Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T01:25:22.955Z Has data issue: false hasContentIssue false

2 - The Search for Another Earth-Like Planet and Life Elsewhere

from Science

Published online by Cambridge University Press:  08 July 2017

Andreas Losch
Affiliation:
Universität Bern, Switzerland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anglada-Escudé, G., Amado, P. J., Barnes, J. et al. (2016). A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature, 536(7617), 437–40.Google Scholar
Arnold, L., Gillet, S., Lardière, O., Riaud, P., & Schneider, J. (2002). A test for the search for life on extrasolar planets – Looking for the terrestrial vegetation signature in the Earthshine spectrum. Astronomy & Astrophysics, 392(1), 231–37.Google Scholar
Barnes, R., Deitrick, R., Luger, R. et al. (2016). The habitability of Proxima Centauri b I: Evolutionary scenarios. arXiv preprint arXiv:1608.06919.Google Scholar
Baross, J., Benner, S., Cody, G. et al. (2007). The limits of organic life in planetary systems Committee on the origins and evolution of life (Vol. 38, pp. 1070): National Reseach Council.Google Scholar
Baum, S. D., Goertzel, B., & Goertzel, T. G. (2011). How long until human-level AI? Results from an expert assessment. Technological Forecasting and Social Change, 78(1), 185–95.Google Scholar
Bessel, F. (1838). On the parallax of 61 Cygni. Monthly Notices of the Royal Astronomical Society, 4, 152–61.Google Scholar
Boyajian, T., LaCourse, D., Rappaport, S. et al. (2016). Planet Hunters X. KIC 8462852 – Where's the flux? Monthly Notices of the Royal Astronomical Society, 457(4), 39884004.Google Scholar
Burke, C. J., Christiansen, J. L., Mullally, F. et al. (2015). Terrestrial planet occurrence rates for the Kepler GK Dwarf sample. The Astrophysical Journal, 809(1), 8.CrossRefGoogle Scholar
CarriganJr, R. A. (2009). IRAS-based whole-sky upper limit on Dyson spheres. The Astrophysical Journal, 698(2), 2075.Google Scholar
Cassan, A., Kubas, D., Beaulieu, J.-P. et al. (2012). One or more bound planets per Milky Way star from microlensing observations. Nature, 481(7380), 167–9.CrossRefGoogle ScholarPubMed
Catling, D. C. (2014). The Great Oxidation Event Transition. In Turekian, H. D. H. a. K. K, ed., Treatise on Geochemistry, 2nd edn, Vol. 6, Oxford: Elsevier, pp. 177195.CrossRefGoogle Scholar
Catling, D. C. & Kasting, J. (2017). Atmospheric Evolution on Inhabited and Lifeless Worlds, Cambridge: Cambridge University Press.Google Scholar
Crossfield, I. J. (2015). Observations of exoplanet atmospheres. Publications of the Astronomical Society of the Pacific, 127(956), 941.CrossRefGoogle Scholar
Dick, S. J. (1993). The search for extraterrestrial intelligence and the NASA High Resolution Microwave Survey (HRMS): historical perspectives. Space science reviews, 64(1–2), 93139.Google Scholar
Diehl, R., Halloin, H., Kretschmer, K. et al. (2006). Radioactive 26Al from massive stars in the Galaxy. Nature, 439(7072), 45–7.CrossRefGoogle ScholarPubMed
Domagal-Goldman, S. D., Meadows, V. S., Claire, M. W., & Kasting, J. F. (2011). Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology, 11(5), 419–41.CrossRefGoogle ScholarPubMed
Ehman, J. (2010). The Big Ear Wow! signal (30th Anniversary Report). Big Ear Radio Observatory. Available online at http://www.bigear.org/Wow30th/wow30th.htm.Google Scholar
Einstein, A. (1936). Lens-like action of a star by the deviation of light in the gravitational field. Science, 84(2188), 506–7.CrossRefGoogle ScholarPubMed
Gillon, M., Triaud, A. H., Demory, B. O. et al. (2017). Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature, 542(7642), 456–60.Google Scholar
Harman, C., Schwieterman, E., Schottelkotte, J., & Kasting, J. (2015). Abiotic O2 levels on planets around F, G, K, and M stars: Possible false positives for life? The Astrophysical Journal, 812(2), 137.Google Scholar
Hart, M. H. (1978). The evolution of the atmosphere of the Earth. Icarus, 33(1), 2339.Google Scholar
Howard, A. W. (2013). Observed properties of extrasolar planets. Science, 340(6132), 572–6.Google Scholar
Hubble, E. P. (1925). Cepheids in spiral nebulae. The Observatory, 48, 139–42.Google Scholar
Jeans, J. (1942). Is there life on the other worlds? Science, 95(2476), 589–92.CrossRefGoogle ScholarPubMed
Kasting, J. F. (2013). What caused the rise of atmospheric O2? Chemical Geology, 362, 1325.CrossRefGoogle Scholar
Kawahara, H., & Fujii, Y. (2010). Global mapping of Earth-like exoplanets from scattered light curves. The Astrophysical Journal, 720(2), 1333.Google Scholar
Kirchner, J. W. (2003). The Gaia hypothesis: conjectures and refutations. Climatic Change, 58(1–2), 2145.Google Scholar
Knoll, A. H. (2008). Cyanobacteria and Earth history. The Cyanobacteria: Molecular Biology, Genomics, and Evolution, 484.Google Scholar
Kopparapu, R. K., Ramirez, R., Kasting, J. F. et al. (2013). Habitable zones around main-sequence stars: new estimates. The Astrophysical Journal, 765(2), 131.CrossRefGoogle Scholar
Krissansen-Totton, J., Bergsman, D. S., & Catling, D. C. (2016). On detecting biospheres from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology, 16(1), 3967. doi: 10.1089/ast.2015.1327Google Scholar
Kuhn, J. R. & Berdyugina, S. V. (2015). Global warming as a detectable thermodynamic marker of Earth-like extrasolar civilizations: the case for a telescope like Colossus. International Journal of Astrobiology, 14(03), 401–10.Google Scholar
Labeyrie, A. (1999). Snapshots of alien worlds – the future of interferometry. Science, 285(5435), 1864.CrossRefGoogle Scholar
Lane, N. (2002). Oxygen: the Molecule that Made the World, Oxford: Oxford University Press.Google Scholar
Léger, A., Fontecave, M., Labeyrie, A. et al. (2011). Is the presence of oxygen on an exoplanet a reliable biosignature? Astrobiology, 11(4), 335–41.Google Scholar
Long, K., Obousy, R., Tziolas, A. et al. (2010). PROJECT ICARUS: Son of Daedalus, Flying Closer to Another Star. arXiv preprint arXiv:1005.3833.Google Scholar
Lovelock, J. E. (1965). A physical basis for life detection experiments. Nature, 207(997), 568–70.CrossRefGoogle ScholarPubMed
Lovelock, J. E. (1975). Thermodynamics and the recognition of alien biospheres. Proceedings of the Royal Society of London B: Biological Sciences, 189(1095), 167–81.Google Scholar
Lovelock, J. E. & Margulis, L. (1974). Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus, 26, 12.Google Scholar
Luger, R. & Barnes, R. (2015). Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology, 15(2), 119–43.CrossRefGoogle ScholarPubMed
Lyons, T. W., Reinhard, C. T., & Planavsky, N. J. (2014). The rise of oxygen in Earth's early ocean and atmosphere. Nature, 506(7488), 307–15.Google Scholar
Marois, C., Macintosh, B., Barman, T. et al. (2008). Direct imaging of multiple planets orbiting the star HR 8799. Science, 322(5906), 1348–52.CrossRefGoogle ScholarPubMed
Martin, A. R. (1978). Project Daedalus: The Final Report on the BIS Starship Study: British Interplanetary Soc.Google Scholar
Mayor, M. & Queloz, D. (1995). A Jupiter-mass companion to a solar-type star. Nature, 378(6555), 355–9.Google Scholar
Oliver, B. (1979). Rationale for the water hole. Communication with Extraterrestrial Intelligence,6(1–2), 71.Google Scholar
Pepe, F., Molaro, P., Cristiani, S. et al. (2014). ESPRESSO: The next European exoplanet hunter. Astronomische Nachrichten, 335(1), 820.Google Scholar
Pohorille, A. & Pratt, L. (2012). Is water the universal solvent for life? Origins of Life and Evolution of Biospheres, 42(5), 405–9.Google Scholar
Postman, M., Brown, T., Koekemoer, A. et al. (2008). Science with an 8-meter to 16-meter optical/UV space telescope. Paper presented at the SPIE Astronomical Telescopes+ Instrumentation.Google Scholar
Preus, A. (2001). Essays in Ancient Greek Philosophy VI: Before Plato (Vol. 6), SUNY Press.Google Scholar
Ribas, I., Bolmont, E., Selsis, F. et al. (2016). The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present. Astronomy & Astrophysics, 596, A111.Google Scholar
Robinson, T. D., Ennico, K., Meadows, V. S. et al. (2014). Detection of ocean glint and ozone absorption using LCROSS Earth observations. The Astrophysical Journal, 787(2), 171.Google Scholar
Robinson, T. D., Meadows, V. S., & Crisp, D. (2010). Detecting oceans on extrasolar planets using the glint effect. The Astrophysical Journal Letters, 721(1), L67.Google Scholar
Rodler, F. & López-Morales, M. (2014). Feasibility studies for the detection of O2 in an Earth-like exoplanet. The Astrophysical Journal, 781(1), 54.CrossRefGoogle Scholar
Rubin, V. C., Ford, W. K., & Thonnard, N. (1980). Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R= 4kpc/to UGC 2885/R= 122 kpc. The Astrophysical Journal, 238, 471–87.CrossRefGoogle Scholar
Sagan, C. (1994). Pale Blue Dot: A Vision of the Human Future in Space, Random House.Google Scholar
Sagan, C., Thompson, W. R., Carlson, R., Gurnett, D., & Hord, C. (1993). A search for life on Earth from the Galileo spacecraft. Nature, 365(6448), 715–21.Google Scholar
Schneider, S. (2016). Superintelligent AI and the postbiological cosmos approach. In Losch, A.. ed., What is Life? On Earth and Beyond, Cambridge: Cambridge University Press.Google Scholar
Schwieterman, E., Cockell, C., & Meadows, V. (2015). Nonphotosynthetic pigments as potential biosignatures. Astrobiology, 15(5), 341–61.Google Scholar
Seager, S., Bains, W., & Hu, R. (2013). Biosignature gases in H2-dominated atmospheres on rocky exoplanets. The Astrophysical Journal, 777(2), 95.CrossRefGoogle Scholar
Seager, S., & Sasselov, D. (2000). Theoretical transmission spectra during extrasolar giant planet transits. The Astrophysical Journal, 537(2), 916.CrossRefGoogle Scholar
Shapley, H. (1918). Studies based on the colors and magnitudes in stellar clusters. VII. The distances, distribution in space, and dimensions of 69 globular clusters. The Astrophysical Journal, 48, 154–81.Google Scholar
Shklovskii, I. S. & Sagan, C. (1966). Intelligent Life in the Universe, San Francisco, CA: Holden Day.Google Scholar
Shostak, S. (2015). Searching for clever life. Astrobiology, 15(11), 949–50.Google Scholar
Siemion, A. P., Benford, J., Cheng-Jin, J. et al. (2014). Searching for extraterrestrial intelligence with the Square Kilometre Array. arXiv preprint arXiv:1412.4867.Google Scholar
Silburt, A., Gaidos, E., & Wu, Y. (2015). A statistical reconstruction of the planet population around Kepler solar-type stars. The Astrophysical Journal, 799(2), 180.Google Scholar
Snellen, I., de Kok, R., Birkby, J. et al. (2015). Combining high-dispersion spectroscopy with high contrast imaging: Probing rocky planets around our nearest neighbors. Astronomy & Astrophysics, 576, A59.CrossRefGoogle Scholar
Stark, C. C., Cady, E. J., Clampin, M. et al. (2016). A direct comparison of exoEarth yields for starshades and coronagraphs. Paper presented at the SPIE Astronomical Telescopes+ Instrumentation.Google Scholar
Tarter, J. (2001). The search for extraterrestrial intelligence (SETI). Annual Review of Astronomy and Astrophysics, 39(1), 511–48.Google Scholar
Vernadsky, V. I. (1926). The Biosphere, New York: Copernicus Springer-Verlag (English translation of Vernadsky, VI, 1926).Google Scholar
Walker, J. C., Hays, P., & Kasting, J. (1981). A negative feedback mechanism for the long-term stabilization of the Earth's surface temperature. Journal of Geophysical Research, 86(C10), 9776–82.Google Scholar
Webb, S. (2015). If the Universe is Teeming with Aliens…Where is Everybody?: Fifty Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life (Second Edition), Springer Science & Business Media.Google Scholar
Wright, J. T., Cartier, K., Zhao, M., Jontof-Hutter, D., & Ford, E. B. (2015). The Ĝ search for extraterrestrial civilizations with large energy supplies. IV. The signatures and information content of transiting megastructures. The Astrophysical Journal, 816(1), 17.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×