Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-19T08:22:36.775Z Has data issue: false hasContentIssue false

3 - Airway-Related Problems

Published online by Cambridge University Press:  09 July 2018

Martin Jöhr
Affiliation:
Luzerner Kantonsspital, Lucerne, Switzerland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Fesseau, R., Alacoque, X., Larcher, C., et al. (2014). An ADARPEF survey on respiratory management in pediatric anesthesia. Paediatr Anaesth, 24, 10991105.CrossRefGoogle ScholarPubMed
Jackson Rees, G. (1950). Anaesthesia in the newborn. Br Med J, 2 (4694), 14191422.CrossRefGoogle Scholar
Marsh, D.F. & Mackie, P. (2009). National survey of pediatric breathing systems use in the UK. Paediatr Anaesth, 19, 477480.CrossRefGoogle ScholarPubMed
Meakin, G.H. (2007). Role of the Jackson Rees T-piece in pediatric anesthesia. Paediatr Anaesth, 17, 613615.CrossRefGoogle ScholarPubMed
Meier, A., Jost, M., Ruegger, , et al. (1995). Narcotic gas burden of personnel in pediatric anesthesia [in German]. Anaesthesist, 44, 154162.CrossRefGoogle ScholarPubMed
Schily, M., Koumoukelis, H., Lerman, J., et al. (2001). Can pediatric anesthesiologists detect an occluded tracheal tube in neonates? Anesth Analg, 93, 6670.CrossRefGoogle ScholarPubMed
von Ungern-Sternberg, B.S., Saudan, S., Regli, A., et al. (2007). Should the use of modified Jackson Rees T-piece breathing system be abandoned in preschool children? Paediatr Anaesth, 17, 654660.CrossRefGoogle ScholarPubMed

References

Cladis, F., Kumar, A., Grunwaldt, L., et al. (2014). Pierre Robin sequence: a perioperative review. Anesth Analg, 119, 400412.CrossRefGoogle ScholarPubMed
Duggan, L.V., Ballantyne, S.B., Law, J.A., et al. (2016). Transtracheal jet ventilation in the ‘can’t intubate can’t oxygenate’ emergency: a systematic review. Br J Anaesth, 117 (Suppl. 1), i28i38.CrossRefGoogle ScholarPubMed
Fujii, M., Tachibana, K., Takeuchi, M., et al. (2015). Perioperative management of 19 infants undergoing glossopexy (tongue–lip adhesion) procedure: a retrospective study. Paediatr Anaesth, 25, 829833.CrossRefGoogle Scholar
Heymans, F., Feigl, G., Graber, S., et al. (2016). Emergency cricothyrotomy performed by surgical airway-naive medical personnel: a randomized crossover study in cadavers comparing three commonly used techniques. Anesthesiology, 125, 295303.CrossRefGoogle ScholarPubMed
Holm-Knudsen, R.J., Rasmussen, L.S., Charabi, B., et al. (2012). Emergency airway access in children: transtracheal cannulas and tracheotomy assessed in a porcine model. Paediatr Anaesth, 22, 11591165.CrossRefGoogle ScholarPubMed
Jöhr, M. & Berger, T.M. (2004). Fiberoptic intubation through the laryngeal mask airway (LMA) as a standardized procedure. Paediatr Anaesth, 14, 614.CrossRefGoogle ScholarPubMed
Kleine-Brueggeney, M., Nicolet, A., Nabecker, S., et al. (2015). Blind intubation of anaesthetised children with supraglottic airway devices AmbuAura-i and Air-Q cannot be recommended: a randomised controlled trial. Eur J Anaesthesiol, 32, 631639.CrossRefGoogle ScholarPubMed
Weiss, M. & Engelhardt, T. (2010). Proposal for the management of the unexpected difficult pediatric airway. Paediatr Anaesth, 20, 454464.CrossRefGoogle ScholarPubMed
Weiss, M. & Engelhardt, T. (2012). Cannot ventilate: paralyze! Paediatr Anaesth, 22, 11471149.CrossRefGoogle ScholarPubMed

References

Andropoulos, D.B., Ayres, N.A., Stayer, S.A., et al. (2000). The effect of transesophageal echocardiography on ventilation in small infants undergoing cardiac surgery. Anesth Analg, 90, 4749.CrossRefGoogle ScholarPubMed
Berg, M.D., Idris, A.H., & Berg, R.A. (1998). Severe ventilatory compromise due to gastric distention during pediatric cardiopulmonary resuscitation. Resuscitation, 36, 7173.CrossRefGoogle ScholarPubMed
Gercek, A., Ay, B., Dogan, V., et al. (2007). Esophageal balloon dilation in children: prospective analysis of hemodynamic changes and complications during general anesthesia. J Clin Anesth, 19, 286289.CrossRefGoogle ScholarPubMed
Pearson, J.K. & Tan, G.M. (2015). Pediatric anterior mediastinal mass: a review article. Semin Cardiothorac Vasc Anesth, 19, 248254.CrossRefGoogle ScholarPubMed
Weiss, M. & Engelhardt, T. (2010). Proposal for the management of the unexpected difficult pediatric airway. Paediatr Anaesth, 20, 454464.CrossRefGoogle ScholarPubMed
Weiss, M. & Engelhardt, T. (2012). Cannot ventilate: paralyze! Paediatr Anaesth, 22, 11471149.CrossRefGoogle ScholarPubMed

References

Gloor, A., Dillier, C., & Gerber, A. (2001). Ketamine for short ambulatory procedures in children: an audit. Paediatr Anaesth, 11, 533539.CrossRefGoogle ScholarPubMed
Habre, W., Disma, N., Virag, K., et al. (2017). Incidence of severe critical events in paediatric anaesthesia (APRICOT): a prospective multicentre observational study in 261 hospitals in Europe. Lancet Respir Med, 5, 412425.CrossRefGoogle ScholarPubMed
Kye, Y.C., Rhee, J.E., Kim, K., et al. (2012). Clinical effects of adjunctive atropine during ketamine sedation in pediatric emergency patients. Am J Emerg Med, 30, 19811985.CrossRefGoogle ScholarPubMed
Melendez, E. & Bachur, R. (2009). Serious adverse events during procedural sedation with ketamine. Pediatr Emerg Care, 25, 325328.CrossRefGoogle ScholarPubMed
Mihara, T., Uchimoto, K., Morita, S., et al. (2014). The efficacy of lidocaine to prevent laryngospasm in children: a systematic review and meta-analysis. Anaesthesia, 69, 13881396.CrossRefGoogle ScholarPubMed
Morray, J.P., Geiduschek, J.M., Ramamoorthy, C., et al. (2000). Anesthesia-related cardiac arrest in children: initial findings of the Pediatric Perioperative Cardiac Arrest (POCA) Registry. Anesthesiology, 93, 614.CrossRefGoogle ScholarPubMed
Ramamoorthy, C., Haberkern, C.M., Bhananker, S.M., et al. (2010). Anesthesia-related cardiac arrest in children with heart disease: data from the Pediatric Perioperative Cardiac Arrest (POCA) Registry. Anesth Analg, 110, 13761382.CrossRefGoogle ScholarPubMed
Shaw, C.A., Kelleher, A.A., Gill, C.P., et al. (2000). Comparison of the incidence of complications at induction and emergence in infants receiving oral atropine vs no premedication. Br J Anaesth, 84, 174178.CrossRefGoogle ScholarPubMed
von Ungern-Sternberg, B.S., Boda, K., Chambers, N.A., et al. (2010). Risk assessment for respiratory complications in paediatric anaesthesia: a prospective cohort study. Lancet, 376, 773783.CrossRefGoogle ScholarPubMed
Wörner, J., Jöhr, M., Berger, T.M., et al. (2009). Infections with respiratory syncytial virus. Underestimated risk during anaesthesia in infants [in German]. Anaesthesist, 58, 10411044.CrossRefGoogle ScholarPubMed

References

Bjornson, C., Russell, K., Vandermeer, B., et al. (2013). Nebulized epinephrine for croup in children. Cochrane Database Syst Rev, (10), CD006619.CrossRefGoogle Scholar
Bjornson, C.L., Klassen, T.P., Williamson, J., et al. (2004). A randomized trial of a single dose of oral dexamethasone for mild croup. N Engl J Med, 351, 13061313.CrossRefGoogle ScholarPubMed
Blot, S.I., Poelaert, J., & Kollef, M. (2014). How to avoid microaspiration? A key element for the prevention of ventilator-associated pneumonia in intubated ICU patients. BMC Infect Dis, 14, 119.CrossRefGoogle ScholarPubMed
Dillier, C.M., Trachsel, D., Baulig, W., et al. (2004). Laryngeal damage due to an unexpectedly large and inappropriately designed cuffed pediatric tracheal tube in a 13-month-old child. Can J Anaesth, 51, 7275.CrossRefGoogle Scholar
Khemani, R.G., Randolph, A., & Markovitz, B. (2009). Corticosteroids for the prevention and treatment of post-extubation stridor in neonates, children and adults. Cochrane Database Syst Rev, (3), CD001000.CrossRefGoogle Scholar
Kutter, A.P., Bittermann, A.G., Bettschart-Wolfensberger, R., et al. (2013). Do lower cuff pressures reduce damage to the tracheal mucosa? A scanning electron microscopy study in neonatal pigs. Paediatr Anaesth, 23, 117121.CrossRefGoogle Scholar
Weiss, M., Dave, M., Bailey, M., et al. (2013). Endoscopic airway findings in children with or without prior endotracheal intubation. Paediatr Anaesth, 23, 103110.CrossRefGoogle ScholarPubMed
Weiss, M., Dullenkopf, A., & Böttcher, S. (2006). Clinical evaluation of cuff and tube tip position in a newly designed paediatric preformed oral cuffed tracheal tube. Br J Anaesth, 97, 695700.CrossRefGoogle Scholar
Weiss, M., Dullenkopf, A., Fischer, J.E., et al. (2009). Prospective randomized controlled multi-centre trial of cuffed or uncuffed endotracheal tubes in small children. Br J Anaesth, 103, 867873.CrossRefGoogle ScholarPubMed
Weiss, M., Dullenkopf, A., Gysin, C., et al. (2004). Shortcomings of cuffed paediatric tracheal tubes. Br J Anaesth, 92, 7888.CrossRefGoogle ScholarPubMed

References

Bednarek, F.J. & Kuhns, L.R. (1975). Endotracheal tube placement in infants determined by suprasternal palpation: a new technique. Pediatrics, 56, 224229.CrossRefGoogle ScholarPubMed
Böttcher-Haberzeth, S., Dullenkopf, A., Gitzelmann, C.A., et al. (2007). Tracheal tube tip displacement during laparoscopy in children. Anaesthesia, 62, 131134.CrossRefGoogle ScholarPubMed
Jain, A., Finer, N.N., Hilton, S., et al. (2004). A randomized trial of suprasternal palpation to determine endotracheal tube position in neonates. Resuscitation, 60, 297302.CrossRefGoogle ScholarPubMed
Mariano, E.R., Ramamoorthy, C., Chu, L.F., et al. (2005). A comparison of three methods for estimating appropriate tracheal tube depth in children. Paediatr Anaesth, 15, 846885.CrossRefGoogle ScholarPubMed
Peterson, J., Johnson, N., Deakins, K., et al. (2006). Accuracy of the 7-8-9 Rule for endotracheal tube placement in the neonate. J Perinatol, 26, 333336.CrossRefGoogle ScholarPubMed
Roberts, J.R., Spadafora, M., & Cone, D.C. (1995). Proper depth placement of oral endotracheal tubes in adults prior to radiographic confirmation. Acad Emerg Med, 2, 2024.CrossRefGoogle ScholarPubMed
Sitzwohl, C., Langheinrich, A., Schober, A., et al. (2010). Endobronchial intubation detected by insertion depth of endotracheal tube, bilateral auscultation, or observation of chest movements: randomised trial. BMJ, 341, c5943.CrossRefGoogle ScholarPubMed
Verghese, S.T., Hannallah, R.S., Slack, M.C., et al. (2004). Auscultation of bilateral breath sounds does not rule out endobronchial intubation in children. Anesth Analg, 99, 5658.CrossRefGoogle Scholar
Weiss, M., Balmer, C., Dullenkopf, A., et al. (2005). Intubation depth markings allow an improved positioning of endotracheal tubes in children. Can J Anaesth, 52, 721726.CrossRefGoogle ScholarPubMed
Weiss, M., Knirsch, W., Kretschmar, O., et al. (2006). Tracheal tube-tip displacement in children during head-neck movement: a radiological assessment. Br J Anaesth, 96, 486491.CrossRefGoogle ScholarPubMed

References

Berger, T.M. & Fontana, M. (2010). Fatal tracheal rupture in an extremely preterm infant. Case of the month, October 2010. Swiss Society of Neonatology. www.neonet.ch/files/9314/2591/5116/COTM_october_2010.pdf (accessed 29 November 2017).Google Scholar
Doherty, K.M., Tabaee, A., Castillo, M., et al. (2005). Neonatal tracheal rupture complicating endotracheal intubation: a case report and indications for conservative management. Int J Pediatr Otorhinolaryngol, 69, 111116.CrossRefGoogle ScholarPubMed
Frerk, C., Mitchell, V.S., McNarry, A.F., et al. (2015). Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults. Br J Anaesth, 115, 827848.CrossRefGoogle Scholar
Hartnick, C.J., Barth, W.H., Coté, C.J., et al. (2009). Case records of the Massachusetts General Hospital. Case 7-2009. A pregnant woman with a large mass in the fetal oral cavity. N Engl J Med, 360, 913921.CrossRefGoogle ScholarPubMed
Lazar, D.A., Olutoye, O.O., Moise, K.J., et al. (2011). Ex-utero intrapartum treatment procedure for giant neck masses: fetal and maternal outcomes. J Pediatr Surg, 46, 817822.CrossRefGoogle ScholarPubMed
Wei, J.L. & Bond, J. (2011). Management and prevention of endotracheal intubation injury in neonates. Curr Opin Otolaryngol Head Neck Surg, 19, 474477.CrossRefGoogle ScholarPubMed

References

Besmer, I., Schüpfer, G., Stulz, P., et al. (2001). Tracheal rupture: delayed diagnosis with endobronchial intubation [in German]. Anaesthesist, 50, 167170.CrossRefGoogle ScholarPubMed
Frova, G. & Sorbello, M. (2011). Iatrogenic tracheobronchial ruptures: the debate continues. Minerva Anestesiol, 77, 11301133.Google ScholarPubMed
Paraschiv, M. (2014). Iatrogenic tracheobronchial rupture. J Med Life, 7, 343348.Google ScholarPubMed
Ruppen, W., Schlegel, C., Kistler, W., et al. (2002). Tracheal rupture in a 12 year-old-child: a possible complication of tracheal intubation? Paediatr Anaesth, 12, 465466.CrossRefGoogle Scholar
Willemsen, M.G., Noppens, R., Mulder, A.L., et al. (2014). Ventilation with the Ventrain through a small lumen catheter in the failed paediatric airway: two case reports. Br J Anaesth, 112, 946947.CrossRefGoogle ScholarPubMed

References

Malmgren, B. & Norgren, S. (2002). Dental aberrations in children and adolescents with osteogenesis imperfecta. Acta Odontol Scand, 60, 6571.CrossRefGoogle ScholarPubMed
Noren, J.G., Ranggard, L., Klingberg, G., Persson, C., & Nilsson, K. (1993). Intubation and mineralization disturbances in the enamel of primary teeth. Acta Odontol Scand, 51, 271275.CrossRefGoogle ScholarPubMed
Nouette-Gaulain, K., Lenfant, F., Jacquet-Francillon, D., et al. (2012). French clinical guidelines for prevention of perianaesthetic dental injuries: long text [in French]. Ann Fr Anesth Reanim, 31, 213223.CrossRefGoogle ScholarPubMed
Seow, W.K., Perham, S., Young, W.G., et al. (1990). Dilaceration of a primary maxillary incisor associated with neonatal laryngoscopy. Pediatr Dent, 12, 321324.Google ScholarPubMed
Suely Falcao de Oliveira Melo, N., Guimaraes Vieira Cavalcante da Silva, R.P., & Adilson Soares de Lima, A. (2014). The neonatal intubation causes defects in primary teeth of premature infants. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 158, 605612.CrossRefGoogle ScholarPubMed
Warner, M.E., Benenfeld, S.M., Warner, M.A., et al. (1999). Perianesthetic dental injuries: frequency, outcomes, and risk factors. Anesthesiology, 90, 13021305.CrossRefGoogle ScholarPubMed

References

Endo, K., Okabe, Y., Maruyama, Y., et al. (2007). Bilateral vocal cord paralysis caused by laryngeal mask airway. Am J Otolaryngol, 28, 126129.CrossRefGoogle ScholarPubMed
Haliloglu, M., Bilgen, S., Uzture, N., et al. (2017). Simple method for determining the size of the ProSeal laryngeal mask airway in children: a prospective observational study. Braz J Anesthesiol, 67, 1520.CrossRefGoogle ScholarPubMed
Jagannathan, N., Sohn, L., Sommers, K., et al. (2013). A randomized comparison of the laryngeal mask airway supreme and laryngeal mask airway unique in infants and children: does cuff pressure influence leak pressure? Paediatr Anaesth, 23, 927933.CrossRefGoogle ScholarPubMed
Maino, P., Dullenkopf, A., Bernet, V., et al. (2005). Nitrous oxide diffusion into the cuffs of disposable laryngeal mask airways. Anaesthesia, 60, 278282.CrossRefGoogle ScholarPubMed
Theron, A.D. & Loyden, C. (2008). Nerve damage following the use of an i-gel supraglottic airway device. Anaesthesia, 63, 441442.CrossRefGoogle ScholarPubMed
Thiruvenkatarajan, V., Van Wijk, R.M., & Rajbhoj, A. (2015). Cranial nerve injuries with supraglottic airway devices: a systematic review of published case reports and series. Anaesthesia, 70, 344359.CrossRefGoogle ScholarPubMed
von Ungern-Sternberg, B.S., Erb, T.O., Chambers, N.A., et al. (2009). Laryngeal mask airways: to inflate or to deflate after insertion? Paediatr Anaesth, 19, 837843.CrossRefGoogle ScholarPubMed

References

el Mikatti, N., Luthra, A.D., Healy, T.E., et al. (1995). Gastric regurgitation during general anaesthesia in different positions with the laryngeal mask airway. Anaesthesia, 50, 10531055.CrossRefGoogle ScholarPubMed
Keller, C., Brimacombe, J., Bittersohl, J., et al. (2004a). Aspiration and the laryngeal mask airway: three cases and a review of the literature. Br J Anaesth, 93, 579582.CrossRefGoogle Scholar
Keller, C., Brimacombe, J., von Goedecke, A., et al. (2004b). Airway protection with the ProSeal laryngeal mask airway in a child. Paediatr Anaesth, 14,10211022.CrossRefGoogle ScholarPubMed
Lussmann, R.F. & Gerber, H.R. (1997). Severe aspiration pneumonia with the laryngeal mask [in German]. Anasthesiol Intensivmed Notfallmed Schmerzther, 32, 194196.CrossRefGoogle ScholarPubMed
Mark, D.A. (2003). Protection from aspiration with the LMA-ProSeal after vomiting: a case report. Can J Anaesth, 50, 7880.CrossRefGoogle ScholarPubMed

References

Breschan, C., Platzer, M., Jost, R., et al. (2007). Comparison of catheter-related infection and tip colonization between internal jugular and subclavian central venous catheters in surgical neonates. Anesthesiology, 107, 946953.CrossRefGoogle ScholarPubMed
Bruschettini, M., Romantsik, O., Ramenghi, L.A., et al. (2016). Needle aspiration versus intercostal tube drainage for pneumothorax in the newborn. Cochrane Database Syst Rev, (1), CD011724.CrossRefGoogle Scholar
Camkiran, F.A., Zeyneloglu, P., Ozkan, M., et al. (2016). A randomized controlled comparison of the internal jugular vein and the subclavian vein as access sites for central venous catheterization in pediatric cardiac surgery. Pediatr Crit Care Med, 17, e413e419.CrossRefGoogle Scholar
Cattarossi, L., Copetti, R., Brusa, G., et al. (2016). Lung ultrasound diagnostic accuracy in neonatal pneumothorax. Can Respir J, 2016, 6515069. http://dx.doi.org/10.1155/2016/6515069 (accessed 29 November 2017).CrossRefGoogle ScholarPubMed
Kuhns, L.R., Bednarek, F.J., Wyman, M.L., et al. (1975). Diagnosis of pneumothorax or pneumomediastinum in the neonate by transillumination. Pediatrics, 56, 355360.CrossRefGoogle ScholarPubMed
Liu, J., Chi, J.H., Ren, X.L., et al. (2017). Lung ultrasonography to diagnose pneumothorax of the newborn. Am J Emerg Med, 35, 12981302.CrossRefGoogle ScholarPubMed
Ruesch, S., Walder, B., & Tramèr, M.R. (2002). Complications of central venous catheters: internal jugular versus subclavian access: a systematic review. Crit Care Med, 30, 454460.CrossRefGoogle ScholarPubMed
Yaster, M., Buck, J.R., Dudgeon, D.L., et al. (1988). Hemodynamic effects of primary closure of omphalocele/gastroschisis in human newborns. Anesthesiology, 69, 8488.CrossRefGoogle ScholarPubMed

References

Austin, A.L., Kon, A., & Matteucci, M.J. (2016). Respiratory failure in a child due to type 2 postobstructive pulmonary edema. Pediatr Emerg Care, 32, 2324.CrossRefGoogle Scholar
Bhattacharya, M., Kallet, R.H., Ware, L.B., et al. (2016). Negative-pressure pulmonary edema. Chest, 150, 927933.CrossRefGoogle ScholarPubMed
Devys, J.M., Balleau, C., Jayr, C., et al. (2000a). Biting the laryngeal mask: an unusual cause of negative pressure pulmonary edema. Can J Anaesth, 47, 176178.CrossRefGoogle ScholarPubMed
Devys, J.M., Cadi, P., & Nivoche, Y. (2000b). Protein concentration in pulmonary oedema fluid for negative pressure pulmonary oedema in children. Paediatr Anaesth, 10, 557558.CrossRefGoogle ScholarPubMed
Fremont, R.D., Kallet, R.H., Matthay, M.A., et al. (2007). Postobstructive pulmonary edema: a case for hydrostatic mechanisms. Chest, 131, 17421746.CrossRefGoogle ScholarPubMed
Sharma, P. & Singh, B. (2008). Fluid restriction in the management of postobstructive pulmonary edema: wise or otherwise? J Clin Anesth, 20, 155156.CrossRefGoogle ScholarPubMed
Yemen, T.A. (2000). How much do we really know about postobstructive pulmonary oedema? Paediatr Anaesth, 10, 459461.CrossRefGoogle ScholarPubMed

References

Borland, L.M., Sereika, S.M., Woelfel, S.K., et al. (1998). Pulmonary aspiration in pediatric patients during general anesthesia: incidence and outcome. J Clin Anesth, 10, 95102.Google ScholarPubMed
Engelhardt, T. (2015). Rapid sequence induction has no use in pediatric anesthesia. Paediatr Anaesth, 25, 58.CrossRefGoogle ScholarPubMed
Habre, W., Disma, N., Virag, K., et al. (2017). Incidence of severe critical events in paediatric anaesthesia (APRICOT): a prospective multicentre observational study in 261 hospitals in Europe. Lancet Respir Med, 5, 412425.CrossRefGoogle ScholarPubMed
Jöhr, M. (2007). Anaesthesia for the child with a full stomach. Curr Opin Anaesthesiol, 20, 201203.CrossRefGoogle ScholarPubMed
Lussmann, R.F. & Gerber, H.R. (1997). Severe aspiration pneumonia with the laryngeal mask [in German]. Anasthesiol Intensivmed Notfallmed Schmerzther, 32, 194196.CrossRefGoogle ScholarPubMed
Walker, R.W. (2013). Pulmonary aspiration in pediatric anesthetic practice in the UK: a prospective survey of specialist pediatric centers over a one-year period. Paediatr Anaesth, 23, 702711.CrossRefGoogle Scholar
Warner, M.A., Warner, M.E., Warner, D.O., et al. (1999). Perioperative pulmonary aspiration in infants and children. Anesthesiology, 90, 6671.CrossRefGoogle ScholarPubMed

References

Chate, R.A. (1994). Respiratory arrest during an orthodontic impression of a cleft palate, in a baby with Brachmann-de Lange syndrome. J R Coll Surg Edinb, 39, 121123.Google Scholar
Chate, R.A. (1995). A report on the hazards encountered when taking neonatal cleft palate impressions (1983–1992). Br J Orthod, 22, 299307.CrossRefGoogle ScholarPubMed
Dubey, A., Mujoo, S., Khandelwal, V., et al. (2013). Simplified design and precautionary measures in fabrication of a feeding obturator for a newborn with cleft lip and palate. BMJ Case Rep, 2013. pii: bcr2013010465. doi: 10.1136/bcr-2013-010465.CrossRefGoogle ScholarPubMed
Frei, F.J., aWengen, D.F., Rutishauser, M., et al. (1995). The airway endoscopy mask: useful device for fibreoptic evaluation and intubation of the paediatric airway. Paediatr Anaesth, 5, 319324.Google ScholarPubMed
Johnson, K., Linnaus, M., & Notrica, D. (2017). Airway foreign bodies in pediatric patients: anatomic location of foreign body affects complications and outcomes. Pediatr Surg Int, 33, 5964.CrossRefGoogle ScholarPubMed
Nur, R.B., Cakan, D.G., & Noyan, A. (2016). Evaluation of oxygen saturation and heart rate during intraoral impression taking in infants with cleft lip and palate. J Craniofac Surg, 27, e118e121.CrossRefGoogle ScholarPubMed

References

Lifschultz, B.D. & Donoghue, E.R. (1996). Deaths due to foreign body aspiration in children: the continuing hazard of toy balloons. J Forensic Sci, 41, 247251.CrossRefGoogle ScholarPubMed
Soong, W.J., Lee, Y.S., Soong, Y.H., et al. (2010). Tracheal foreign body after laser supraglottoplasty: a hidden but risky complication of an aluminum foil tape-wrapped endotracheal tube. Int J Pediatr Otorhinolaryngol, 74, 14321434.CrossRefGoogle ScholarPubMed
Weiss, M. & Engelhardt, T. (2010). Proposal for the management of the unexpected difficult pediatric airway. Paediatr Anaesth, 20, 454464.CrossRefGoogle ScholarPubMed

References

Block, E.F., Cheatham, M.L., Parrish, G.A., et al. (1999). Ingested endotracheal tube in an adult following intubation attempt for head injury. Am Surg, 65, 11341136.CrossRefGoogle Scholar
Dickson, J.A. & Fraser, G.C. (1967). ‘Swallowed’ endotracheal tube: a new neonatal emergency. Br Med J, 2, (5555), 811812.CrossRefGoogle ScholarPubMed
Durall, A., Bertha, R.J., & Slusher, T. (2003). An unusual complication of endotracheal intubation. Respir Care, 48, 522523.Google ScholarPubMed
Gronczewski, C.A. (2005). The lost endotracheal tube: an unreported complication of prehospital intubation. Pediatr Emerg Care, 21, 318321.CrossRefGoogle ScholarPubMed
Jöhr, M. & Schubiger, G. (1995). The lost tracheal tube: a rare complication of failed intubation. Paediatr Anaesth, 5, 397398.CrossRefGoogle ScholarPubMed
Kent, S.J., Mackie, J., & Macfarlane, T.V. (2016). Designing for safety: implications of a fifteen year review of swallowed and aspirated dentures. J Oral Maxillofac Res, 7, e3.CrossRefGoogle ScholarPubMed
Kim, N., Atkinson, N., & Manicone, P. (2008). Esophageal foreign body: a case of a neonate with stridor. Pediatr Emerg Care, 24, 849851.CrossRefGoogle ScholarPubMed
Leinwand, K., Brumbaugh, D.E., & Kramer, R.E. (2016). Button battery ingestion in children: a paradigm for management of severe pediatric foreign body ingestions. Gastrointest Endosc Clin N Am, 26, 99118.CrossRefGoogle ScholarPubMed
Wong, S.Y., Tseng, C.H., Wong, K.M., et al. (2003). Aspiration of a dislodged endotracheal tube: a rare cause of acute total airway obstruction. Chang Gung Med J, 26, 515519.Google ScholarPubMed
Wu, C.T., Li, C.Y., Wong, C.S., et al. (1997). The lost endotracheal tube: a rare complication of accidental esophageal intubation. Acta Anaesthesiol Sin, 35, 5558.Google ScholarPubMed

References

Brown, K.A., Laferriere, A., Lakheeram, I., et al. (2006). Recurrent hypoxemia in children is associated with increased analgesic sensitivity to opiates. Anesthesiology, 105, 665669.CrossRefGoogle ScholarPubMed
Certal, V., Catumbela, E., Winck, J.C., et al. (2012). Clinical assessment of pediatric obstructive sleep apnea: a systematic review and meta-analysis. Laryngoscope, 122, 21052114.CrossRefGoogle ScholarPubMed
Chan, I.A. & Gamble, J.J. (2016). Tension pneumothorax during flexible bronchoscopy in a nonintubated infant. Paediatr Anaesth, 26, 452454.CrossRefGoogle Scholar
Coté, C.J. (2015). Anesthesiological considerations for children with obstructive sleep apnea. Curr Opin Anaesthesiol, 28, 327332.CrossRefGoogle ScholarPubMed
Duggan, L.V., Ballantyne, S.B., Law, J.A., et al. (2016). Transtracheal jet ventilation in the ‘can’t intubate can’t oxygenate’ emergency: a systematic review. Br J Anaesth, 117 (Suppl. 1), i28i38.CrossRefGoogle ScholarPubMed
Gursanscky, J., Boston, M., & Kamani, T. (2017). A snoring child. BMJ, 357, j2124.CrossRefGoogle ScholarPubMed
Hamaekers, A.E., van der Beek, T., Theunissen, M., et al. (2015). Rescue ventilation through a small-bore transtracheal cannula in severe hypoxic pigs using expiratory ventilation assistance. Anesth Analg, 120, 890894.CrossRefGoogle ScholarPubMed
Marcus, C.L., Brooks, L.J., Draper, K.A., et al. (2012). Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics, 130, e714e755.CrossRefGoogle ScholarPubMed
Weiss, M. & Engelhardt, T. (2010). Proposal for the management of the unexpected difficult pediatric airway. Paediatr Anaesth, 20, 454464.CrossRefGoogle ScholarPubMed
Willemsen, M.G., Noppens, R., Mulder, A.L., et al. (2014). Ventilation with the Ventrain through a small lumen catheter in the failed paediatric airway: two case reports. Br J Anaesth, 112, 946947.CrossRefGoogle ScholarPubMed

References

Baerg, J., Kanthimathinathan, V., & Gollin, G. (2012). Late-presenting congenital diaphragmatic hernia: diagnostic pitfalls and outcome. Hernia, 16, 461466.CrossRefGoogle ScholarPubMed
Chambost, H., Gaboulaud, V., Coatmelec, B., et al. (2002). What factors influence the age at diagnosis of hemophilia? Results of the French hemophilia cohort. J Pediatr, 141, 548552.CrossRefGoogle ScholarPubMed
Ewer, A.K., Furmston, A.T., Middleton, L.J., et al. (2012). Pulse oximetry as a screening test for congenital heart defects in newborn infants: a test accuracy study with evaluation of acceptability and cost-effectiveness. Health Technol Assess, 16, 1184.CrossRefGoogle ScholarPubMed
Heidegger, T., Waidelich, E., & Kreienbuehl, G. (2001). Anomalous origin of the left coronary artery: discovery during an ambulatory surgical procedure in a 3-month old, previously healthy infant. Paediatr Anaesth, 11, 109111.CrossRefGoogle Scholar
Hollon, J., Eide, M., & Gorman, G. (2012). Early diagnosis of extrahepatic biliary atresia in an open-access medical system. PLoS One, 7, e49643.CrossRefGoogle Scholar
Paut, O., Mely, L., Viard, L., et al. (1996). Acute presentation of congenital diaphragmatic hernia past the neonatal period: a life threatening emergency. Can J Anaesth, 43, 621625.CrossRefGoogle ScholarPubMed

References

Delgado-Corcoran, C., Witte, M.K., Ampofo, K., et al. (2014). The impact of human rhinovirus infection in pediatric patients undergoing heart surgery. Pediatr Cardiol, 35, 13871394.CrossRefGoogle ScholarPubMed
Heikkinen, T. & Jarvinen, A. (2003). The common cold. Lancet, 361, 5159.CrossRefGoogle ScholarPubMed
Malviya, S., Voepel-Lewis, T., Siewert, M., et al. (2003). Risk factors for adverse postoperative outcomes in children presenting for cardiac surgery with upper respiratory tract infections. Anesthesiology, 98, 628632.CrossRefGoogle ScholarPubMed
Parnis, S.J., Barker, D.S., & van der Walt, J.H. (2001). Clinical predictors of anaesthetic complications in children with respiratory tract infections. Paediatr Anaesth, 11, 2940.CrossRefGoogle ScholarPubMed
Shaw, C.A., Kelleher, A.A., Gill, C.P., et al. (2000). Comparison of the incidence of complications at induction and emergence in infants receiving oral atropine vs no premedication. Br J Anaesth, 84, 174178.CrossRefGoogle ScholarPubMed
Soni, P., Rai, A., Aggarwal, N., et al. (2017). Enterovirus-human rhinovirus: a rare cause of acute respiratory distress syndrome. J Investig Med High Impact Case Rep, 5, 2324709617728526.Google ScholarPubMed
Tait, A.R., Burke, C., Voepel-Lewis, T., et al. (2007). Glycopyrrolate does not reduce the incidence of perioperative adverse events in children with upper respiratory tract infections. Anesth Analg, 104, 265270.CrossRefGoogle Scholar
Tait, A.R. & Malviya, S. (2005). Anesthesia for the child with an upper respiratory tract infection: still a dilemma? Anesth Analg, 100, 5965.CrossRefGoogle ScholarPubMed
von Ungern-Sternberg, B.S., Boda, K., Chambers, N.A., et al. (2010). Risk assessment for respiratory complications in paediatric anaesthesia: a prospective cohort study. Lancet, 376, 773783.CrossRefGoogle ScholarPubMed
von Ungern-Sternberg, B.S., Habre, W., Erb, T.O., et al. (2009). Salbutamol premedication in children with a recent respiratory tract infection. Paediatr Anaesth, 19, 10641069.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×