameter characterization, IEEE Photonics J., 9, (2), 6801217, 118, 2017.Google Scholar
Welzel, S., Engeln, R. and Röpcke, J., Quantum cascade laser based chemical sensing using optically resonant cavities, in Cavity-Enhanced Spectroscopy and Sensing (Springer Series in Optical Sciences, vol. 179), Gagliardi, G. and Loock, H.-P., Eds., New York, Springer, ch. 3, 93142, 2014.Google Scholar
Morville, J., Romanini, D. and Kerstel, E., Cavity enhanced absorption spectroscopy with optical feedback in Cavity-Enhanced Spectroscopy and Sensing (Springer Series in Optical Sciences, vol. 179), Gagliardi, G. and Loock, H.-P., Eds., New York, Springer, ch. 5, 163209, 2014.Google Scholar
Ventrillard, I., Gorrotxategi-Carbajo, P. and Romanini, D., Part per trillion nitric oxide measurement by optical feedback cavity‑enhanced absorption spectroscopy in the mid‑infrared, Appl. Phys. B, 123, (180), 18, 2017.Google Scholar
van Helden, J. H., Lang, N., Macherius, U., Zimmermann, H., and Ropcke, J, Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser, Appl. Phys. Lett., 103, (131114), 14, 2013.Google Scholar
Foltynowicz, A., Maslowski, P., Fleisher, A. J., Bjork, B. J. and Ye, J., Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace gas detection of hydrogen peroxide, Appl. Phys. B., 110, (2), 163175, 2013.Google Scholar
Khodabakhsh, A., Rutkowski, L., Morville, J. and Foltynowicz, A., Mid‑infrared continuous-filtering Vernier spectroscopy using a doubly resonant optical parametric oscillator, Appl. Phys. B, 123, (210), 112, 2017.CrossRefGoogle Scholar
Tai, H., Tanaka, H. and Yoshino, T., Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392-μm line of a He-Ne laser, Opt. Lett., 12, (6), 437439, 1987.Google Scholar
Tombez, L., Zhang, E. J., Orcutt, J. S., Kamlapurkar, S. and Green, W. M. J., Methane absorption spectroscopy on a silicon photonic chip, Optica, 4, (11), 13221325, 2017.Google Scholar
Green, W. M. J., Zhang, E. J., Xiong, C., et al., Silicon photonic gas sensing, in Optical Fiber Communication Conference (OFC) 2019, San Diego, CA, USA, OSA Technical Digest, paper M2J.5, 2019.Google Scholar
Butt, M. A., Khonina, S. N. and Kazanskiy, N. L., Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor, J. Mod. Opt., 65, (2), 174178, 2018.Google Scholar
Tittel, F. K., Mid-IR semiconductor lasers enable sensors for trace-gas-sensing applications, Photonics Spectra, 48, (6), 5256, 2014.Google Scholar
Sadiek, I., Mikkonen, T., Vainio, M., Toivonen, J. and Foltynowicz, A., Optical frequency comb photoacoustic spectroscopy, Phys. Chem. Chem. Phys., 20, 2784927855, 2018.Google Scholar
Paschotta, R.. Mid-infrared fibers. 2008. [Online]. Available: www.rp-photonics.com/mid_infrared_fibers.html (accessed April 2020)Google Scholar
Fiberlabs Inc. ZBLAN Fluoride glass fibers & cables. 2019. [Online]. Available: www.fiberlabs.com/fiber_index/ (accessed April 2020)Google Scholar
Thorlabs Inc. Mid-infrared optical fiber. 2019. [Online]. Available: www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7062#ad-image-0 (accessed April 2020)Google Scholar
Pitman, H., Gravity-free optical fibre manufacturing breaks earthly limitations, Laser Focus World, 55, (1), 9395, 2019.Google Scholar
Munasinghe, H. T., Winterstein-Beckmann, A., Schiele, C., et al., Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications, Opt. Mat. Exp., 3, (9), 14881503, 2013.Google Scholar
Knight, J., Hand, D. and Yu, F., Hollow-core optical fibres offer advantages at any wavelength, Photonics Spectra, 53, (4), 5357, 2019.Google Scholar
Rogalski, A., Infrared and Terahertz Detectors, Boca Raton FL, CRC Press, Taylor & Francis Group, 3rd edn., 2019.Google Scholar
Rogalski, A., Graphene-based materials in the infrared and terahertz detector families: a tutorial, Adv. Opt. Photonics, 11, (2), 314379, 2019.Google Scholar
Hamamatsu Photonics K. K. Infrared detectors. 2019. [Online]. Available: www.hamamatsu.com/eu/en/product/optical-sensors/infrared-detector/index.html (accessed April 2020)Google Scholar
Thorlabs Inc. Detectors, 2019. [Online]. Available: www.thorlabs.com/navigation.cfm?guide_id=36 (accessed April 2020)Google Scholar
Vigo System S.A. IR detectors, 2019. [Online]. Available: https://vigo.com.pl/en/products-vigo/ (accessed April 2020)Google Scholar
Chiles, J., Nader, N., Stanton, E. J., et al., Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon, Optica, 6, (9), 12461254, 2019.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×