Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-10T02:30:29.906Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  24 November 2009

Charles Parsons
Affiliation:
Harvard University, Massachusetts
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, Wilhelm. “Die Widerspruchsfreiheit der allgemeinen Mengenlehre.” Mathematische Annalen 114 (1937), 305–315.CrossRefGoogle Scholar
Aczel, Peter. “An Introduction to Inductive Definitions.” In Barwise, Handbook, pp. 739–782.
Barwise, Jon. Admissible Sets and Structures. Berlin: Springer, 1975.CrossRefGoogle Scholar
Barwise, Jon, ed. Handbook of Mathematical Logic. Amsterdam: North-Holland, 1977.Google Scholar
Bealer, George. “Intuition.” In Borchert, Donald M. (editor in chief), The Encyclopedia of Philosophy Supplement, pp. 268–269. New York: Macmillan Reference USA, 1996. Reprinted in Borchert, Encyclopedia 2nd ed., IV, 732–733.Google Scholar
Bealer, George. “On the Possibility of Philosophical Knowledge.” Philosophical Perspectives 10 (1996), 1–34.Google Scholar
Beeson, Michael. Foundations of Constructive Mathematics. Berlin: Springer, 1985.CrossRefGoogle Scholar
Benacerraf, Paul. “Mathematical Truth.” The Journal of Philosophy 70 (1973), 661–679. Reprinted in Benacerraf and Putnam, pp. 403–420. (Not in 1st ed.)CrossRefGoogle Scholar
Benacerraf, Paul. “What Numbers Could Not Be.” Philosophical Review 74 (1965), 47–73. Reprinted in Benacerraf and Putnam, pp. 272–294. (Not in 1st ed.) Cited according to reprint.CrossRefGoogle Scholar
Benacerraf, Paul, and Putnam, Hilary, eds. Philosophy of Mathematics: Selected Readings. Englewood Cliffs, NJ: Prentice Hall, 1964. 2nd ed. Cambridge University Press, 1983 (published 1984).Google Scholar
Bernays, Paul. Abhandlungen zur Philosophie der Mathematik. Darmstadt: Wissenschaftliche Buchgesellschaft, 1976.Google Scholar
Bernays, Paul. “Bemerkungen zum Paradoxon von Thoralf Skolem.” Avhandlingen uitgitt av Det Norske Videnskaps-Akademi i Oslo, I. Mat.-Naturv. Klasse, 1957, No. 5, 3–9. Reprinted in Abhandlungen, pp. 113–118.Google Scholar
Bernays, Paul. “Die Mathematik als ein zugleich Vertrautes und Unbekanntes.” Synthese 9 (1955), 465–471. Reprinted in Abhandlungen, pp. 107–112.CrossRefGoogle Scholar
Bernays, Paul. “Mathematische Existenz und Widerspruchsfreiheit.” In Études de philosophie des sciences, en hommage à F. Gonseth à l'occasion de son soixantième anniversaire, pp. 11–25. Neuchâtel: Griffon, 1950. Reprinted in Abhandlungen, pp. 92–106.Google Scholar
Bernays, Paul. “Die Philosophie der Mathematik und die Hilbertsche Beweistheorie.” Blätter für deutsche Philosophie 4 (1930), 326–367. Reprinted with postscript in Abhandlungen, pp. 17–61.Google Scholar
Bernays, Paul. “Quelques points essentiels de la métamathématique.” L'enseignement mathématique 52 (1935), 70–95.Google Scholar
Bernays, Paul. “Quelques points de vue concernant le problème de l'évidence,” Synthese 5 (1946), 321–326. (The German translation in Abhandlungen is by Bernays but was evidently done in 1974.)CrossRefGoogle Scholar
Bernays, Paul. “Sur le platonisme dans les mathématiques.” L'enseignement mathématique 52 (1935), 52–69. Translation in Benacerraf and Putnam, pp. 258–271 of 2nd ed. (The German version in Abhandlungen is a translation from the French.)Google Scholar
Bernays, Paul. “A System of Axiomatic Set Theory, Part II.” The Journal of Symbolic Logic 6 (1941), 1–17. Reprinted in Müller, Sets and Classes, pp. 14–30.CrossRefGoogle Scholar
Bernays, Paul. “A System of Axiomatic Set Theory, Part VII.” The Journal of Symbolic Logic 19 (1954), 81–96. Reprinted in Müller, Sets and Classes, pp. 102–119.CrossRefGoogle Scholar
Bernays, Paul. “Über Hilberts Gedanken zur Grundlegung der Arithmetik,” Jahresbericht der Deutschen Mathematiker-Vereinigung 31 (1922), 10–19.Google Scholar
Bernays, Paul. “Zur Frage der Unendlichkeitsschemata in deraxiomatischen Mengenlehre.” In Essays on the Foundations of Mathematics, dedicated to Professor A. A. Fraenkel on his 70th birthday, pp. 3–49. Jerusalem: Magnes Press, 1961. Translation, “partially revised,” in Müller, Sets and Classes, pp. 121–172.Google Scholar
Bernays, Paul. See also Hilbert and Bernays.
Black, Max. “The elusiveness of sets.” Review of Metaphysics 24 (1970–1971), 614–636.Google Scholar
Bolzano, Bernard. Paradoxien des Unendlichen. Ed. by Příhonský, F.. Leipzig 1851.Google Scholar
Bolzano, Bernard. Wissenschaftslehre. 4 vols. Sulzach 1837.Google Scholar
BonJour, Laurence. In Defense of Pure Reason. A Rationalist Account of a priori Justification. Cambridge University Press, 1998.Google Scholar
Boolos, George. “Iteration Again.” Philosophical Topics 17 (1989), 5–21. Reprinted in LLL.CrossRefGoogle Scholar
Boolos, George. “The Iterative Conception of Set.” The Journal of Philosophy 68 (1971), 215–231. Reprinted in LLL. Also reprinted in Benacerraf and Putnam, 2nd ed.CrossRefGoogle Scholar
Boolos, George. Logic, Logic, and Logic. Edited by Jeffrey, Richard. With Introductions and Afterword by John P. Burgess. Cambridge, MA: Harvard University Press, 1998. Hereafter LLL.Google Scholar
Boolos, George. The Logic of Provability. Cambridge University Press, 1993.Google Scholar
Boolos, George. “Must we believe in set theory?” In LLL, pp. 120–132. Also in Sher and Tieszen, pp. 257–268.
Boolos, George. “Nominalist Platonism.” Philosophical Review 94 (1985), 327–344. Reprinted in LLL.CrossRefGoogle Scholar
Boolos, George. “Reply to Charles Parsons, ‘Sets and Classes’.” In LLL, pp. 30–36. (Written and presented in 1974.)
Boolos, George. “To Be is to be the Value of a Variable (or to be Some Values of Some Variables).” The Journal of Philosophy 81 (1984), 430–449. Reprinted in LLL.CrossRefGoogle Scholar
Boolos, George, and Jeffrey, Richard C.. Computability and Logic. Cambridge University Press, 1974. 2nd ed., 1981. 3rd ed., 1990. 4th ed., with John P. Burgess, 2002.Google Scholar
Borchert, Donald M. (Editor in chief). The Encyclopedia of Philosophy, Second Edition. 10 vols. Detroit: Macmillan Reference USA, 2006. (For first edition, see Edwards.)Google Scholar
Brentano, Franz. Wahrheit und Evidenz. Erkenntnistheoretische Abhandlungen und Briefe. Edited by Kraus, Oskar. Leipzig: Meiner, 1930. Reprinted Hamburg: Meiner, 1962, 1974.Google Scholar
Bromberger, Sylvain. On What We Know We Don't Know. Explanation, Theory, Linguistics, and How Questions Shape Them. Chicago: University of Chicago Press, and Stanford: Center for the Study of Language and Information, 1992.Google Scholar
Bromberger, Sylvain. “Types and Tokens in Linguistics.” In George, Alexander (ed.), Reflections on Chomsky, pp. 58–89. Cambridge, Mass., MIT Press, 1989. Reprinted in On What We Know We Don't Know, pp. 170–208.Google Scholar
Bromberger, Sylvain, and Halle, Morris. “The Ontology of Phonology.” In Bromberger, On What We Know We Don't Know, pp. 209–228.
Brouwer, L. E. J. Collected Works, volume 1: Philosophy and Intuitionistic Mathematics. Edited by Heyting, Arend. Amsterdam: North-Holland, 1975.Google Scholar
Brouwer, L. E. J.. “Mathematik, Wissenschaft, und Sprache.” Monatshefte für Mathematik und Physik 36 (1929), 153–164. Reprinted, Collected Works, vol. 1.CrossRefGoogle Scholar
Brouwer, L. E. J.. Over de grondslagen der wiskunde. Amsterdam and Leipzig: Maass and van Suchtelen, 1907. Critical edition in Dirk van Dalen (ed.), L. E. J. Brouwer en de grondslagen van de wiskunde (Utrecht: Epsilon, 2001), pp. 39–147. English translation (of the main text) in Collected Works, vol. 1.Google Scholar
Buchholz, Wilfried, Feferman, Solomon, Pohlers, Wolfram, and Sieg, Wilfried, Iterated Inductive Definitions and Subsystems of Analysis. Lecture Notes in Mathematics 897. Berlin etc.: Springer, 1981.Google Scholar
Burgess, John P.E pluribus unum: Plural Logic and Set Theory.” Philosophia Mathematica (III) 12 (2004), 193–221.CrossRefGoogle Scholar
Burgess, John P.. Fixing Frege. Princeton University Press, 2005.Google Scholar
Burgess, John P.. “Mathematics and Bleak House.” Philosophia Mathematica (III) 12 (2004), 18–36.CrossRefGoogle Scholar
Burgess, John P.. Review of Shapiro, Philosophy of Mathematics. Notre Dame Journal of Formal Logic 40 (1999), 283–291.CrossRefGoogle Scholar
Burgess, John P., and Hazen, Allen. “Predicative Logic and Formal Arithmetic.” Notre Dame Journal of Formal Logic 39 (1998), 1–17.Google Scholar
Burgess, John P., and Rosen, Gideon. A Subject with no Object. Strategies for Nominalistic Interpretation of Mathematics. Oxford: Clarendon Press, 1997.Google Scholar
Cantor, Georg. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Edited by Zermelo, Ernst. Berlin: Springer, 1932. Reprinted Hildesheim: Olms, 1962.Google Scholar
Carnap, Rudolf. Logische Syntax der Sprache. Vienna: Springer, 1934.CrossRefGoogle Scholar
Carnap, Rudolf. Logical Syntax of Language. Translated by Amethe Smeation. London: Kegan Paul, 1937. (Contains two sections not in the German edition.)Google Scholar
Carson, Emily. “On realism in set theory.” Philosophia Mathematica (III) 4 (1996), 3–17.CrossRefGoogle Scholar
Cartwright, Richard L.Speaking of Everything.” NoÛs 28 (1994), 1–20.CrossRefGoogle Scholar
Church, Alonzo. “Comparison of Russell's Solution of the Semantical Paradoxes with that of Tarski.” The Journal of Symbolic Logic 41 (1976), 747–760. Reprinted in Martin, Recent Essays.CrossRefGoogle Scholar
Church, Alonzo. “A Formulation of the Logic of Sense and Denotation.” In Structure, Method, and Meaning: Essays in Honor of Henry M. Sheffer, pp. 3–24. New York: Liberal Arts Press, 1951.Google Scholar
Church, Alonzo. “A Formulation of the Simple Theory of Types.” The Journal of Symbolic Logic 5 (1940), 56–68.CrossRefGoogle Scholar
Cohn-Vossen, S. See Hilbert and Cohn-Vossen.
Collins, George E., and Halpern, J. D.. “On the Interpretability of Arithmetic in Set Theory.” Notre Dame Journal of Formal Logic 11 (1970), 477–483.CrossRefGoogle Scholar
Dales, H. G., and Oliveri, G. (eds.). Truth in Mathematics. Oxford: Clarendon Press, 1998.Google Scholar
Davidson, Donald. Inquiries into Truth and Interpretation. Oxford: Clarendon Press, 1984.Google Scholar
Davidson, Donald. “On Saying That.” Synthese 19 (1968), 130–146. Reprinted in Inquiries.CrossRefGoogle Scholar
Davidson, Donald. “Radical Interpretation.” Dialectica 27 (1973), 313–328. Reprinted in Inquiries.CrossRefGoogle Scholar
Dedekind, Richard. Gesammelte mathematische Werke. 3 vols. Edited by Fricke, Robert, Noether, Emmy, and Ore, Öystein. Braunschweig: Vieweg, 1930–32.Google Scholar
Dedekind, Richard. Was sind und was sollen die Zahlen?Braunschweig: Vieweg, 1888, 3rd ed. 1911. Translation in Ewald, II, 787–833.Google Scholar
Demopoulos, William (ed.). Frege's Philosophy of Mathematics. Cambridge, MA: Harvard University Press, 1995.Google Scholar
Descartes, René. The Philosophical Writings of Descartes. Translated by John Cottingham, Robert Stoothoff, and Dugald Murdoch. 2 vols. Cambridge University Press, 1985.Google Scholar
Donnellan, Keith. “Reference and Definite Descriptions.” Philosophical Review 75 (1966), 281–304.CrossRefGoogle Scholar
Drake, F. R.Set Theory. An Introduction to Large Cardinals. Amsterdam: North-Holland, 1974.Google Scholar
Dummett, Michael. Frege: Philosophy of Language. London: Duckworth, 1973. 2nd ed., 1981.Google Scholar
Dummett, Michael. Frege: Philosophy of Mathematics. Cambridge, Mass.: Harvard University Press, 1991.Google Scholar
Dummett, Michael. “The Philosophical Basis of Intuitionistic Logic.” In Rose, H. E. and Shepherdson, J. C. (eds.), Logic Colloquium '73, pp. 5–40. Amsterdam: North-Holland, 1975. Reprinted in Truth and Other Enigmas, pp. 215–247, and in Benacerraf and Putnam (not in 1st ed.).Google Scholar
Dummett, Michael. “The Philosophical Significance of Gödel's Theorem.” Ratio 5 (1963), 140–155. Reprinted in Truth and Other Enigmas, pp. 186–201.Google Scholar
Dummett, Michael. “Platonism.” In Truth and Other Enigmas, pp. 202–214. (Text of an address given in 1967.)Google Scholar
Dummett, Michael. The Seas of Language. Oxford: Clarendon Press, 1993.Google Scholar
Dummett, Michael. Truth and Other Enigmas. London: Duckworth, 1978.Google Scholar
Dummett, Michael. “Wang's Paradox.” Synthese 30 (1975), 301–324. Reprinted in Truth and Other Enigmas, pp. 248–268.CrossRefGoogle Scholar
Dummett, Michael. “What is Mathematics About?” In George, Mathematics and Mind, pp. 11–26. Also in The Seas of Language, pp. 429–445.
Edwards, Paul (ed.). The Encyclopedia of Philosophy. 7 vols. New York: Free Press/Macmillan, 1967. (For second edition, see Borchert.)Google Scholar
Evans, Gareth. “Can there be Vague Objects?” Analysis 38 (1978), 208. Reprinted in Collected Papers (Oxford: Clarendon Press, 1985), pp. 176–177.CrossRefGoogle Scholar
Ewald, William (ed.). From Kant to Hilbert. A Source Book in the Foundations of Mathematics. 2 vols. Oxford: Clarendon Press, 1996.Google Scholar
Feferman, Solomon. “Definedness.” Erkenntnis 43 (1995), 295–320.CrossRefGoogle Scholar
Feferman, Solomon. In the Light of Logic. Oxford University Press, 1998.Google Scholar
Feferman, Solomon. “Reflecting on Incompleteness.” The Journal of Symbolic Logic 56 (1991), 1–49.CrossRefGoogle Scholar
Feferman, Solomon. “Systems of Predicative Analysis.” The Journal of Symbolic Logic 29 (1964), 1–30.CrossRefGoogle Scholar
Feferman, Solomon. “Weyl vindicated. Das Kontinuum 70 years later.” In Cellucci, Carlo and Sambin, Giovanni (eds.), Temi e prospettive della logica e della scienza contemporanee, vol. 1, pp. 59–93. Bologna: CLUEB, 1988. Reprinted with corrrections and additions in In the Light of Logic.Google Scholar
See also Buchholz, Feferman, Pohlers, and Sieg.
See also Gödel.
Feferman, Solomon, and Hellman, Geoffrey. “Predicative Foundations of Arithmetic.” Journal of Philosophical Logic 22 (1995), 1–17.CrossRefGoogle Scholar
Feferman, Solomon, and Geoffrey Hellman. “Challenges to Predicative Foundations of Arithmetic.” In Sher and Tieszen, pp. 317–335.
Ferreira, Fernando. “A Note on Finiteness in the Predicative Foundations of Arithmetic.” Journal of Philosophical Logic 28 (1999), 165–174.CrossRefGoogle Scholar
Field, Hartry. “Are Our Logical and Mathematical Concepts Highly Indeterminate?” In French, Peter A., Uehling, Theodore E. Jr., and Wettstein, Howard K. (eds.), Midwest Studies in Philosophy, volume 19: Philosophical Naturalism, pp. 391–429. Minneapolis: University of Minnesota Press, 1994.Google Scholar
Field, Hartry. “Is Mathematical Knowledge Just Logical Knowledge?Philosophical Review 93 (1984), 509–552. Reprinted, with revisions and postscript, in Realism, Mathematics, and Modality, pp. 79–124.CrossRefGoogle Scholar
Field, Hartry. “On Conservativeness and Incompleteness.” The Journal of Philosophy 82 (1985), 239–260. Reprinted in Realism, Mathematics, and Modality, pp. 125–146.Google Scholar
Field, Hartry. “Realism, Mathematics, and Modality.” Philosophical Topics 19 (1988), 57–107. Reprinted in Realism, Mathematics, and Modality, pp. 227–281.CrossRefGoogle Scholar
Field, Hartry. Realism, Mathematics, and Modality. Oxford: Blackwell, 1989.Google Scholar
Field, Hartry. Science without Numbers: A Defense of Nominalism. Princeton University Press, 1980.Google Scholar
Field, Hartry. Truth and the Absence of Fact. Oxford: Clarendon Press, 2001.CrossRefGoogle Scholar
Field, Hartry. “Which Undecidable Mathematical Sentences have Determinate Truth Values?” In Dales and Oliveri, pp. 291–310. Reprinted with Postscript in Truth and the Absence of Fact, pp. 332–360.
Fraenkel, (Abraham) Adolf. Einleitung in die Mengenlehre. Berlin: Springer, 1919. 2nd ed., revised and enlarged, 1923. 3d ed., further revised and enlarged, 1928.CrossRefGoogle Scholar
Frege, Gottlob. Begriffschrift. Eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle: Nebert, 1879. Reprinted in Begriffschrift und andere Aufsätze. Translation in van Heijenoort.Google Scholar
Frege, Gottlob. Begriffschrift und andere Aufsätze. Edited by Angelelli, Ignacio. Hildesheim: Olms, 1964.Google Scholar
Frege, Gottlob. Collected Papers on Mathematics, Logic, and Philosophy. Edited by McGuinness, Brian. Translated by Max Black and others. Oxford: Blackwell, 1984.Google Scholar
Frege, Gottlob. Frege on the Foundations of Geometry and Formal Theories in Arithmetic. Translated and edited by Eike-Henner W. Kluge. New Haven: Yale University Press, 1971.
Frege, Gottlob. “Der Gedanke: Eine logische Untersuchung.” Beiträge zur Philosophie des deutschen Idealismus 1 (1918–19), 58–77. Reprinted in Kleine Schriften. Translation in Collected Papers.Google Scholar
Frege, Gottlob. The Foundations of Arithmetic. Translated by J. L. Austin. Contains the German text. Oxford: Blackwell, 1950. 2nd ed. 1953. (The pagination of the German text is exactly the same as that of the original, and thus that of the translation is very close.)Google Scholar
Frege, Gottlob. Funktion und Begriff. Jena: Pohle, 1891. Reprinted in Kleine Schriften. Translation in Collected Papers.Google Scholar
Frege, Gottlob. Grundgesetze der Arithmetik. Jena: Pohle. Vol. I, 1893. Vol. II, 1903. Reprinted Hildesheim: Olms, 1962, 1998.Google Scholar
Frege, Gottlob. Die Grundlagen der Arithmetik. Breslau: Koebner, 1884. Centenary edition, with amplifying texts, critically edited by Christian Thiel. Hamburg: Meiner, 1986. English translation Foundations.
Frege, Gottlob. Kleine Schriften. Edited by Angelelli, Ignacio. Hildesheim: Olms, 1967. Translated as Collected Papers.Google Scholar
Frege, Gottlob. Logical Investigations. Edited by Geach, Peter. Translated by Geach and R. H. Stoothoff. Oxford: Blackwell, 1977.Google Scholar
Frege, Gottlob. Nachgelassene Schriften. Edited by Hermes, Hans, Kambartel, Friedrich, and Kaulbach, Friedrich. Hamburg: Meiner, 1969. 2nd. ed., revised, with an appendix (lecture notes) ed. with an introduction by Lothar Kreiser. Hamburg: Meiner, 1983.Google Scholar
Frege, Gottlob. Review of Husserl, Philosophie der Arithmetik. Zeitschrift für Philosophie und philosophische Kritik 103 (1894), 313–332. Reprinted in Kleine Schriften. Translation in Collected Papers.Google Scholar
Frege, Gottlob. Wissenschaftlicher Briefwechsel. Edited by Gabriel, Gottfried, Hermes, Hans, Kambartel, Friedrich, Thiel, Christian, and Veraart, Albert. Hamburg: Meiner, 1976.Google Scholar
Friedman, Michael. Kant and the Exact Sciences. Cambridge, MA: Harvard University Press, 1992.Google Scholar
Gallin, Daniel. Intensional and Higher-Order Modal Logic. Amsterdam: North-Holland, 1975.Google Scholar
Gandy, Robin O. “Limitations to Mathematical Knowledge.” In Dalen, D., Lascar, D., and Smiley, T. J. (eds.), Logic Colloquium ′80, pp. 129–145. Amsterdam: North-Holland, 1982.Google Scholar
George, Alexander. “The Imprecision of Impredicativity.” Mind N. S. 96 (1987), 514–518.CrossRefGoogle Scholar
George, Alexander,(ed.). Mathematics and Mind. Oxford University Press, 1994.Google Scholar
George, Alexander, and Daniel J. Velleman. “Two Conceptions of Natural Number.” In Dales and Oliveri, pp. 311–327.
Givant, Steven, and Tarski, Alfred. “Peano Arithmetic and the Zermelo-like Theory of Sets with Finite Ranks.” Abstract 77T-E51. Notices of the Americal Mathematical Society 24 (1977), A-437.Google Scholar
See also Tarski and Givant.
Gödel, Kurt. Collected Works. Volume I, Publications 1929–1936. Edited by Feferman, Solomon, Dawson, John W. Jr., Kleene, Stephen C., Moore, Gregory H., Solovay, Robert M., and Heijenoort, Jean. New York and Oxford: Oxford University Press, 1986.Google Scholar
Gödel, Kurt. Collected Works. Volume II, Publications 1938–1974. Edited by Feferman, Solomon, Dawson, John W. Jr., Kleene, Stephen C., Moore, Gregory H., Solovay, Robert M., and Heijenoort, Jean. New York and Oxford: Oxford University Press, 1990.Google Scholar
Gödel, Kurt. Collected Works. Volume III, Unpublished Essays and Lectures. Edited by Feferman, Solomon, Dawson, John W. Jr., Goldfarb, Warren, Parsons, Charles, and Solovay, Robert M.. New York and Oxford: Oxford University Press, 1995.Google Scholar
Gödel, Kurt. Collected Works. Volume IV, Correspondence, A-G. Edited by Feferman, Solomon, Dawson, John W. Jr., Goldfarb, Warren, Parsons, Charles, and Sieg, Wilfried. Oxford: Clarendon Press, 2003.Google Scholar
Gödel, Kurt. Collected Works. Volume V, Correspondence, H-Z. Edited by Feferman, Solomon, Dawson, John W. Jr., Goldfarb, Warren, Parsons, Charles, and Sieg, Wilfried. Oxford: Clarendon Press, 2003.Google Scholar
Gödel, Kurt. The Consistency of the Continuum Hypothesis. Princeton University Press, 1940. Reprinted in Collected Works, II, 33–101.Google Scholar
Gödel, Kurt. “Is Mathematics Syntax of Language?” Unfinished paper written between 1953 and 1959. Versions III and V in Collected Works, III, 334–362.
Gödel, Kurt. “On an Extension of Finitary Mathematics which has not yet been Used.” Revised English version, with additional notes, of “Über eine noch nicht benützte Erweiterung.” In Collected Works, II, 271–280.
Gödel, Kurt. “The Present Situation in the Foundations of Mathematics.” Lecture to the Mathematical Association of America, 1933. In Collected Works, III, 45–53.Google Scholar
Gödel, Kurt. “Russell's Mathematical Logic.” In Schilpp, P. A. (ed.), The Philosophy of Bertrand Russell (Evanston: Northwestern University, 1944), pp. 125–153. Reprinted in Collected Works, II, 119–141. Also reprinted in Benacerraf and Putnam, pp. 442–470.Google Scholar
Gödel, Kurt. “Some Basic Theorems on the Foundations of Mathematics and their Philosophical Implications.” Josiah Willard Gibbs Lecture, American Mathematical Society, 1951. In Collected Works, III, 304–323. (The word ‘philosophical’ was omitted from the title of the published version. See Collected Works, IV, 636.)Google Scholar
Gödel, Kurt. “Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.” Dialectica 12 (1958), 280–287. Reprinted, with English translation, in Collected Works, II, 240–251.CrossRefGoogle Scholar
Gödel, Kurt. “Vortrag bei Zilsel.” Lecture to an informal circle, Vienna, 1938. In Collected Works, III, 86–113. With English translation.Google Scholar
Gödel, Kurt. “What is Cantor's Continuum Problem?American Mathematical Monthly 54 (1947), 515–525. Revised and expanded in Benacerraf and Putnam, 1st ed., pp. 258–271, also in 2nd ed., pp. 470–485. Both versions reprinted in Collected Works, II, 176–187 and 254–270 respectively.CrossRefGoogle Scholar
Gödel, Kurt. “Zur intuitionistischen Arithmetik und Zahlentheorie.” Ergebnisse eines mathematischen Kolloquiums 4 (1933), 34–38. Reprinted, with English translation, in Collected Works, I, 286–295.Google Scholar
Goldfarb, Warren. See Gödel.
Goldfarb, Warren, and Thomas Ricketts. “Carnap and the Philosophy of Mathematics.” In Bell, David and Vossenkuhl, Wilhelm (eds.), Wissenschaft und Subjektivität, pp. 61–78. Berlin: Akademie-Verlag, 1992.Google Scholar
Goodman, Nelson. Fact, Fiction, and Forecast. Cambridge, MA: Harvard University Press, 1955. 4th ed., 1983.Google Scholar
Goodman, Nelson. Problems and Projects. Indianapolis: Bobbs-Merrill, 1972.Google Scholar
Goodman, Nelson. “Sense and Certainty.” The Philosophical Review 61 (1952), 160–167. Reprinted in Problems and Projects, pp. 60–68.CrossRefGoogle Scholar
Goodman, Nelson. The Structure of Appearance. Cambridge, MA: Harvard University Press, 1951. 3rd ed. Dordrecht: Reidel, 1977.Google Scholar
Goodman, Nelson, and Quine, W. V.. “Steps towards a Constructive Nominalism.” The Journal of Symbolic Logic 12 (1947), 105–122. Reprinted in Goodman, Problems and Projects, pp. 173–198.CrossRefGoogle Scholar
Goodman, Nicolas D.The Knowing Mathematician.” Synthese 60 (1984), 21–38.CrossRefGoogle Scholar
Goodstein, R. L.Recursive Number Theory. Amsterdam: North-Holland, 1957.Google Scholar
Gottlieb, Dale. Ontological Economy. Substitutional Quantification and Mathematics. Oxford: Clarendon Press, 1980.Google Scholar
Grossmann, Reinhardt. “Meinong's Doctrine of the Aussersein of the Pure Object.” NoÛs 8 (1974), 67–82.CrossRefGoogle Scholar
Hájek, Petr, and Pudlák, Pavel. Metamathematics of First-Order Arithmetic. Berlin, Heidelberg, New York: Springer-Verlag, 1993.CrossRefGoogle Scholar
Hale, Bob. “Structuralism's Unpaid Epistemological Debts.” Philosophia Mathematica (III) 4 (1996), 124–147.CrossRefGoogle Scholar
Hale, Bob, and Wright, Crispin. The Reason's Proper Study. Essays towards a Neo-Fregean Philosophy of Mathematics. Oxford: Clarendon Press, 2001.CrossRefGoogle Scholar
Hale, Bob, and Wright, Crispin. “Benacerraf's Dilemma Revisited.” European Journal of Philosophy 10 (2002), 101–129.CrossRefGoogle Scholar
Halle, Morris. See Bromberger and Halle.
Hart, W. D.Benacerraf's Dilemma.” Crítica 23 (1991), 87–103.Google Scholar
Hart, W. D.. Review of Steiner, Mathematical Knowledge. The Journal of Philosophy 74 (1977), 118–129.CrossRefGoogle Scholar
Hart, W. D.. “Skolem's Promises and Paradoxes.” The Journal of Philosophy 67 (1970), 98–109.CrossRefGoogle Scholar
Hauser, Kai. “Is Cantor's Continuum Problem Inherently Vague?Philosophia Mathematica (III) 10 (2002), 257–285.CrossRefGoogle Scholar
Heck, Richard G. Jr.The consistency of predicative fragments of Frege's Grundgesetze der Arithmetik.” History and Philosophy of Logic 17 (1996), 209–220.CrossRefGoogle Scholar
Hellman, Geoffrey. Mathematics without Numbers: Toward a Modal-Structural Interpretation. Oxford: Clarendon Press, 1989.Google Scholar
See also Feferman and Hellman.
Higginbotham, James. “Linguistic Theory and Davidson's Program in Semantics.” In Lepore, Ernest (ed.), Truth and Interpretation. Oxford: Blackwell, 1986.Google Scholar
Higginbotham, James. “On Higher-Order Logic and Natural Language.” Proceedings of the British Academy 95 (1998), 1–27. Somewhat abridged version in Sher and Tieszen, pp. 75–99.Google Scholar
Hilbert, David. Grundlagen der Geometrie. Leipzig: Teubner, 1899. 11th ed., ed. by Bernays, Paul, Stuttgart: Teubner, 1972. English translation of 10th ed. by Leo Unger, La Salle, Ill.: Open Court, 1971, 2nd ed. 1992.Google Scholar
Hilbert, David. “Neubegründung der Mathematik (Erste Mitteilung).” Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität 1 (1922), 157–177. Translation in Mancosu.CrossRefGoogle Scholar
Hilbert, David. “Über das Unendliche.” Mathematische Annalen 95 (1926), 161–190. Translation in van Heijenoort. Partial translation in Benacerraf and Putnam. (Citations of a translation are of the one in van Heijenoort.)CrossRefGoogle Scholar
Hilbert, David, and Bernays, Paul. Grundlagen der Mathematik. Berlin: Springer, vol. I, 1934; vol. II, 1939. 2nd ed., vol. I, 1968; vol. II, 1970.
Hilbert, David, and Cohn-Vossen, S.. Anschauliche Geometrie. Berlin: Springer, 1932.CrossRefGoogle Scholar
Hodes, Harold T.Logicism and the Ontological Commitments of Arithmetic.” The Journal of Philosophy 81 (1984), 123–149.CrossRefGoogle Scholar
Husserl, Edmund. Erfahrung und Urteil. Edited by Landgrebe, Ludwig. Hamburg: Claassen, 1948.Google Scholar
Husserl, Edmund. Formale und transzendentale Logik. Halle: Niemeyer, 1929; reprinted Tübingen: Niemeyer, 1981. Critical edition edited by Paul Janssen. Husserliana, vol. 17. The Hague: Nijhoff, 1974.Google Scholar
Husserl, Edmund. Logical Investigations. Translated by J. N. Findlay. London: Routledge and Kegan Paul, 1970. Translation of second edition of Logische Untersuchungen.Google Scholar
Husserl, Edmund. Logische Untersuchungen. Halle: Niemeyer, 1900–01, 2nd ed. 1913–20. Critical edition of volume 1 edited by Elmar Holenstein. Husserliana, vol. 18. The Hague: Nijhoff, 1975. Critical edition of volume 2 edited by Ursula Panzer. Husserliana, vol. 19. The Hague: Nijhoff, 1984. Page references prefixed A are to the 1st ed., B to the 2nd ed., with the subscript indicating the part of volume 2 in the 2nd ed.Google Scholar
Husserl, Edmund. Philosophie der Arithmetik, mit ergänzenden Texten (1890–1901). Edited by Eley, Lothar. Hussserliana, vol. 12. The Hague: Nijhoff, 1970. (Philosophie der Arithmetik first published Halle: Pfeffer, 1891.)CrossRefGoogle Scholar
Isles, David. “What Evidence Is There that 265536 Is a Natural Number?Notre Dame Journal of Formal Logic 33 (1992), 465–480.CrossRefGoogle Scholar
Jeffrey, Richard C. See Boolos and Jeffrey.
Kant, Immanuel. Critique of Pure Reason. Translated by Norman Kemp Smith. London: Macmillan, 1929. 2nd ed., 1933.Google Scholar
Kant, Immanuel. Critique of Pure Reason. Translated by Paul Guyer and Allen W. Wood. Cambridge University Press, 1997.Google Scholar
Kant, Immanuel. Gesammelte Schriften. Edited by the Preussische Akademie der Wissenschaften and its successors. Berlin: Reimer, later de Gruyter, 1902–. Cited as Ak.Google Scholar
Kant, Immanuel. Kritik der reinen Vernunft. Edited by Timmermann, Jens. Hamburg: Meiner, 1998.Google Scholar
Kant, Immanuel. Prolegomena to any Future Metaphysics. Translated by Lewis White Beck (revising earlier translations). New York: Liberal Arts Press, 1956.Google Scholar
Kaufman, E. L., Lord, M. W., Reese, T. W., and Volkmann, J.. “The Discrimination of Visual Number.” American Journal of Psychology 62 (1949), 498–525.CrossRefGoogle ScholarPubMed
Keränen, Jukka. “The Identity Problem for Realist Structuralism.” Philosophia Mathematica (III) 9 (2001), 308–330.CrossRefGoogle Scholar
Kim, Jaegwon. “The Role of Perception in A Priori Knowledge.” Philosophical Studies 40 (1981), 339–354.CrossRefGoogle Scholar
Kirby, Laurence. “Finitary Set Theory.” Notre Dame Journal of Formal Logic, forthcoming.
Kitcher, Philip. The Nature of Mathematical Knowledge. New York and Oxford: Oxford University Press, 1983.Google Scholar
Kitcher, Philip. “The Plight of the Platonist.” NoÛs 12 (1978), 119–136.CrossRefGoogle Scholar
Kleene, Stephen Cole. Introduction to Metamathematics. New York: Van Nostrand, 1952.Google Scholar
See also Gödel.
Kluge, Eike-Henner W. See Frege.
Koellner, Peter. “On the Question of Absolute Undecidability.” Philosophia Mathematica (III) 14 (2006), 153–188.CrossRefGoogle Scholar
Kreisel, G. “Informal Rigour and Completeness Proofs.” In Lakatos, Imre (ed.), Problems in the Philosophy of Mathematics, pp. 138–186. Amsterdam: North-Holland, 1967.Google Scholar
Kreisel, G.. “Mathematical Logic.” In Saaty, T. L. (ed.), Lectures on Modern Mathematics, vol. III, pp. 95–195. New York: John Wiley and Sons, 1965.Google Scholar
Kreisel, G.. “Ordinal logics and the characterization of informal concepts of proof.” In Proceedings of the International Congress of Mathematicians, Edinburgh 1958, pp. 289–299. Cambridge University Press, 1960.Google Scholar
Kripke, Saul A. “Is There a Problem about Substitutional Quantification?” In Evans, Gareth and and McDowell, John (eds.). Truth and Meaning, pp. 325–419. Oxford: Clarendon Press, 1976.Google Scholar
Kripke, Saul A.. “Naming and Necessity.” In Davidson, Donald and Harman, Gilbert, eds., Semantics of Natural Language, pp. 253–355, 763–769. Dordrecht: Reidel, 1972. 2nd ed.: Naming and Necessity. Cambridge, MA: Harvard University Press, 1980.CrossRefGoogle Scholar
Krivine, Jean-Louis. Introduction to Axiomatic Set Theory. Translated by David Miller. Dordrecht: Reidel, 1971.CrossRefGoogle Scholar
Ladyman, James. See Leitgeb and Ladyman.
Lambek, Joachim, and Scott, P. J.. Introduction to Higher-Order Categorical Logic. Cambridge University Press, 1986.Google Scholar
Lambert, Karel. Meinong and the Principle of Independence: Its Place in Meinong's Theory of Objects and its Significance in Contemporary Philosophical Logic. Cambridge University Press, 1983.Google Scholar
Lavine, Shaughan. “Something about Everything: Universal Quantification in the Universal Sense of Universal Quantification.” In Rayo and Uzquiano, pp. 98–148.
Lavine, Shaughan. Understanding the Infinite. Cambridge, MA: Harvard University Press, 1994.Google Scholar
Leibniz, Gottfried Wilhelm. Philosophical Essays. Translated and edited by Ariew, Roger and Garber, Daniel. Indianapolis: Hackett, 1989.Google Scholar
Leitgeb, Hannes, and James Ladyman. “Criteria of Identity and Structuralist Ontology.” Analysis, forthcoming.
Lévy, Azriel. Basic Set Theory. Berlin: Springer, 1979.CrossRefGoogle Scholar
Lewis, David. “Mathematics is Megethology.” Philosophia Mathematica (III) 1 (1993), 3–23. Reprinted in Papers in Philosophical Logic (Cambridge University Press, 1998), pp. 203–229.CrossRefGoogle Scholar
Lewis, David. On the Plurality of Worlds. Oxford: Blackwell, 1986.Google Scholar
Lewis, David. Parts of Classes. Oxford: Blackwell, 1991.Google Scholar
Linnebo, Øystein. “Epistemological Challenges to Mathematical Platonism.” Philosophical Studies 129 (2006), 545–574.CrossRefGoogle Scholar
Linnebo, Øystein . “Plural Quantification.” In Stanford Encyclopedia of Philosophy, 2004. Online at http://plato.stanford.edu.Google Scholar
Lorenzen, Paul. Einführung in die operative Logik und Mathematik. Berlin: Springer, 1955.CrossRefGoogle Scholar
Lorenzen, Paul. “Logical Reflection and Formalism.” The Journal of Symbolic Logic 23 (1958), 241–249.CrossRefGoogle Scholar
Lorenzen, Paul, and Myhill, John. “Constructive Definition of Certain Analytic Sets of Numbers.” Ibid. 24 (1959), 37–49.Google Scholar
MacBride, Fraser. “Structuralism Reconsidered.” In Shapiro, Oxford Handbook, pp. 563–589.
Maddy, Penelope. “Believing the Axioms.” The Journal of Symbolic Logic 53 (1988), 481–511, 736–764.CrossRefGoogle Scholar
Maddy, Penelope. “Indispensability and Practice.” The Journal of Philosophy 89 (1992), 275–289.CrossRefGoogle Scholar
Maddy, Penelope. Naturalism in Mathematics. Oxford: Clarendon Press, 1997.Google Scholar
Maddy, Penelope. “Perception and Mathematical Intuition.” Philosophical Review 89 (1980), 163–196.CrossRefGoogle Scholar
Maddy, Penelope. Realism in Mathematics. Oxford: Clarendon Press, 1990.Google Scholar
Majer, Ulrich. “Geometrie und Erfahrung: Ein Vergleich der Auffassungen von Hilbert und Kant.” Report no. 17/93 of the Research Group on Semantical Aspects of Space-Time Theories. Bielefeld: Zentrum für interdisziplinäre Forschung, 1993.
Majer, Ulrich. “Geometry, intuition, and experience: From Kant to Husserl.” Erkenntnis 42 (1995), 261–285. Revised English version of “Geometrie und Erfahrung.”CrossRefGoogle Scholar
Martin, Donald A. “Descriptive Set Theory: Projective Sets.” In Barwise, Handbook, pp. 783–815.
Martin, Donald A.. “Mathematical Evidence.” In Dales and Oliveri, pp. 214–231.
Martin, Robert L. (ed.). Recent Essays on Truth and the Liar Paradox. New York and Oxford: Oxford University Press.
Martin-Löf, Per. Intuitionistic Type Theory. Naples: Bibliopilis, 1984.Google Scholar
McCarthy, Timothy. “Platonism and Possibility.” The Journal of Philosophy 83 (1986), 275–290.CrossRefGoogle Scholar
McGee, Vann. “How we Learn Mathematical Language.” Philosophical Review 107 (1997), 35–68.CrossRefGoogle Scholar
McGee, Vann. “Truth by Default.” Philosophia Mathematica (III) 9 (2001), 5–20.CrossRefGoogle Scholar
Meinong, Alexius. Gesamtausgabe. Edited by Chisholm, Roderick M., Haller, Rudolf, and Kindlinger, Rudolf. Graz: Akademische Druck- und Verlagsanstalt, 1968–78.Google Scholar
Meinong, Alexius. “Über Gegenstandstheorie.” In Meinong, (ed.), Untersuchungen zur Gegenstandstheorie und Psychologie, pp. 1–50. Leipzig: Barth, 1904. Reprinted in Gesamtausgabe, II.Google Scholar
Meinong, Alexius. Über die Stellung der Gegenstandstheorie im System der Wissenschaften. Leipzig: Voigtländer, 1907. Reprinted in Gesamtausgabe, V.Google Scholar
Meyer, Robert K.In Memoriam: Richard (Routley) Sylvan, 1935–1996.” The Bulletin of Symbolic Logic 4 (1998), 338–340.CrossRefGoogle Scholar
Montagna, Franco, and Mancini, Antonella. “A Minimal Predicative Set Theory.” Notre Dame Journal of Formal Logic 35 (1994), 186–203.CrossRefGoogle Scholar
Moore, Gregory H.Beyond First-Order Logic: The Historical Interplay between Mathematical Logic and Axiomatic Set Theory.” History and Philosophy of Logic 1 (1980), 95–137.CrossRefGoogle Scholar
See also Gödel.
Moschovakis, Yiannis N.Descriptive Set Theory. Amsterdam: North-Holland, 1980.Google Scholar
Mostowski, Andrzej. See Tarski, Mostowski, and Robinson.
Müller, Gert H.Framing Mathematics.” Epistemologia 4 (1981), 253–286.Google Scholar
Müller, Gert H. (ed.). Sets and Classes: On the Work by Paul Bernays. Amsterdam: North-Holland, 1976.Google Scholar
Myhill, John. “The Undefinability of the Set of Natural Numbers in the Ramified Principia.” In Nakhnikian, George (ed.), Bertrand Russell's Philosophy, pp. 19–27. New York: Barnes and Noble, 1974.Google Scholar
See also Lorenzen and Myhill.
Nagel, Thomas. The Last Word. New York and Oxford: Oxford University Press, 1997.Google Scholar
Nelson, Edward. Predicative Arithmetic. Mathematical Notes, 32. Princeton University Press, 1986.CrossRefGoogle Scholar
Page, James. “Parsons on Mathematical Intuition.” Mind N. S. 102 (1993), 223–232.CrossRefGoogle Scholar
Parsons, Charles. “Arithmetic and the Categories.” Topoi 3 (1984), 109–121.CrossRefGoogle Scholar
Parsons, Charles. “Developing Arithmetic in Set Theory without the Axiom of Infinity: Some Historical Remarks.” History and Philosophy of Logic 8 (1987), 201–213.CrossRefGoogle Scholar
Parsons, Charles. “Finitism and intuitive knowledge.” In Schirn, The Philosophy of Mathematics Today, pp. 249–270.
Parsons, Charles. “Genetic Explanation in The Roots of Reference.” In Barrett, Robert B. and Gibson, Roger F. (eds.), Perspectives on Quine, pp. 273–290. Oxford: Blackwell, 1990.Google Scholar
Parsons, Charles. “The Impredicativity of Induction.” In Cauman, Leigh S., Levi, Isaac, Parsons, Charles, and Schwartz, Robert (eds.), How Many Questions? Essays in Honor of Sidney Morgenbesser, pp. 132–153. Indianapolis: Hackett, 1983. Revised and expanded version in Michael Detlefsen (ed.), Proof, Logic, and Formalization, pp. 139–161. London: Routledge, 1992.Google Scholar
Parsons, Charles. “Intuition and Number.” In George, Mathematics and Mind, pp. 141–157.
Parsons, Charles. “Intuition in Constructive Mathematics.” In Butterfield, Jeremy (ed.). Language, Mind, and Logic, pp. 211–229. Cambridge University Press, 1986.Google Scholar
Parsons, Charles. “Mathematical Intuition.” Proceedings of the Aristotelian Society N. S. 80 (1979–1980), 145–168.CrossRefGoogle Scholar
Parsons, Charles. Mathematics in Philosophy: Selected Essays. Ithaca, NY: Cornell University Press, 1983. Paperback edition with corrections and short preface, 2005.Google Scholar
Parsons, Charles. “On Some Difficulties concerning Intuition and Intuitive Knowledge.” Mind N. S. 102 (1993), 233–245.CrossRefGoogle Scholar
Parsons, Charles. “Paul Bernays' Later Philosophy of Mathematics.” In Dimitracopoulos, Costa, Newelski, Ludomir, and Normann, Dag (eds.), Logic Colloquium 2005, pp. 129–150. Lecture Notes in Logic, 28. Urbana, Association for Symbolic Logic, and Cambridge University Press, 2007.CrossRefGoogle Scholar
Parsons, Charles. “Platonism and Mathematical Intuition in Kurt Gödel's Thought.” The Bulletin of Symbolic Logic 1 (1995), 44–74.CrossRefGoogle Scholar
Parsons, Charles. “Realism and the Debate on Impredicativity, 1917–1944.” In Sieg, Sommer, and Talcott, pp. 372–389.
Parsons, Charles. “Reason and Intuition.” Synthese 125 (2000), 299–315.CrossRefGoogle Scholar
Parsons, Charles. Review of Kitcher, The Nature of Mathematical Knowledge. Philosophical Review 95 (1986), 129–137.CrossRefGoogle Scholar
Parsons, Charles. “The Structuralist View of Mathematical Objects.” Synthese 84 (1990), 303–346.CrossRefGoogle Scholar
Parsons, Charles. “Substitutional Quantification and Mathematics. Review of Gottlieb, Ontological Economy.” British Journal for the Philosophy of Science 33 (1982), 409–421.CrossRefGoogle Scholar
Parsons, Charles. “The Transcendental Aesthetic.” In Guyer, Paul (ed.), The Cambridge Companion to Kant, pp. 62–100. Cambridge University Press, 1992.CrossRefGoogle Scholar
Parsons, Charles. “The Uniqueness of the Natural Numbers.” Iyyun 39 (1990), 13–44.Google Scholar
Parsons, Charles. “What Can We Do ‘In Principle’?” In Chiara, Maria Luisa Dalla, Doets, Kees, Mundici, Daniele, and Benthem, Johan (eds.), Logic and Scientific Methods, pp. 335–354. Volume One of the Tenth International Congress of Logic, Methodology, and Philosophy of Science, Florence, August 1995. Dordrecht: Kluwer, 1997.Google Scholar
See also Gödel.
Parsons, Terence. “The Methodology of Nonexistence.” The Journal of Philosophy 76 (1979), 639–662.CrossRefGoogle Scholar
Parsons, Terence. Nonexistent Objects. New Haven: Yale University Press, 1980.Google Scholar
Plantinga, Alvin. The Nature of Necessity. Oxford: Clarendon Press, 1974.Google Scholar
Pohlers, Wolfram. See Buchholz, Feferman, Pohlers, and Sieg.
Poincaré, Henri. Dernières Pensées. Paris: Flammarion, 1913. 2nd ed., 1926.Google Scholar
Poincaré, Henri. “Réflexions sur les deux notes précédentes,” Acta Mathematica 32 (1909), 195–200.CrossRefGoogle Scholar
Previale, Flavio. “Induction and Foundation in the Theory of Hereditarily Finite Sets.” Archive for Mathematical Logic 33 (1994), 213–241.CrossRefGoogle Scholar
Pudlák, Pavel. See Hájek and Pudlák.
Putnam, Hilary. Mathematics, Matter, and Method. Collected Philosophical Papers, Volume 1. Cambridge University Press, 1975. 2nd ed. 1980.Google Scholar
Putnam, Hilary. “Mathematics without Foundations.” The Journal of Philosophy 64 (1967), 5–22. Reprinted in Mathematics, Matter, and Method, pp. 43–59, and in Benacerraf and Putnam, pp. 295–311 (not in 1st ed.). Cited according to Mathematics, Matter, and Method.CrossRefGoogle Scholar
Putnam, Hilary. “Models and Reality.” The Journal of Symbolic Logic 45 (1980), 464–482. Reprinted in Realism and Reason, pp. 1–25, and in Benacerraf and Putnam, pp. 421–444 (not in 1st ed.). Cited according to Realism and Reason.CrossRefGoogle Scholar
Putnam, Hilary. Realism and Reason: Collected Philosophical Papers, Volume 3. Cambridge University Press, 1983.CrossRefGoogle Scholar
Putnam, Hilary. “The Thesis that Mathematics is Logic.” In Schoenman, Ralph ed., Bertrand Russell: Philosopher of the Century, pp. 273–303. London: Allen & Unwin, 1967. Reprinted in Mathematics, Matter, and Method, pp. 12–42.Google Scholar
See also Benacerraf and Putnam.
Quine, W. V.Methods of Logic. New York: Holt, 1950. 3rd ed., 1972. 4th ed. Cambridge, MA: Harvard University Press, 1982.Google Scholar
Quine, W. V.. “Ontological Relativity.” The Journal of Philosophy 65 (1968), 185–212. Reprinted in Ontological Relativity and Other Essays, pp. 26–68.CrossRefGoogle Scholar
Quine, W. V.. Ontological Relativity and Other Essays. New York: Columbia University Press, 1969.Google Scholar
Quine, W. V.. Philosophy of Logic. Englewood Cliffs, N.J.: Prentice-Hall, 1970. 2nd ed., Cambridge, MA.: Harvard University Press, 1986.Google Scholar
Quine, W. V.. The Roots of Reference. La Salle, IL: Open Court, 1974.Google Scholar
Quine, W. V.. Set Theory and its Logic. Cambridge, MA: The Belknap Press, Harvard University Press, 1963. Revised edition, 1969.Google Scholar
See also Goodman and Quine.
Rawls, John. Collected Papers. Edited by Freeman, Samuel. Cambridge, MA: Harvard University Press, 1999.Google Scholar
Rawls, John. “The Independence of Moral Theory.” Proceedings and Addresses of the American Philosophical Association 48 (1974–75), 5–22. Reprinted in Collected Papers, pp. 286–302.CrossRefGoogle Scholar
Rawls, John. Political Liberalism. New York: Columbia University Press, 1993.Google Scholar
Rawls, John. A Theory of Justice. Cambridge, MA: The Belknap Press of Harvard University Press, 1971.Google Scholar
Rayo, Agustín. “Word and Objects.” NoÛs 36 (2002), 436–464.CrossRefGoogle Scholar
Rayo, Agustín, and Uzquiano, Gabriel (eds.). Absolute Generality. Oxford: Clarendon Press, 2006.Google Scholar
Reinhardt, W. N.Epistemic Theories and the Interpretation of Gödel's Incompleteness Theorems.” Journal of Philosophical Logic 15 (1986), 427–484.CrossRefGoogle Scholar
Resnik, Michael D.Frege and the Philosophy of Mathematics. Ithaca, NY: Cornell University Press, 1980.Google Scholar
Resnik, Michael D.. “Mathematics as a Science of Patterns: Ontology and Reference.” NoÛs 15 (1981), 529–550.CrossRefGoogle Scholar
Resnik, Michael D.. Mathematics as a Science of Patterns. Oxford: Clarendon Press, 1997.Google Scholar
Resnik, Michael D.. “Parsons on Mathematical Intuition and Obviousness.” In Sher and Tieszen, pp. 219–231.
Resnik, Michael D.. “Quine and the Web of Belief.” In Shapiro, Oxford Handbook, pp. 412–436.
Resnik, Michael D.. “Second-order Logic Still Wild.” The Journal of Philosophy 85 (1988), 75–87.CrossRefGoogle Scholar
Rheinwald, Rosemarie. Der Formalismus und seine Grenzen. Untersuchungen zur neueren Philosophie der Mathematik. Königstein/Ts.: Hain, 1984.Google Scholar
Ricketts, Thomas. See Goldfarb and Ricketts.
Robinson, Raphael M. See Tarski, Mostowski, and Robinson.
Rödding, Dieter. “Primitiv-rekursive Funktionen über einem Bereich endlicher Mengen.” Archiv für mathematische Logik und Grundlagenforschung 10 (1967), 13–29.CrossRefGoogle Scholar
Rosen, Gideon. See Burgess and Rosen.
Rorty, Richard. “Intuition.” In Edwards, Encyclopedia, III, 204–212, and with addenda by George Bealer and Bruce Russell in Borchert, Encyclopedia 2nd ed., IV, 722–735.
Routley, Richard. Exploring Meinong's Jungle and Beyond. Departmental Monograph #3, Philosophy Department, Research School of Social Sciences, Australian National University, Canberra, 1980.Google Scholar
Routley, Richard, and Routley, Valerie. “Rehabilitating Meinong's Theory of Objects.” Revue internationale de philosophie 27 (1973), 224–254.Google Scholar
Russell, Bertrand. Essays in Analysis. Edited by Lackey, Douglas. New York: Braziller, 1973.Google Scholar
Russell, Bertrand. Logic and Knowledge. Edited by Marsh, Robert C.. London: Allen and Unwin, 1956.Google Scholar
Russell, Bertrand. “Mathematical Logic as Based on the Theory of Types.” American Journal of Mathematics 30 (1908), 222–262. Reprinted in Logic and Knowledge, pp. 59–102, and in van Heijenoort, pp. 150–182 (with introductory note by W. V. Quine).CrossRefGoogle Scholar
Russell, Bertrand. “The Philosophy of Logical Atomism.” The Monist 28 (1918), 495–527; 29 (1919), 32–63, 190–222, 345–380. Reprinted in Logic and Knowledge, pp. 175–281, and in The Philosophy of Logical Atomism and Other Essays, 1914–19, pp. 157–244. Cited according to Logic and Knowledge.CrossRefGoogle Scholar
Russell, Bertrand. The Philosophy of Logical Atomism and Other Essays, 1914–19. Edited by Slater, John G.. The Collected Papers of Bertrand Russell, Vol. 8. London: Allen and Unwin, 1986.Google Scholar
Russell, Bertrand. The Principles of Mathematics. Cambridge University Press, 1903. 2nd ed. London: Allen and Unwin, 1937.Google Scholar
Russell, Bertrand. The Problems of Philosophy. London: Williams and Norgate, and New York: Holt, 1912. Later reprints Oxford University Press. (That of 1997 adds an introduction by John Perry.)Google Scholar
See also Whitehead and Russell.
Saunders, Simon. “Are Quantum Particles Objects?Analysis 66 (2006), 52–63.CrossRefGoogle Scholar
Schirn, Matthias (ed.). The Philosophy of Mathematics Today. Oxford: Clarendon Press, 1998.Google Scholar
Schütte, Kurt. Beweistheorie. Berlin: Springer, 1960.Google Scholar
Schütte, Kurt. “Logische Abgrenzungen des Transfiniten.” In Käsbauer, Max and Kutschera, Franz (eds.), Logik und Logikkalkül, pp. 105–114. Freiburg: Alber, 1962.Google Scholar
Schütte, Kurt. Proof Theory. Revised and expanded translation of Beweistheorie. Berlin: Springer, 1977.
Scott, Dana. “Axiomatizing Set Theory.” In Jech, Thomas J. (ed.), Axiomatic Set Theory, part 2, pp. 207–214. Proceedings of Symposia in Pure Mathematics, vol. 13, part 2. Providence, RI: American Mathematical Society, 1974.Google Scholar
Shapiro, Stewart (ed.). Intensional Mathematics. Amsterdam: North-Holland, 1985.Google Scholar
Shapiro, Stewart, (ed.). The Oxford Handbook of Philosophy of Mathematics and Logic. New York and Oxford: Oxford University Press, 2005.CrossRefGoogle Scholar
Shapiro, Stewart. Philosophy of Mathematics. Structure and Ontology. New York and Oxford: Oxford University Press, 1997.Google Scholar
Shapiro, Stewart. “Space, Number, and Structure: A Tale of Two Debates.” Philosophia Mathematica (III) 4 (1996), 148–173.CrossRefGoogle Scholar
Sharvy, Richard. “Why a Class Can't Change its Members.” NoÛs 2 (1968), 303–314.CrossRefGoogle Scholar
Sher, Gila, and Tieszen, Richard (eds.). Between Logic and Intuition. Essays in honor of Charles Parsons. Cambridge University Press, 2000.CrossRefGoogle Scholar
Shoenfield, J. R. “Axioms of Set Theory.” In Barwise, Handbook, pp. 321–344.
Sieg, Wilfried. “Fragments of Arithmetic.” Annals of Pure and Applied Logic 28 (1985), 33–71.CrossRefGoogle Scholar
Sieg, Wilfried, Sommer, Richard, and Talcott, Carolyn (eds.). Reflections on the Foundations of Mathematics. Essays in honor of Solomon Feferman. Lecture Notes in Logic, 15. Urbana, IL: Association for Symbolic Logic, and Natick, MA: A. K. Peters, 2002.Google Scholar
See also Buchholz, Feferman, Pohlers, and Sieg.
Simons, Peter. Parts. A Study in Ontology. Oxford: Clarendon Press, 1987.Google Scholar
Simpson, Stephen G. “Predicativity: The Outer Limits.” In Sieg, Sommer, and Talcott, pp. 130–136.
Simpson, Stephen G.. “Reverse Mathematics.” In Nerode, Anil and Shore, Richard A. (eds.), Recursion Theory, pp. 261–271. Proceedings of Symposia in Pure Mathematics, 42. Providence, RI: American Mathematical Society, 1985.CrossRefGoogle Scholar
Simpson, Stephen G.. Subsystems of Second-Order Arithmetic. Springer-Verlag, 1999.CrossRefGoogle Scholar
Skolem, Thoralf. Abstract Set Theory. Notre Dame Mathematical Lectures, 8. University of Notre Dame, 1962.Google Scholar
Skolem, Thoralf. “Begründung der elementaren Zahlentheorie durch die rekurrierende Denkweise ohne Anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich.” Skrifter, Videnskabsakadmiet i Kristiania I, no. 6 (1923). Reprinted in Selected Works, pp. 153–188. Translation in van Heijenoort, pp. 303–333.Google Scholar
Skolem, Thoralf. “Einige Bermerkungen zur axiomatischen Begründung der Mengenlehre.” In Matematikerkongressen i Helsingfors den 4–7 Juli 1922, Den femte skandinaviska matematikerkongressen, Redogörelse, pp. 217–232. Helsinki: Akademiska Bokhandeln, 1923. Reprinted in Selected Works, pp. 137–152. Translation in van Heijenoort, pp. 290–301.Google Scholar
Skolem, Thoralf. Selected Works in Logic. Edited by Fenstad, Jens Erik. Oslo: Universitetsforlaget, 1970.Google Scholar
Sommer, Richard. See Sieg, Sommer, and Talcott.
Steiner, Mark. Mathematical Knowledge. Ithaca, NY: Cornell University Press, 1975.Google Scholar
Sylvan, Richard. See Routley.
Szmielew, Wanda, and Tarski, Alfred. “Mutual Interpretability of some Essentially Undecidable Theories” (abstract). In Proceedings of the International Congress of Mathematicians, Cambridge, Massachusetts, U.S.A., August 30–September 6, 1950, vol. 1, p. 734. Providence, RI: American Mathematical Society, 1952.Google Scholar
Tait, William (W. W.). “Against Intuitionism: Constructive Mathematics is Part of Classical Mathematics.” Journal of Philosophical Logic 12 (1983), 173–195.CrossRefGoogle Scholar
Tait, William (W. W.). “Constructing Cardinals from Below.” In The Provenance, pp. 133–154.
Tait, William (W. W.). “Constructive Reasoning.” In Rootselaar, B. and Staal, J. F. (eds.), Logic, Methodology, and Philosophy of Science III, pp. 185–198. Amsterdam: North-Holland, 1968.Google Scholar
Tait, William (W. W.). “Critical Notice: Charles Parsons' Mathematics in Philosophy.” Philosophy of Science 53 (1986), 588–607.CrossRefGoogle Scholar
Tait, William (W. W.). “Finitism.” The Journal of Philosophy 78 (1981), 524–546. Reprinted in The Provenance, pp. 21–42.CrossRefGoogle Scholar
Tait, William (W. W.). “Frege versus Cantor and Dedekind: On the Concept of Number.” In Tait, W. W. (ed.), Early Analytic Philosophy, Frege, Russell, Wittgenstein: Essays in honor of Leonard Linsky, pp. 213–248. Chicago and La Salle, IL: Open Court, 1997. Reprinted in The Provenance, pp. 212–251.Google Scholar
Tait, William (W. W.). The Provenance of Pure Reason. Essays in the Philosophy of Mathematics and its History. Oxford University Press, 2005.Google Scholar
Tait, William W. W.). “Truth and Proof: The Platonism of Mathematics.” Synthese 69 (1986), 341–370. Reprinted with some additional notes in The Provenance, pp. 61–88.CrossRefGoogle Scholar
Takeuti, Gaisi. “Construction of the Set Theory from the Theory of Ordinal Numbers.” Journal of the Mathematical Society of Japan 6 (1954), 196–220.CrossRefGoogle Scholar
Talcott, Carolyn. See Sieg, Sommer, and Talcott.
Tarski, Alfred. “Sur les ensembles finis.” Fundamenta Mathematicae 6 (1924), 45–95.CrossRefGoogle Scholar
Tarski, Alfred. “What is Elementary Geometry?” In Henkin, Leon, Suppes, Patrick, and Tarski, Alfred (eds.), The Axiomatic Method, with Special Reference to Geometry and Physics, pp. 16–29. Proceedings of an International Symposium held at the University of California, Berkeley, December 26, 1957–January 4, 1958. Amsterdam: North-Holland, 1959.Google Scholar
Tarski, Alfred, Mostowski, Andrzej, and Robinson, Raphael M.. Undecidable Theories. Amsterdam: North-Holland, 1953.Google Scholar
Tarski, Alfred, and Givant, Steven. A Formalization of Set Theory without Variables. American Mathematical Society Colloquium Publications, 41. Providence, RI: American Mathematical Society, 1987.CrossRefGoogle Scholar
See also Givant and Tarski and Szmielew and Tarski.
Taylor, R. Gregory. “Mathematical Definability and the Paradoxes.” Dissertation, Columbia University, 1983.
Taylor, R. Gregory. “Zermelo, Reductionism, and the Philosophy of Mathematics.” Notre Dame Journal of Formal Logic 34 (1993), 539–563.CrossRefGoogle Scholar
Thomason, Richmond H. “Modal Logic and Metaphysics.” In Lambert, Karel (ed.), The Logical Way of Doing Things, pp. 119–146. New Haven: Yale University Press, 1969.Google Scholar
Tieszen, Richard L.Mathematical Intuition: Phenomenology and Mathematical Knowledge. Dordrecht: Kluwer, 1989.CrossRefGoogle Scholar
See also Sher and Tieszen.
Troelstra, A. S., and Dalen, Dirk. Constructivism in Mathematics: An Introduction. 2 vols. Amsterdam: North-Holland, 1988.Google Scholar
James, Aken. “Axioms for the Set-Theoretic Hierarchy.” The Journal of Symbolic Logic 51 (1986), 992–1004.Google Scholar
van Dalen, Dirk. See Troelstra and van Dalen and also Brouwer.
D[avid], Dantzig. “Is 101010 a Finite Number?Dialectica 9 (1955–56), 272–277.Google Scholar
Jean, Heijenoort, ed. From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Cambridge, MA: Harvard University Press, 1967.Google Scholar
See also Gödel.
Velleman, Daniel J. See George and Velleman.
Johann, Neumann. “Eine Axiomatisierung der Mengenlehre.” Journal für die reine und angewandte Mathematik 154 (1925), 219–240. Berichtigung, ibid. 155, 128. Translation in van Heijenoort, pp. 393–413.Google Scholar
Wang, Hao. “Between Number Theory and Set Theory.” Mathematische Annalen 126 (1953), 385–409. Reprinted as chapter XIX of A Survey.CrossRefGoogle Scholar
Wang, Hao. A Logical Journey: From Gödel to Philosophy. Cambridge, MA: MIT Press, 1996.Google Scholar
Wang, Hao. From Mathematics to Philosophy. London: Routledge and Kegan Paul, 1974.Google Scholar
Wang, Hao. “Ordinal Numbers and Predicative Set Theory.” Zeitschrift für mathematische Logik und Grundlagen der Mathematik 5 (1959), 216–239. Reprinted as Chapter XXV of Survey.CrossRefGoogle Scholar
Wang, Hao. A Survey of Mathematical Logic. Peking: Science Press, and Amsterdam: North-Holland, 1962. Reprinted as Logic, Computers, and Sets. New York: Chelsea, 1970.Google Scholar
Wang, Hao. “What is an Individual?Philosophical Review 62 (1953), 413–420. Reprinted as Appendix 5 to From Mathematics to Philosophy.CrossRefGoogle Scholar
Wetzel, Linda. “Expressions vs. Numbers.” Philosophical Topics 17 (1989), 173–196.CrossRefGoogle Scholar
Weyl, Hermann. Das Kontinuum. Leipzig: Veit, 1918.Google Scholar
Weyl, Hermann. “Der circulus vitiosus in der heutigen Begründung der Analysis.” Jahresbericht der deutschen Mathematiker-Vereinigung 28 (1919), 85–92.Google Scholar
Whitehead, A. N., and Russell, Bertrand. Principia Mathematica. 3 vols. Cambridge University Press, 1910–13. 2nd ed., 1925–27.Google Scholar
Williamson, Timothy. “Everything.” In Hawthorne, John and Zimmerman, Dean (eds.), Philosophical Perspectives 17: Language and Philosophical Linguistics, pp. 415–465. Oxford: Blackwell, 2003.Google Scholar
Wollheim, Richard. Art and its Objects. New York: Harper and Row, 1968. 2nd ed. with six suppelementary essays. Cambridge University Press, 1980.Google Scholar
Woodin, W. Hugh. “The Continuum Hypothesis, part I.” Notices of the American Mathematical Society 48 (2001), 567–576.Google Scholar
Woodin, W. Hugh. “The Continuum Hypothesis, part II.” Ibid., 681–690.
Woodin, W. Hugh. “The Continuum Hypothesis.” In Cori, René, Razborov, Alexander, Todorcevic, Stevo, and Wood, Carol (eds.), Logic Colloquium 2000, pp. 143–197. Lecture Notes in Logic, 19. Urbana, IL: Association for Symbolic Logic, and Wellesley, MA: A. K. Peters, 2005.Google Scholar
Woodin, W. Hugh. “Set Theory after Russell: The Journey Back to Eden.” In Link, Godehard (ed.), One Hundred Years of Russell's Paradox: Mathematics, Logic, Philosophy, pp. 29–47. Berlin: de Gruyter, 2004.CrossRefGoogle Scholar
Wright, Crispin. Frege's Conception of Numbers as Objects. Aberdeen University Press, 1983.Google Scholar
See also Hale and Wright.
Yi, Byeong-Uk. “Is Two a Property?”The Journal of Philosophy 96 (1999), 163–190.CrossRefGoogle Scholar
Yi, Byeong-Uk. “The Logic and Meaning of Plurals. Part I.” Journal of Philosophical Logic 34 (2005), 459–506.CrossRefGoogle Scholar
Yi, Byeong-Uk. “The Logic and Meaning of Plurals. Part II.” Journal of Philosophical Logic 35 (2006), 239–288.CrossRefGoogle Scholar
Zach, Richard. “The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert's Program.” Synthese 137 (2003), 211–259.CrossRefGoogle Scholar
Zermelo, Ernst. “Sur les ensembles finis et le principe de l'induction complète,” Acta Mathematica 32 (1909), 183–193.CrossRefGoogle Scholar
Zermelo, Ernst. “Über den Begriff der Definitheit in der Axiomatik.” Fundamenta Mathematicae 14 (1929), 339–344.CrossRefGoogle Scholar
Zermelo, Ernst. “Über Grenzzahlen und Mengenbereiche.” Ibid. 16 (1930), 29–47. Translation in Ewald, II, 1219–1233.Google Scholar
Zermelo, Ernst. “Untersuchungen über die Grundlagen der Mengenlehre I.” Mathematische Annalen 65 (1908), 261–281. Translation in van Heijenoort, pp. 199–215.CrossRefGoogle Scholar
See also Cantor.
Ackermann, Wilhelm. “Die Widerspruchsfreiheit der allgemeinen Mengenlehre.” Mathematische Annalen 114 (1937), 305–315.CrossRefGoogle Scholar
Aczel, Peter. “An Introduction to Inductive Definitions.” In Barwise, Handbook, pp. 739–782.
Barwise, Jon. Admissible Sets and Structures. Berlin: Springer, 1975.CrossRefGoogle Scholar
Barwise, Jon, ed. Handbook of Mathematical Logic. Amsterdam: North-Holland, 1977.Google Scholar
Bealer, George. “Intuition.” In Borchert, Donald M. (editor in chief), The Encyclopedia of Philosophy Supplement, pp. 268–269. New York: Macmillan Reference USA, 1996. Reprinted in Borchert, Encyclopedia 2nd ed., IV, 732–733.Google Scholar
Bealer, George. “On the Possibility of Philosophical Knowledge.” Philosophical Perspectives 10 (1996), 1–34.Google Scholar
Beeson, Michael. Foundations of Constructive Mathematics. Berlin: Springer, 1985.CrossRefGoogle Scholar
Benacerraf, Paul. “Mathematical Truth.” The Journal of Philosophy 70 (1973), 661–679. Reprinted in Benacerraf and Putnam, pp. 403–420. (Not in 1st ed.)CrossRefGoogle Scholar
Benacerraf, Paul. “What Numbers Could Not Be.” Philosophical Review 74 (1965), 47–73. Reprinted in Benacerraf and Putnam, pp. 272–294. (Not in 1st ed.) Cited according to reprint.CrossRefGoogle Scholar
Benacerraf, Paul, and Putnam, Hilary, eds. Philosophy of Mathematics: Selected Readings. Englewood Cliffs, NJ: Prentice Hall, 1964. 2nd ed. Cambridge University Press, 1983 (published 1984).Google Scholar
Bernays, Paul. Abhandlungen zur Philosophie der Mathematik. Darmstadt: Wissenschaftliche Buchgesellschaft, 1976.Google Scholar
Bernays, Paul. “Bemerkungen zum Paradoxon von Thoralf Skolem.” Avhandlingen uitgitt av Det Norske Videnskaps-Akademi i Oslo, I. Mat.-Naturv. Klasse, 1957, No. 5, 3–9. Reprinted in Abhandlungen, pp. 113–118.Google Scholar
Bernays, Paul. “Die Mathematik als ein zugleich Vertrautes und Unbekanntes.” Synthese 9 (1955), 465–471. Reprinted in Abhandlungen, pp. 107–112.CrossRefGoogle Scholar
Bernays, Paul. “Mathematische Existenz und Widerspruchsfreiheit.” In Études de philosophie des sciences, en hommage à F. Gonseth à l'occasion de son soixantième anniversaire, pp. 11–25. Neuchâtel: Griffon, 1950. Reprinted in Abhandlungen, pp. 92–106.Google Scholar
Bernays, Paul. “Die Philosophie der Mathematik und die Hilbertsche Beweistheorie.” Blätter für deutsche Philosophie 4 (1930), 326–367. Reprinted with postscript in Abhandlungen, pp. 17–61.Google Scholar
Bernays, Paul. “Quelques points essentiels de la métamathématique.” L'enseignement mathématique 52 (1935), 70–95.Google Scholar
Bernays, Paul. “Quelques points de vue concernant le problème de l'évidence,” Synthese 5 (1946), 321–326. (The German translation in Abhandlungen is by Bernays but was evidently done in 1974.)CrossRefGoogle Scholar
Bernays, Paul. “Sur le platonisme dans les mathématiques.” L'enseignement mathématique 52 (1935), 52–69. Translation in Benacerraf and Putnam, pp. 258–271 of 2nd ed. (The German version in Abhandlungen is a translation from the French.)Google Scholar
Bernays, Paul. “A System of Axiomatic Set Theory, Part II.” The Journal of Symbolic Logic 6 (1941), 1–17. Reprinted in Müller, Sets and Classes, pp. 14–30.CrossRefGoogle Scholar
Bernays, Paul. “A System of Axiomatic Set Theory, Part VII.” The Journal of Symbolic Logic 19 (1954), 81–96. Reprinted in Müller, Sets and Classes, pp. 102–119.CrossRefGoogle Scholar
Bernays, Paul. “Über Hilberts Gedanken zur Grundlegung der Arithmetik,” Jahresbericht der Deutschen Mathematiker-Vereinigung 31 (1922), 10–19.Google Scholar
Bernays, Paul. “Zur Frage der Unendlichkeitsschemata in deraxiomatischen Mengenlehre.” In Essays on the Foundations of Mathematics, dedicated to Professor A. A. Fraenkel on his 70th birthday, pp. 3–49. Jerusalem: Magnes Press, 1961. Translation, “partially revised,” in Müller, Sets and Classes, pp. 121–172.Google Scholar
Bernays, Paul. See also Hilbert and Bernays.
Black, Max. “The elusiveness of sets.” Review of Metaphysics 24 (1970–1971), 614–636.Google Scholar
Bolzano, Bernard. Paradoxien des Unendlichen. Ed. by Příhonský, F.. Leipzig 1851.Google Scholar
Bolzano, Bernard. Wissenschaftslehre. 4 vols. Sulzach 1837.Google Scholar
BonJour, Laurence. In Defense of Pure Reason. A Rationalist Account of a priori Justification. Cambridge University Press, 1998.Google Scholar
Boolos, George. “Iteration Again.” Philosophical Topics 17 (1989), 5–21. Reprinted in LLL.CrossRefGoogle Scholar
Boolos, George. “The Iterative Conception of Set.” The Journal of Philosophy 68 (1971), 215–231. Reprinted in LLL. Also reprinted in Benacerraf and Putnam, 2nd ed.CrossRefGoogle Scholar
Boolos, George. Logic, Logic, and Logic. Edited by Jeffrey, Richard. With Introductions and Afterword by John P. Burgess. Cambridge, MA: Harvard University Press, 1998. Hereafter LLL.Google Scholar
Boolos, George. The Logic of Provability. Cambridge University Press, 1993.Google Scholar
Boolos, George. “Must we believe in set theory?” In LLL, pp. 120–132. Also in Sher and Tieszen, pp. 257–268.
Boolos, George. “Nominalist Platonism.” Philosophical Review 94 (1985), 327–344. Reprinted in LLL.CrossRefGoogle Scholar
Boolos, George. “Reply to Charles Parsons, ‘Sets and Classes’.” In LLL, pp. 30–36. (Written and presented in 1974.)
Boolos, George. “To Be is to be the Value of a Variable (or to be Some Values of Some Variables).” The Journal of Philosophy 81 (1984), 430–449. Reprinted in LLL.CrossRefGoogle Scholar
Boolos, George, and Jeffrey, Richard C.. Computability and Logic. Cambridge University Press, 1974. 2nd ed., 1981. 3rd ed., 1990. 4th ed., with John P. Burgess, 2002.Google Scholar
Borchert, Donald M. (Editor in chief). The Encyclopedia of Philosophy, Second Edition. 10 vols. Detroit: Macmillan Reference USA, 2006. (For first edition, see Edwards.)Google Scholar
Brentano, Franz. Wahrheit und Evidenz. Erkenntnistheoretische Abhandlungen und Briefe. Edited by Kraus, Oskar. Leipzig: Meiner, 1930. Reprinted Hamburg: Meiner, 1962, 1974.Google Scholar
Bromberger, Sylvain. On What We Know We Don't Know. Explanation, Theory, Linguistics, and How Questions Shape Them. Chicago: University of Chicago Press, and Stanford: Center for the Study of Language and Information, 1992.Google Scholar
Bromberger, Sylvain. “Types and Tokens in Linguistics.” In George, Alexander (ed.), Reflections on Chomsky, pp. 58–89. Cambridge, Mass., MIT Press, 1989. Reprinted in On What We Know We Don't Know, pp. 170–208.Google Scholar
Bromberger, Sylvain, and Halle, Morris. “The Ontology of Phonology.” In Bromberger, On What We Know We Don't Know, pp. 209–228.
Brouwer, L. E. J. Collected Works, volume 1: Philosophy and Intuitionistic Mathematics. Edited by Heyting, Arend. Amsterdam: North-Holland, 1975.Google Scholar
Brouwer, L. E. J.. “Mathematik, Wissenschaft, und Sprache.” Monatshefte für Mathematik und Physik 36 (1929), 153–164. Reprinted, Collected Works, vol. 1.CrossRefGoogle Scholar
Brouwer, L. E. J.. Over de grondslagen der wiskunde. Amsterdam and Leipzig: Maass and van Suchtelen, 1907. Critical edition in Dirk van Dalen (ed.), L. E. J. Brouwer en de grondslagen van de wiskunde (Utrecht: Epsilon, 2001), pp. 39–147. English translation (of the main text) in Collected Works, vol. 1.Google Scholar
Buchholz, Wilfried, Feferman, Solomon, Pohlers, Wolfram, and Sieg, Wilfried, Iterated Inductive Definitions and Subsystems of Analysis. Lecture Notes in Mathematics 897. Berlin etc.: Springer, 1981.Google Scholar
Burgess, John P.E pluribus unum: Plural Logic and Set Theory.” Philosophia Mathematica (III) 12 (2004), 193–221.CrossRefGoogle Scholar
Burgess, John P.. Fixing Frege. Princeton University Press, 2005.Google Scholar
Burgess, John P.. “Mathematics and Bleak House.” Philosophia Mathematica (III) 12 (2004), 18–36.CrossRefGoogle Scholar
Burgess, John P.. Review of Shapiro, Philosophy of Mathematics. Notre Dame Journal of Formal Logic 40 (1999), 283–291.CrossRefGoogle Scholar
Burgess, John P., and Hazen, Allen. “Predicative Logic and Formal Arithmetic.” Notre Dame Journal of Formal Logic 39 (1998), 1–17.Google Scholar
Burgess, John P., and Rosen, Gideon. A Subject with no Object. Strategies for Nominalistic Interpretation of Mathematics. Oxford: Clarendon Press, 1997.Google Scholar
Cantor, Georg. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Edited by Zermelo, Ernst. Berlin: Springer, 1932. Reprinted Hildesheim: Olms, 1962.Google Scholar
Carnap, Rudolf. Logische Syntax der Sprache. Vienna: Springer, 1934.CrossRefGoogle Scholar
Carnap, Rudolf. Logical Syntax of Language. Translated by Amethe Smeation. London: Kegan Paul, 1937. (Contains two sections not in the German edition.)Google Scholar
Carson, Emily. “On realism in set theory.” Philosophia Mathematica (III) 4 (1996), 3–17.CrossRefGoogle Scholar
Cartwright, Richard L.Speaking of Everything.” NoÛs 28 (1994), 1–20.CrossRefGoogle Scholar
Church, Alonzo. “Comparison of Russell's Solution of the Semantical Paradoxes with that of Tarski.” The Journal of Symbolic Logic 41 (1976), 747–760. Reprinted in Martin, Recent Essays.CrossRefGoogle Scholar
Church, Alonzo. “A Formulation of the Logic of Sense and Denotation.” In Structure, Method, and Meaning: Essays in Honor of Henry M. Sheffer, pp. 3–24. New York: Liberal Arts Press, 1951.Google Scholar
Church, Alonzo. “A Formulation of the Simple Theory of Types.” The Journal of Symbolic Logic 5 (1940), 56–68.CrossRefGoogle Scholar
Cohn-Vossen, S. See Hilbert and Cohn-Vossen.
Collins, George E., and Halpern, J. D.. “On the Interpretability of Arithmetic in Set Theory.” Notre Dame Journal of Formal Logic 11 (1970), 477–483.CrossRefGoogle Scholar
Dales, H. G., and Oliveri, G. (eds.). Truth in Mathematics. Oxford: Clarendon Press, 1998.Google Scholar
Davidson, Donald. Inquiries into Truth and Interpretation. Oxford: Clarendon Press, 1984.Google Scholar
Davidson, Donald. “On Saying That.” Synthese 19 (1968), 130–146. Reprinted in Inquiries.CrossRefGoogle Scholar
Davidson, Donald. “Radical Interpretation.” Dialectica 27 (1973), 313–328. Reprinted in Inquiries.CrossRefGoogle Scholar
Dedekind, Richard. Gesammelte mathematische Werke. 3 vols. Edited by Fricke, Robert, Noether, Emmy, and Ore, Öystein. Braunschweig: Vieweg, 1930–32.Google Scholar
Dedekind, Richard. Was sind und was sollen die Zahlen?Braunschweig: Vieweg, 1888, 3rd ed. 1911. Translation in Ewald, II, 787–833.Google Scholar
Demopoulos, William (ed.). Frege's Philosophy of Mathematics. Cambridge, MA: Harvard University Press, 1995.Google Scholar
Descartes, René. The Philosophical Writings of Descartes. Translated by John Cottingham, Robert Stoothoff, and Dugald Murdoch. 2 vols. Cambridge University Press, 1985.Google Scholar
Donnellan, Keith. “Reference and Definite Descriptions.” Philosophical Review 75 (1966), 281–304.CrossRefGoogle Scholar
Drake, F. R.Set Theory. An Introduction to Large Cardinals. Amsterdam: North-Holland, 1974.Google Scholar
Dummett, Michael. Frege: Philosophy of Language. London: Duckworth, 1973. 2nd ed., 1981.Google Scholar
Dummett, Michael. Frege: Philosophy of Mathematics. Cambridge, Mass.: Harvard University Press, 1991.Google Scholar
Dummett, Michael. “The Philosophical Basis of Intuitionistic Logic.” In Rose, H. E. and Shepherdson, J. C. (eds.), Logic Colloquium '73, pp. 5–40. Amsterdam: North-Holland, 1975. Reprinted in Truth and Other Enigmas, pp. 215–247, and in Benacerraf and Putnam (not in 1st ed.).Google Scholar
Dummett, Michael. “The Philosophical Significance of Gödel's Theorem.” Ratio 5 (1963), 140–155. Reprinted in Truth and Other Enigmas, pp. 186–201.Google Scholar
Dummett, Michael. “Platonism.” In Truth and Other Enigmas, pp. 202–214. (Text of an address given in 1967.)Google Scholar
Dummett, Michael. The Seas of Language. Oxford: Clarendon Press, 1993.Google Scholar
Dummett, Michael. Truth and Other Enigmas. London: Duckworth, 1978.Google Scholar
Dummett, Michael. “Wang's Paradox.” Synthese 30 (1975), 301–324. Reprinted in Truth and Other Enigmas, pp. 248–268.CrossRefGoogle Scholar
Dummett, Michael. “What is Mathematics About?” In George, Mathematics and Mind, pp. 11–26. Also in The Seas of Language, pp. 429–445.
Edwards, Paul (ed.). The Encyclopedia of Philosophy. 7 vols. New York: Free Press/Macmillan, 1967. (For second edition, see Borchert.)Google Scholar
Evans, Gareth. “Can there be Vague Objects?” Analysis 38 (1978), 208. Reprinted in Collected Papers (Oxford: Clarendon Press, 1985), pp. 176–177.CrossRefGoogle Scholar
Ewald, William (ed.). From Kant to Hilbert. A Source Book in the Foundations of Mathematics. 2 vols. Oxford: Clarendon Press, 1996.Google Scholar
Feferman, Solomon. “Definedness.” Erkenntnis 43 (1995), 295–320.CrossRefGoogle Scholar
Feferman, Solomon. In the Light of Logic. Oxford University Press, 1998.Google Scholar
Feferman, Solomon. “Reflecting on Incompleteness.” The Journal of Symbolic Logic 56 (1991), 1–49.CrossRefGoogle Scholar
Feferman, Solomon. “Systems of Predicative Analysis.” The Journal of Symbolic Logic 29 (1964), 1–30.CrossRefGoogle Scholar
Feferman, Solomon. “Weyl vindicated. Das Kontinuum 70 years later.” In Cellucci, Carlo and Sambin, Giovanni (eds.), Temi e prospettive della logica e della scienza contemporanee, vol. 1, pp. 59–93. Bologna: CLUEB, 1988. Reprinted with corrrections and additions in In the Light of Logic.Google Scholar
See also Buchholz, Feferman, Pohlers, and Sieg.
See also Gödel.
Feferman, Solomon, and Hellman, Geoffrey. “Predicative Foundations of Arithmetic.” Journal of Philosophical Logic 22 (1995), 1–17.CrossRefGoogle Scholar
Feferman, Solomon, and Geoffrey Hellman. “Challenges to Predicative Foundations of Arithmetic.” In Sher and Tieszen, pp. 317–335.
Ferreira, Fernando. “A Note on Finiteness in the Predicative Foundations of Arithmetic.” Journal of Philosophical Logic 28 (1999), 165–174.CrossRefGoogle Scholar
Field, Hartry. “Are Our Logical and Mathematical Concepts Highly Indeterminate?” In French, Peter A., Uehling, Theodore E. Jr., and Wettstein, Howard K. (eds.), Midwest Studies in Philosophy, volume 19: Philosophical Naturalism, pp. 391–429. Minneapolis: University of Minnesota Press, 1994.Google Scholar
Field, Hartry. “Is Mathematical Knowledge Just Logical Knowledge?Philosophical Review 93 (1984), 509–552. Reprinted, with revisions and postscript, in Realism, Mathematics, and Modality, pp. 79–124.CrossRefGoogle Scholar
Field, Hartry. “On Conservativeness and Incompleteness.” The Journal of Philosophy 82 (1985), 239–260. Reprinted in Realism, Mathematics, and Modality, pp. 125–146.Google Scholar
Field, Hartry. “Realism, Mathematics, and Modality.” Philosophical Topics 19 (1988), 57–107. Reprinted in Realism, Mathematics, and Modality, pp. 227–281.CrossRefGoogle Scholar
Field, Hartry. Realism, Mathematics, and Modality. Oxford: Blackwell, 1989.Google Scholar
Field, Hartry. Science without Numbers: A Defense of Nominalism. Princeton University Press, 1980.Google Scholar
Field, Hartry. Truth and the Absence of Fact. Oxford: Clarendon Press, 2001.CrossRefGoogle Scholar
Field, Hartry. “Which Undecidable Mathematical Sentences have Determinate Truth Values?” In Dales and Oliveri, pp. 291–310. Reprinted with Postscript in Truth and the Absence of Fact, pp. 332–360.
Fraenkel, (Abraham) Adolf. Einleitung in die Mengenlehre. Berlin: Springer, 1919. 2nd ed., revised and enlarged, 1923. 3d ed., further revised and enlarged, 1928.CrossRefGoogle Scholar
Frege, Gottlob. Begriffschrift. Eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle: Nebert, 1879. Reprinted in Begriffschrift und andere Aufsätze. Translation in van Heijenoort.Google Scholar
Frege, Gottlob. Begriffschrift und andere Aufsätze. Edited by Angelelli, Ignacio. Hildesheim: Olms, 1964.Google Scholar
Frege, Gottlob. Collected Papers on Mathematics, Logic, and Philosophy. Edited by McGuinness, Brian. Translated by Max Black and others. Oxford: Blackwell, 1984.Google Scholar
Frege, Gottlob. Frege on the Foundations of Geometry and Formal Theories in Arithmetic. Translated and edited by Eike-Henner W. Kluge. New Haven: Yale University Press, 1971.
Frege, Gottlob. “Der Gedanke: Eine logische Untersuchung.” Beiträge zur Philosophie des deutschen Idealismus 1 (1918–19), 58–77. Reprinted in Kleine Schriften. Translation in Collected Papers.Google Scholar
Frege, Gottlob. The Foundations of Arithmetic. Translated by J. L. Austin. Contains the German text. Oxford: Blackwell, 1950. 2nd ed. 1953. (The pagination of the German text is exactly the same as that of the original, and thus that of the translation is very close.)Google Scholar
Frege, Gottlob. Funktion und Begriff. Jena: Pohle, 1891. Reprinted in Kleine Schriften. Translation in Collected Papers.Google Scholar
Frege, Gottlob. Grundgesetze der Arithmetik. Jena: Pohle. Vol. I, 1893. Vol. II, 1903. Reprinted Hildesheim: Olms, 1962, 1998.Google Scholar
Frege, Gottlob. Die Grundlagen der Arithmetik. Breslau: Koebner, 1884. Centenary edition, with amplifying texts, critically edited by Christian Thiel. Hamburg: Meiner, 1986. English translation Foundations.
Frege, Gottlob. Kleine Schriften. Edited by Angelelli, Ignacio. Hildesheim: Olms, 1967. Translated as Collected Papers.Google Scholar
Frege, Gottlob. Logical Investigations. Edited by Geach, Peter. Translated by Geach and R. H. Stoothoff. Oxford: Blackwell, 1977.Google Scholar
Frege, Gottlob. Nachgelassene Schriften. Edited by Hermes, Hans, Kambartel, Friedrich, and Kaulbach, Friedrich. Hamburg: Meiner, 1969. 2nd. ed., revised, with an appendix (lecture notes) ed. with an introduction by Lothar Kreiser. Hamburg: Meiner, 1983.Google Scholar
Frege, Gottlob. Review of Husserl, Philosophie der Arithmetik. Zeitschrift für Philosophie und philosophische Kritik 103 (1894), 313–332. Reprinted in Kleine Schriften. Translation in Collected Papers.Google Scholar
Frege, Gottlob. Wissenschaftlicher Briefwechsel. Edited by Gabriel, Gottfried, Hermes, Hans, Kambartel, Friedrich, Thiel, Christian, and Veraart, Albert. Hamburg: Meiner, 1976.Google Scholar
Friedman, Michael. Kant and the Exact Sciences. Cambridge, MA: Harvard University Press, 1992.Google Scholar
Gallin, Daniel. Intensional and Higher-Order Modal Logic. Amsterdam: North-Holland, 1975.Google Scholar
Gandy, Robin O. “Limitations to Mathematical Knowledge.” In Dalen, D., Lascar, D., and Smiley, T. J. (eds.), Logic Colloquium ′80, pp. 129–145. Amsterdam: North-Holland, 1982.Google Scholar
George, Alexander. “The Imprecision of Impredicativity.” Mind N. S. 96 (1987), 514–518.CrossRefGoogle Scholar
George, Alexander,(ed.). Mathematics and Mind. Oxford University Press, 1994.Google Scholar
George, Alexander, and Daniel J. Velleman. “Two Conceptions of Natural Number.” In Dales and Oliveri, pp. 311–327.
Givant, Steven, and Tarski, Alfred. “Peano Arithmetic and the Zermelo-like Theory of Sets with Finite Ranks.” Abstract 77T-E51. Notices of the Americal Mathematical Society 24 (1977), A-437.Google Scholar
See also Tarski and Givant.
Gödel, Kurt. Collected Works. Volume I, Publications 1929–1936. Edited by Feferman, Solomon, Dawson, John W. Jr., Kleene, Stephen C., Moore, Gregory H., Solovay, Robert M., and Heijenoort, Jean. New York and Oxford: Oxford University Press, 1986.Google Scholar
Gödel, Kurt. Collected Works. Volume II, Publications 1938–1974. Edited by Feferman, Solomon, Dawson, John W. Jr., Kleene, Stephen C., Moore, Gregory H., Solovay, Robert M., and Heijenoort, Jean. New York and Oxford: Oxford University Press, 1990.Google Scholar
Gödel, Kurt. Collected Works. Volume III, Unpublished Essays and Lectures. Edited by Feferman, Solomon, Dawson, John W. Jr., Goldfarb, Warren, Parsons, Charles, and Solovay, Robert M.. New York and Oxford: Oxford University Press, 1995.Google Scholar
Gödel, Kurt. Collected Works. Volume IV, Correspondence, A-G. Edited by Feferman, Solomon, Dawson, John W. Jr., Goldfarb, Warren, Parsons, Charles, and Sieg, Wilfried. Oxford: Clarendon Press, 2003.Google Scholar
Gödel, Kurt. Collected Works. Volume V, Correspondence, H-Z. Edited by Feferman, Solomon, Dawson, John W. Jr., Goldfarb, Warren, Parsons, Charles, and Sieg, Wilfried. Oxford: Clarendon Press, 2003.Google Scholar
Gödel, Kurt. The Consistency of the Continuum Hypothesis. Princeton University Press, 1940. Reprinted in Collected Works, II, 33–101.Google Scholar
Gödel, Kurt. “Is Mathematics Syntax of Language?” Unfinished paper written between 1953 and 1959. Versions III and V in Collected Works, III, 334–362.
Gödel, Kurt. “On an Extension of Finitary Mathematics which has not yet been Used.” Revised English version, with additional notes, of “Über eine noch nicht benützte Erweiterung.” In Collected Works, II, 271–280.
Gödel, Kurt. “The Present Situation in the Foundations of Mathematics.” Lecture to the Mathematical Association of America, 1933. In Collected Works, III, 45–53.Google Scholar
Gödel, Kurt. “Russell's Mathematical Logic.” In Schilpp, P. A. (ed.), The Philosophy of Bertrand Russell (Evanston: Northwestern University, 1944), pp. 125–153. Reprinted in Collected Works, II, 119–141. Also reprinted in Benacerraf and Putnam, pp. 442–470.Google Scholar
Gödel, Kurt. “Some Basic Theorems on the Foundations of Mathematics and their Philosophical Implications.” Josiah Willard Gibbs Lecture, American Mathematical Society, 1951. In Collected Works, III, 304–323. (The word ‘philosophical’ was omitted from the title of the published version. See Collected Works, IV, 636.)Google Scholar
Gödel, Kurt. “Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.” Dialectica 12 (1958), 280–287. Reprinted, with English translation, in Collected Works, II, 240–251.CrossRefGoogle Scholar
Gödel, Kurt. “Vortrag bei Zilsel.” Lecture to an informal circle, Vienna, 1938. In Collected Works, III, 86–113. With English translation.Google Scholar
Gödel, Kurt. “What is Cantor's Continuum Problem?American Mathematical Monthly 54 (1947), 515–525. Revised and expanded in Benacerraf and Putnam, 1st ed., pp. 258–271, also in 2nd ed., pp. 470–485. Both versions reprinted in Collected Works, II, 176–187 and 254–270 respectively.CrossRefGoogle Scholar
Gödel, Kurt. “Zur intuitionistischen Arithmetik und Zahlentheorie.” Ergebnisse eines mathematischen Kolloquiums 4 (1933), 34–38. Reprinted, with English translation, in Collected Works, I, 286–295.Google Scholar
Goldfarb, Warren. See Gödel.
Goldfarb, Warren, and Thomas Ricketts. “Carnap and the Philosophy of Mathematics.” In Bell, David and Vossenkuhl, Wilhelm (eds.), Wissenschaft und Subjektivität, pp. 61–78. Berlin: Akademie-Verlag, 1992.Google Scholar
Goodman, Nelson. Fact, Fiction, and Forecast. Cambridge, MA: Harvard University Press, 1955. 4th ed., 1983.Google Scholar
Goodman, Nelson. Problems and Projects. Indianapolis: Bobbs-Merrill, 1972.Google Scholar
Goodman, Nelson. “Sense and Certainty.” The Philosophical Review 61 (1952), 160–167. Reprinted in Problems and Projects, pp. 60–68.CrossRefGoogle Scholar
Goodman, Nelson. The Structure of Appearance. Cambridge, MA: Harvard University Press, 1951. 3rd ed. Dordrecht: Reidel, 1977.Google Scholar
Goodman, Nelson, and Quine, W. V.. “Steps towards a Constructive Nominalism.” The Journal of Symbolic Logic 12 (1947), 105–122. Reprinted in Goodman, Problems and Projects, pp. 173–198.CrossRefGoogle Scholar
Goodman, Nicolas D.The Knowing Mathematician.” Synthese 60 (1984), 21–38.CrossRefGoogle Scholar
Goodstein, R. L.Recursive Number Theory. Amsterdam: North-Holland, 1957.Google Scholar
Gottlieb, Dale. Ontological Economy. Substitutional Quantification and Mathematics. Oxford: Clarendon Press, 1980.Google Scholar
Grossmann, Reinhardt. “Meinong's Doctrine of the Aussersein of the Pure Object.” NoÛs 8 (1974), 67–82.CrossRefGoogle Scholar
Hájek, Petr, and Pudlák, Pavel. Metamathematics of First-Order Arithmetic. Berlin, Heidelberg, New York: Springer-Verlag, 1993.CrossRefGoogle Scholar
Hale, Bob. “Structuralism's Unpaid Epistemological Debts.” Philosophia Mathematica (III) 4 (1996), 124–147.CrossRefGoogle Scholar
Hale, Bob, and Wright, Crispin. The Reason's Proper Study. Essays towards a Neo-Fregean Philosophy of Mathematics. Oxford: Clarendon Press, 2001.CrossRefGoogle Scholar
Hale, Bob, and Wright, Crispin. “Benacerraf's Dilemma Revisited.” European Journal of Philosophy 10 (2002), 101–129.CrossRefGoogle Scholar
Halle, Morris. See Bromberger and Halle.
Hart, W. D.Benacerraf's Dilemma.” Crítica 23 (1991), 87–103.Google Scholar
Hart, W. D.. Review of Steiner, Mathematical Knowledge. The Journal of Philosophy 74 (1977), 118–129.CrossRefGoogle Scholar
Hart, W. D.. “Skolem's Promises and Paradoxes.” The Journal of Philosophy 67 (1970), 98–109.CrossRefGoogle Scholar
Hauser, Kai. “Is Cantor's Continuum Problem Inherently Vague?Philosophia Mathematica (III) 10 (2002), 257–285.CrossRefGoogle Scholar
Heck, Richard G. Jr.The consistency of predicative fragments of Frege's Grundgesetze der Arithmetik.” History and Philosophy of Logic 17 (1996), 209–220.CrossRefGoogle Scholar
Hellman, Geoffrey. Mathematics without Numbers: Toward a Modal-Structural Interpretation. Oxford: Clarendon Press, 1989.Google Scholar
See also Feferman and Hellman.
Higginbotham, James. “Linguistic Theory and Davidson's Program in Semantics.” In Lepore, Ernest (ed.), Truth and Interpretation. Oxford: Blackwell, 1986.Google Scholar
Higginbotham, James. “On Higher-Order Logic and Natural Language.” Proceedings of the British Academy 95 (1998), 1–27. Somewhat abridged version in Sher and Tieszen, pp. 75–99.Google Scholar
Hilbert, David. Grundlagen der Geometrie. Leipzig: Teubner, 1899. 11th ed., ed. by Bernays, Paul, Stuttgart: Teubner, 1972. English translation of 10th ed. by Leo Unger, La Salle, Ill.: Open Court, 1971, 2nd ed. 1992.Google Scholar
Hilbert, David. “Neubegründung der Mathematik (Erste Mitteilung).” Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität 1 (1922), 157–177. Translation in Mancosu.CrossRefGoogle Scholar
Hilbert, David. “Über das Unendliche.” Mathematische Annalen 95 (1926), 161–190. Translation in van Heijenoort. Partial translation in Benacerraf and Putnam. (Citations of a translation are of the one in van Heijenoort.)CrossRefGoogle Scholar
Hilbert, David, and Bernays, Paul. Grundlagen der Mathematik. Berlin: Springer, vol. I, 1934; vol. II, 1939. 2nd ed., vol. I, 1968; vol. II, 1970.
Hilbert, David, and Cohn-Vossen, S.. Anschauliche Geometrie. Berlin: Springer, 1932.CrossRefGoogle Scholar
Hodes, Harold T.Logicism and the Ontological Commitments of Arithmetic.” The Journal of Philosophy 81 (1984), 123–149.CrossRefGoogle Scholar
Husserl, Edmund. Erfahrung und Urteil. Edited by Landgrebe, Ludwig. Hamburg: Claassen, 1948.Google Scholar
Husserl, Edmund. Formale und transzendentale Logik. Halle: Niemeyer, 1929; reprinted Tübingen: Niemeyer, 1981. Critical edition edited by Paul Janssen. Husserliana, vol. 17. The Hague: Nijhoff, 1974.Google Scholar
Husserl, Edmund. Logical Investigations. Translated by J. N. Findlay. London: Routledge and Kegan Paul, 1970. Translation of second edition of Logische Untersuchungen.Google Scholar
Husserl, Edmund. Logische Untersuchungen. Halle: Niemeyer, 1900–01, 2nd ed. 1913–20. Critical edition of volume 1 edited by Elmar Holenstein. Husserliana, vol. 18. The Hague: Nijhoff, 1975. Critical edition of volume 2 edited by Ursula Panzer. Husserliana, vol. 19. The Hague: Nijhoff, 1984. Page references prefixed A are to the 1st ed., B to the 2nd ed., with the subscript indicating the part of volume 2 in the 2nd ed.Google Scholar
Husserl, Edmund. Philosophie der Arithmetik, mit ergänzenden Texten (1890–1901). Edited by Eley, Lothar. Hussserliana, vol. 12. The Hague: Nijhoff, 1970. (Philosophie der Arithmetik first published Halle: Pfeffer, 1891.)CrossRefGoogle Scholar
Isles, David. “What Evidence Is There that 265536 Is a Natural Number?Notre Dame Journal of Formal Logic 33 (1992), 465–480.CrossRefGoogle Scholar
Jeffrey, Richard C. See Boolos and Jeffrey.
Kant, Immanuel. Critique of Pure Reason. Translated by Norman Kemp Smith. London: Macmillan, 1929. 2nd ed., 1933.Google Scholar
Kant, Immanuel. Critique of Pure Reason. Translated by Paul Guyer and Allen W. Wood. Cambridge University Press, 1997.Google Scholar
Kant, Immanuel. Gesammelte Schriften. Edited by the Preussische Akademie der Wissenschaften and its successors. Berlin: Reimer, later de Gruyter, 1902–. Cited as Ak.Google Scholar
Kant, Immanuel. Kritik der reinen Vernunft. Edited by Timmermann, Jens. Hamburg: Meiner, 1998.Google Scholar
Kant, Immanuel. Prolegomena to any Future Metaphysics. Translated by Lewis White Beck (revising earlier translations). New York: Liberal Arts Press, 1956.Google Scholar
Kaufman, E. L., Lord, M. W., Reese, T. W., and Volkmann, J.. “The Discrimination of Visual Number.” American Journal of Psychology 62 (1949), 498–525.CrossRefGoogle ScholarPubMed
Keränen, Jukka. “The Identity Problem for Realist Structuralism.” Philosophia Mathematica (III) 9 (2001), 308–330.CrossRefGoogle Scholar
Kim, Jaegwon. “The Role of Perception in A Priori Knowledge.” Philosophical Studies 40 (1981), 339–354.CrossRefGoogle Scholar
Kirby, Laurence. “Finitary Set Theory.” Notre Dame Journal of Formal Logic, forthcoming.
Kitcher, Philip. The Nature of Mathematical Knowledge. New York and Oxford: Oxford University Press, 1983.Google Scholar
Kitcher, Philip. “The Plight of the Platonist.” NoÛs 12 (1978), 119–136.CrossRefGoogle Scholar
Kleene, Stephen Cole. Introduction to Metamathematics. New York: Van Nostrand, 1952.Google Scholar
See also Gödel.
Kluge, Eike-Henner W. See Frege.
Koellner, Peter. “On the Question of Absolute Undecidability.” Philosophia Mathematica (III) 14 (2006), 153–188.CrossRefGoogle Scholar
Kreisel, G. “Informal Rigour and Completeness Proofs.” In Lakatos, Imre (ed.), Problems in the Philosophy of Mathematics, pp. 138–186. Amsterdam: North-Holland, 1967.Google Scholar
Kreisel, G.. “Mathematical Logic.” In Saaty, T. L. (ed.), Lectures on Modern Mathematics, vol. III, pp. 95–195. New York: John Wiley and Sons, 1965.Google Scholar
Kreisel, G.. “Ordinal logics and the characterization of informal concepts of proof.” In Proceedings of the International Congress of Mathematicians, Edinburgh 1958, pp. 289–299. Cambridge University Press, 1960.Google Scholar
Kripke, Saul A. “Is There a Problem about Substitutional Quantification?” In Evans, Gareth and and McDowell, John (eds.). Truth and Meaning, pp. 325–419. Oxford: Clarendon Press, 1976.Google Scholar
Kripke, Saul A.. “Naming and Necessity.” In Davidson, Donald and Harman, Gilbert, eds., Semantics of Natural Language, pp. 253–355, 763–769. Dordrecht: Reidel, 1972. 2nd ed.: Naming and Necessity. Cambridge, MA: Harvard University Press, 1980.CrossRefGoogle Scholar
Krivine, Jean-Louis. Introduction to Axiomatic Set Theory. Translated by David Miller. Dordrecht: Reidel, 1971.CrossRefGoogle Scholar
Ladyman, James. See Leitgeb and Ladyman.
Lambek, Joachim, and Scott, P. J.. Introduction to Higher-Order Categorical Logic. Cambridge University Press, 1986.Google Scholar
Lambert, Karel. Meinong and the Principle of Independence: Its Place in Meinong's Theory of Objects and its Significance in Contemporary Philosophical Logic. Cambridge University Press, 1983.Google Scholar
Lavine, Shaughan. “Something about Everything: Universal Quantification in the Universal Sense of Universal Quantification.” In Rayo and Uzquiano, pp. 98–148.
Lavine, Shaughan. Understanding the Infinite. Cambridge, MA: Harvard University Press, 1994.Google Scholar
Leibniz, Gottfried Wilhelm. Philosophical Essays. Translated and edited by Ariew, Roger and Garber, Daniel. Indianapolis: Hackett, 1989.Google Scholar
Leitgeb, Hannes, and James Ladyman. “Criteria of Identity and Structuralist Ontology.” Analysis, forthcoming.
Lévy, Azriel. Basic Set Theory. Berlin: Springer, 1979.CrossRefGoogle Scholar
Lewis, David. “Mathematics is Megethology.” Philosophia Mathematica (III) 1 (1993), 3–23. Reprinted in Papers in Philosophical Logic (Cambridge University Press, 1998), pp. 203–229.CrossRefGoogle Scholar
Lewis, David. On the Plurality of Worlds. Oxford: Blackwell, 1986.Google Scholar
Lewis, David. Parts of Classes. Oxford: Blackwell, 1991.Google Scholar
Linnebo, Øystein. “Epistemological Challenges to Mathematical Platonism.” Philosophical Studies 129 (2006), 545–574.CrossRefGoogle Scholar
Linnebo, Øystein . “Plural Quantification.” In Stanford Encyclopedia of Philosophy, 2004. Online at http://plato.stanford.edu.Google Scholar
Lorenzen, Paul. Einführung in die operative Logik und Mathematik. Berlin: Springer, 1955.CrossRefGoogle Scholar
Lorenzen, Paul. “Logical Reflection and Formalism.” The Journal of Symbolic Logic 23 (1958), 241–249.CrossRefGoogle Scholar
Lorenzen, Paul, and Myhill, John. “Constructive Definition of Certain Analytic Sets of Numbers.” Ibid. 24 (1959), 37–49.Google Scholar
MacBride, Fraser. “Structuralism Reconsidered.” In Shapiro, Oxford Handbook, pp. 563–589.
Maddy, Penelope. “Believing the Axioms.” The Journal of Symbolic Logic 53 (1988), 481–511, 736–764.CrossRefGoogle Scholar
Maddy, Penelope. “Indispensability and Practice.” The Journal of Philosophy 89 (1992), 275–289.CrossRefGoogle Scholar
Maddy, Penelope. Naturalism in Mathematics. Oxford: Clarendon Press, 1997.Google Scholar
Maddy, Penelope. “Perception and Mathematical Intuition.” Philosophical Review 89 (1980), 163–196.CrossRefGoogle Scholar
Maddy, Penelope. Realism in Mathematics. Oxford: Clarendon Press, 1990.Google Scholar
Majer, Ulrich. “Geometrie und Erfahrung: Ein Vergleich der Auffassungen von Hilbert und Kant.” Report no. 17/93 of the Research Group on Semantical Aspects of Space-Time Theories. Bielefeld: Zentrum für interdisziplinäre Forschung, 1993.
Majer, Ulrich. “Geometry, intuition, and experience: From Kant to Husserl.” Erkenntnis 42 (1995), 261–285. Revised English version of “Geometrie und Erfahrung.”CrossRefGoogle Scholar
Martin, Donald A. “Descriptive Set Theory: Projective Sets.” In Barwise, Handbook, pp. 783–815.
Martin, Donald A.. “Mathematical Evidence.” In Dales and Oliveri, pp. 214–231.
Martin, Robert L. (ed.). Recent Essays on Truth and the Liar Paradox. New York and Oxford: Oxford University Press.
Martin-Löf, Per. Intuitionistic Type Theory. Naples: Bibliopilis, 1984.Google Scholar
McCarthy, Timothy. “Platonism and Possibility.” The Journal of Philosophy 83 (1986), 275–290.CrossRefGoogle Scholar
McGee, Vann. “How we Learn Mathematical Language.” Philosophical Review 107 (1997), 35–68.CrossRefGoogle Scholar
McGee, Vann. “Truth by Default.” Philosophia Mathematica (III) 9 (2001), 5–20.CrossRefGoogle Scholar
Meinong, Alexius. Gesamtausgabe. Edited by Chisholm, Roderick M., Haller, Rudolf, and Kindlinger, Rudolf. Graz: Akademische Druck- und Verlagsanstalt, 1968–78.Google Scholar
Meinong, Alexius. “Über Gegenstandstheorie.” In Meinong, (ed.), Untersuchungen zur Gegenstandstheorie und Psychologie, pp. 1–50. Leipzig: Barth, 1904. Reprinted in Gesamtausgabe, II.Google Scholar
Meinong, Alexius. Über die Stellung der Gegenstandstheorie im System der Wissenschaften. Leipzig: Voigtländer, 1907. Reprinted in Gesamtausgabe, V.Google Scholar
Meyer, Robert K.In Memoriam: Richard (Routley) Sylvan, 1935–1996.” The Bulletin of Symbolic Logic 4 (1998), 338–340.CrossRefGoogle Scholar
Montagna, Franco, and Mancini, Antonella. “A Minimal Predicative Set Theory.” Notre Dame Journal of Formal Logic 35 (1994), 186–203.CrossRefGoogle Scholar
Moore, Gregory H.Beyond First-Order Logic: The Historical Interplay between Mathematical Logic and Axiomatic Set Theory.” History and Philosophy of Logic 1 (1980), 95–137.CrossRefGoogle Scholar
See also Gödel.
Moschovakis, Yiannis N.Descriptive Set Theory. Amsterdam: North-Holland, 1980.Google Scholar
Mostowski, Andrzej. See Tarski, Mostowski, and Robinson.
Müller, Gert H.Framing Mathematics.” Epistemologia 4 (1981), 253–286.Google Scholar
Müller, Gert H. (ed.). Sets and Classes: On the Work by Paul Bernays. Amsterdam: North-Holland, 1976.Google Scholar
Myhill, John. “The Undefinability of the Set of Natural Numbers in the Ramified Principia.” In Nakhnikian, George (ed.), Bertrand Russell's Philosophy, pp. 19–27. New York: Barnes and Noble, 1974.Google Scholar
See also Lorenzen and Myhill.
Nagel, Thomas. The Last Word. New York and Oxford: Oxford University Press, 1997.Google Scholar
Nelson, Edward. Predicative Arithmetic. Mathematical Notes, 32. Princeton University Press, 1986.CrossRefGoogle Scholar
Page, James. “Parsons on Mathematical Intuition.” Mind N. S. 102 (1993), 223–232.CrossRefGoogle Scholar
Parsons, Charles. “Arithmetic and the Categories.” Topoi 3 (1984), 109–121.CrossRefGoogle Scholar
Parsons, Charles. “Developing Arithmetic in Set Theory without the Axiom of Infinity: Some Historical Remarks.” History and Philosophy of Logic 8 (1987), 201–213.CrossRefGoogle Scholar
Parsons, Charles. “Finitism and intuitive knowledge.” In Schirn, The Philosophy of Mathematics Today, pp. 249–270.
Parsons, Charles. “Genetic Explanation in The Roots of Reference.” In Barrett, Robert B. and Gibson, Roger F. (eds.), Perspectives on Quine, pp. 273–290. Oxford: Blackwell, 1990.Google Scholar
Parsons, Charles. “The Impredicativity of Induction.” In Cauman, Leigh S., Levi, Isaac, Parsons, Charles, and Schwartz, Robert (eds.), How Many Questions? Essays in Honor of Sidney Morgenbesser, pp. 132–153. Indianapolis: Hackett, 1983. Revised and expanded version in Michael Detlefsen (ed.), Proof, Logic, and Formalization, pp. 139–161. London: Routledge, 1992.Google Scholar
Parsons, Charles. “Intuition and Number.” In George, Mathematics and Mind, pp. 141–157.
Parsons, Charles. “Intuition in Constructive Mathematics.” In Butterfield, Jeremy (ed.). Language, Mind, and Logic, pp. 211–229. Cambridge University Press, 1986.Google Scholar
Parsons, Charles. “Mathematical Intuition.” Proceedings of the Aristotelian Society N. S. 80 (1979–1980), 145–168.CrossRefGoogle Scholar
Parsons, Charles. Mathematics in Philosophy: Selected Essays. Ithaca, NY: Cornell University Press, 1983. Paperback edition with corrections and short preface, 2005.Google Scholar
Parsons, Charles. “On Some Difficulties concerning Intuition and Intuitive Knowledge.” Mind N. S. 102 (1993), 233–245.CrossRefGoogle Scholar
Parsons, Charles. “Paul Bernays' Later Philosophy of Mathematics.” In Dimitracopoulos, Costa, Newelski, Ludomir, and Normann, Dag (eds.), Logic Colloquium 2005, pp. 129–150. Lecture Notes in Logic, 28. Urbana, Association for Symbolic Logic, and Cambridge University Press, 2007.CrossRefGoogle Scholar
Parsons, Charles. “Platonism and Mathematical Intuition in Kurt Gödel's Thought.” The Bulletin of Symbolic Logic 1 (1995), 44–74.CrossRefGoogle Scholar
Parsons, Charles. “Realism and the Debate on Impredicativity, 1917–1944.” In Sieg, Sommer, and Talcott, pp. 372–389.
Parsons, Charles. “Reason and Intuition.” Synthese 125 (2000), 299–315.CrossRefGoogle Scholar
Parsons, Charles. Review of Kitcher, The Nature of Mathematical Knowledge. Philosophical Review 95 (1986), 129–137.CrossRefGoogle Scholar
Parsons, Charles. “The Structuralist View of Mathematical Objects.” Synthese 84 (1990), 303–346.CrossRefGoogle Scholar
Parsons, Charles. “Substitutional Quantification and Mathematics. Review of Gottlieb, Ontological Economy.” British Journal for the Philosophy of Science 33 (1982), 409–421.CrossRefGoogle Scholar
Parsons, Charles. “The Transcendental Aesthetic.” In Guyer, Paul (ed.), The Cambridge Companion to Kant, pp. 62–100. Cambridge University Press, 1992.CrossRefGoogle Scholar
Parsons, Charles. “The Uniqueness of the Natural Numbers.” Iyyun 39 (1990), 13–44.Google Scholar
Parsons, Charles. “What Can We Do ‘In Principle’?” In Chiara, Maria Luisa Dalla, Doets, Kees, Mundici, Daniele, and Benthem, Johan (eds.), Logic and Scientific Methods, pp. 335–354. Volume One of the Tenth International Congress of Logic, Methodology, and Philosophy of Science, Florence, August 1995. Dordrecht: Kluwer, 1997.Google Scholar
See also Gödel.
Parsons, Terence. “The Methodology of Nonexistence.” The Journal of Philosophy 76 (1979), 639–662.CrossRefGoogle Scholar
Parsons, Terence. Nonexistent Objects. New Haven: Yale University Press, 1980.Google Scholar
Plantinga, Alvin. The Nature of Necessity. Oxford: Clarendon Press, 1974.Google Scholar
Pohlers, Wolfram. See Buchholz, Feferman, Pohlers, and Sieg.
Poincaré, Henri. Dernières Pensées. Paris: Flammarion, 1913. 2nd ed., 1926.Google Scholar
Poincaré, Henri. “Réflexions sur les deux notes précédentes,” Acta Mathematica 32 (1909), 195–200.CrossRefGoogle Scholar
Previale, Flavio. “Induction and Foundation in the Theory of Hereditarily Finite Sets.” Archive for Mathematical Logic 33 (1994), 213–241.CrossRefGoogle Scholar
Pudlák, Pavel. See Hájek and Pudlák.
Putnam, Hilary. Mathematics, Matter, and Method. Collected Philosophical Papers, Volume 1. Cambridge University Press, 1975. 2nd ed. 1980.Google Scholar
Putnam, Hilary. “Mathematics without Foundations.” The Journal of Philosophy 64 (1967), 5–22. Reprinted in Mathematics, Matter, and Method, pp. 43–59, and in Benacerraf and Putnam, pp. 295–311 (not in 1st ed.). Cited according to Mathematics, Matter, and Method.CrossRefGoogle Scholar
Putnam, Hilary. “Models and Reality.” The Journal of Symbolic Logic 45 (1980), 464–482. Reprinted in Realism and Reason, pp. 1–25, and in Benacerraf and Putnam, pp. 421–444 (not in 1st ed.). Cited according to Realism and Reason.CrossRefGoogle Scholar
Putnam, Hilary. Realism and Reason: Collected Philosophical Papers, Volume 3. Cambridge University Press, 1983.CrossRefGoogle Scholar
Putnam, Hilary. “The Thesis that Mathematics is Logic.” In Schoenman, Ralph ed., Bertrand Russell: Philosopher of the Century, pp. 273–303. London: Allen & Unwin, 1967. Reprinted in Mathematics, Matter, and Method, pp. 12–42.Google Scholar
See also Benacerraf and Putnam.
Quine, W. V.Methods of Logic. New York: Holt, 1950. 3rd ed., 1972. 4th ed. Cambridge, MA: Harvard University Press, 1982.Google Scholar
Quine, W. V.. “Ontological Relativity.” The Journal of Philosophy 65 (1968), 185–212. Reprinted in Ontological Relativity and Other Essays, pp. 26–68.CrossRefGoogle Scholar
Quine, W. V.. Ontological Relativity and Other Essays. New York: Columbia University Press, 1969.Google Scholar
Quine, W. V.. Philosophy of Logic. Englewood Cliffs, N.J.: Prentice-Hall, 1970. 2nd ed., Cambridge, MA.: Harvard University Press, 1986.Google Scholar
Quine, W. V.. The Roots of Reference. La Salle, IL: Open Court, 1974.Google Scholar
Quine, W. V.. Set Theory and its Logic. Cambridge, MA: The Belknap Press, Harvard University Press, 1963. Revised edition, 1969.Google Scholar
See also Goodman and Quine.
Rawls, John. Collected Papers. Edited by Freeman, Samuel. Cambridge, MA: Harvard University Press, 1999.Google Scholar
Rawls, John. “The Independence of Moral Theory.” Proceedings and Addresses of the American Philosophical Association 48 (1974–75), 5–22. Reprinted in Collected Papers, pp. 286–302.CrossRefGoogle Scholar
Rawls, John. Political Liberalism. New York: Columbia University Press, 1993.Google Scholar
Rawls, John. A Theory of Justice. Cambridge, MA: The Belknap Press of Harvard University Press, 1971.Google Scholar
Rayo, Agustín. “Word and Objects.” NoÛs 36 (2002), 436–464.CrossRefGoogle Scholar
Rayo, Agustín, and Uzquiano, Gabriel (eds.). Absolute Generality. Oxford: Clarendon Press, 2006.Google Scholar
Reinhardt, W. N.Epistemic Theories and the Interpretation of Gödel's Incompleteness Theorems.” Journal of Philosophical Logic 15 (1986), 427–484.CrossRefGoogle Scholar
Resnik, Michael D.Frege and the Philosophy of Mathematics. Ithaca, NY: Cornell University Press, 1980.Google Scholar
Resnik, Michael D.. “Mathematics as a Science of Patterns: Ontology and Reference.” NoÛs 15 (1981), 529–550.CrossRefGoogle Scholar
Resnik, Michael D.. Mathematics as a Science of Patterns. Oxford: Clarendon Press, 1997.Google Scholar
Resnik, Michael D.. “Parsons on Mathematical Intuition and Obviousness.” In Sher and Tieszen, pp. 219–231.
Resnik, Michael D.. “Quine and the Web of Belief.” In Shapiro, Oxford Handbook, pp. 412–436.
Resnik, Michael D.. “Second-order Logic Still Wild.” The Journal of Philosophy 85 (1988), 75–87.CrossRefGoogle Scholar
Rheinwald, Rosemarie. Der Formalismus und seine Grenzen. Untersuchungen zur neueren Philosophie der Mathematik. Königstein/Ts.: Hain, 1984.Google Scholar
Ricketts, Thomas. See Goldfarb and Ricketts.
Robinson, Raphael M. See Tarski, Mostowski, and Robinson.
Rödding, Dieter. “Primitiv-rekursive Funktionen über einem Bereich endlicher Mengen.” Archiv für mathematische Logik und Grundlagenforschung 10 (1967), 13–29.CrossRefGoogle Scholar
Rosen, Gideon. See Burgess and Rosen.
Rorty, Richard. “Intuition.” In Edwards, Encyclopedia, III, 204–212, and with addenda by George Bealer and Bruce Russell in Borchert, Encyclopedia 2nd ed., IV, 722–735.
Routley, Richard. Exploring Meinong's Jungle and Beyond. Departmental Monograph #3, Philosophy Department, Research School of Social Sciences, Australian National University, Canberra, 1980.Google Scholar
Routley, Richard, and Routley, Valerie. “Rehabilitating Meinong's Theory of Objects.” Revue internationale de philosophie 27 (1973), 224–254.Google Scholar
Russell, Bertrand. Essays in Analysis. Edited by Lackey, Douglas. New York: Braziller, 1973.Google Scholar
Russell, Bertrand. Logic and Knowledge. Edited by Marsh, Robert C.. London: Allen and Unwin, 1956.Google Scholar
Russell, Bertrand. “Mathematical Logic as Based on the Theory of Types.” American Journal of Mathematics 30 (1908), 222–262. Reprinted in Logic and Knowledge, pp. 59–102, and in van Heijenoort, pp. 150–182 (with introductory note by W. V. Quine).CrossRefGoogle Scholar
Russell, Bertrand. “The Philosophy of Logical Atomism.” The Monist 28 (1918), 495–527; 29 (1919), 32–63, 190–222, 345–380. Reprinted in Logic and Knowledge, pp. 175–281, and in The Philosophy of Logical Atomism and Other Essays, 1914–19, pp. 157–244. Cited according to Logic and Knowledge.CrossRefGoogle Scholar
Russell, Bertrand. The Philosophy of Logical Atomism and Other Essays, 1914–19. Edited by Slater, John G.. The Collected Papers of Bertrand Russell, Vol. 8. London: Allen and Unwin, 1986.Google Scholar
Russell, Bertrand. The Principles of Mathematics. Cambridge University Press, 1903. 2nd ed. London: Allen and Unwin, 1937.Google Scholar
Russell, Bertrand. The Problems of Philosophy. London: Williams and Norgate, and New York: Holt, 1912. Later reprints Oxford University Press. (That of 1997 adds an introduction by John Perry.)Google Scholar
See also Whitehead and Russell.
Saunders, Simon. “Are Quantum Particles Objects?Analysis 66 (2006), 52–63.CrossRefGoogle Scholar
Schirn, Matthias (ed.). The Philosophy of Mathematics Today. Oxford: Clarendon Press, 1998.Google Scholar
Schütte, Kurt. Beweistheorie. Berlin: Springer, 1960.Google Scholar
Schütte, Kurt. “Logische Abgrenzungen des Transfiniten.” In Käsbauer, Max and Kutschera, Franz (eds.), Logik und Logikkalkül, pp. 105–114. Freiburg: Alber, 1962.Google Scholar
Schütte, Kurt. Proof Theory. Revised and expanded translation of Beweistheorie. Berlin: Springer, 1977.
Scott, Dana. “Axiomatizing Set Theory.” In Jech, Thomas J. (ed.), Axiomatic Set Theory, part 2, pp. 207–214. Proceedings of Symposia in Pure Mathematics, vol. 13, part 2. Providence, RI: American Mathematical Society, 1974.Google Scholar
Shapiro, Stewart (ed.). Intensional Mathematics. Amsterdam: North-Holland, 1985.Google Scholar
Shapiro, Stewart, (ed.). The Oxford Handbook of Philosophy of Mathematics and Logic. New York and Oxford: Oxford University Press, 2005.CrossRefGoogle Scholar
Shapiro, Stewart. Philosophy of Mathematics. Structure and Ontology. New York and Oxford: Oxford University Press, 1997.Google Scholar
Shapiro, Stewart. “Space, Number, and Structure: A Tale of Two Debates.” Philosophia Mathematica (III) 4 (1996), 148–173.CrossRefGoogle Scholar
Sharvy, Richard. “Why a Class Can't Change its Members.” NoÛs 2 (1968), 303–314.CrossRefGoogle Scholar
Sher, Gila, and Tieszen, Richard (eds.). Between Logic and Intuition. Essays in honor of Charles Parsons. Cambridge University Press, 2000.CrossRefGoogle Scholar
Shoenfield, J. R. “Axioms of Set Theory.” In Barwise, Handbook, pp. 321–344.
Sieg, Wilfried. “Fragments of Arithmetic.” Annals of Pure and Applied Logic 28 (1985), 33–71.CrossRefGoogle Scholar
Sieg, Wilfried, Sommer, Richard, and Talcott, Carolyn (eds.). Reflections on the Foundations of Mathematics. Essays in honor of Solomon Feferman. Lecture Notes in Logic, 15. Urbana, IL: Association for Symbolic Logic, and Natick, MA: A. K. Peters, 2002.Google Scholar
See also Buchholz, Feferman, Pohlers, and Sieg.
Simons, Peter. Parts. A Study in Ontology. Oxford: Clarendon Press, 1987.Google Scholar
Simpson, Stephen G. “Predicativity: The Outer Limits.” In Sieg, Sommer, and Talcott, pp. 130–136.
Simpson, Stephen G.. “Reverse Mathematics.” In Nerode, Anil and Shore, Richard A. (eds.), Recursion Theory, pp. 261–271. Proceedings of Symposia in Pure Mathematics, 42. Providence, RI: American Mathematical Society, 1985.CrossRefGoogle Scholar
Simpson, Stephen G.. Subsystems of Second-Order Arithmetic. Springer-Verlag, 1999.CrossRefGoogle Scholar
Skolem, Thoralf. Abstract Set Theory. Notre Dame Mathematical Lectures, 8. University of Notre Dame, 1962.Google Scholar
Skolem, Thoralf. “Begründung der elementaren Zahlentheorie durch die rekurrierende Denkweise ohne Anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich.” Skrifter, Videnskabsakadmiet i Kristiania I, no. 6 (1923). Reprinted in Selected Works, pp. 153–188. Translation in van Heijenoort, pp. 303–333.Google Scholar
Skolem, Thoralf. “Einige Bermerkungen zur axiomatischen Begründung der Mengenlehre.” In Matematikerkongressen i Helsingfors den 4–7 Juli 1922, Den femte skandinaviska matematikerkongressen, Redogörelse, pp. 217–232. Helsinki: Akademiska Bokhandeln, 1923. Reprinted in Selected Works, pp. 137–152. Translation in van Heijenoort, pp. 290–301.Google Scholar
Skolem, Thoralf. Selected Works in Logic. Edited by Fenstad, Jens Erik. Oslo: Universitetsforlaget, 1970.Google Scholar
Sommer, Richard. See Sieg, Sommer, and Talcott.
Steiner, Mark. Mathematical Knowledge. Ithaca, NY: Cornell University Press, 1975.Google Scholar
Sylvan, Richard. See Routley.
Szmielew, Wanda, and Tarski, Alfred. “Mutual Interpretability of some Essentially Undecidable Theories” (abstract). In Proceedings of the International Congress of Mathematicians, Cambridge, Massachusetts, U.S.A., August 30–September 6, 1950, vol. 1, p. 734. Providence, RI: American Mathematical Society, 1952.Google Scholar
Tait, William (W. W.). “Against Intuitionism: Constructive Mathematics is Part of Classical Mathematics.” Journal of Philosophical Logic 12 (1983), 173–195.CrossRefGoogle Scholar
Tait, William (W. W.). “Constructing Cardinals from Below.” In The Provenance, pp. 133–154.
Tait, William (W. W.). “Constructive Reasoning.” In Rootselaar, B. and Staal, J. F. (eds.), Logic, Methodology, and Philosophy of Science III, pp. 185–198. Amsterdam: North-Holland, 1968.Google Scholar
Tait, William (W. W.). “Critical Notice: Charles Parsons' Mathematics in Philosophy.” Philosophy of Science 53 (1986), 588–607.CrossRefGoogle Scholar
Tait, William (W. W.). “Finitism.” The Journal of Philosophy 78 (1981), 524–546. Reprinted in The Provenance, pp. 21–42.CrossRefGoogle Scholar
Tait, William (W. W.). “Frege versus Cantor and Dedekind: On the Concept of Number.” In Tait, W. W. (ed.), Early Analytic Philosophy, Frege, Russell, Wittgenstein: Essays in honor of Leonard Linsky, pp. 213–248. Chicago and La Salle, IL: Open Court, 1997. Reprinted in The Provenance, pp. 212–251.Google Scholar
Tait, William (W. W.). The Provenance of Pure Reason. Essays in the Philosophy of Mathematics and its History. Oxford University Press, 2005.Google Scholar
Tait, William W. W.). “Truth and Proof: The Platonism of Mathematics.” Synthese 69 (1986), 341–370. Reprinted with some additional notes in The Provenance, pp. 61–88.CrossRefGoogle Scholar
Takeuti, Gaisi. “Construction of the Set Theory from the Theory of Ordinal Numbers.” Journal of the Mathematical Society of Japan 6 (1954), 196–220.CrossRefGoogle Scholar
Talcott, Carolyn. See Sieg, Sommer, and Talcott.
Tarski, Alfred. “Sur les ensembles finis.” Fundamenta Mathematicae 6 (1924), 45–95.CrossRefGoogle Scholar
Tarski, Alfred. “What is Elementary Geometry?” In Henkin, Leon, Suppes, Patrick, and Tarski, Alfred (eds.), The Axiomatic Method, with Special Reference to Geometry and Physics, pp. 16–29. Proceedings of an International Symposium held at the University of California, Berkeley, December 26, 1957–January 4, 1958. Amsterdam: North-Holland, 1959.Google Scholar
Tarski, Alfred, Mostowski, Andrzej, and Robinson, Raphael M.. Undecidable Theories. Amsterdam: North-Holland, 1953.Google Scholar
Tarski, Alfred, and Givant, Steven. A Formalization of Set Theory without Variables. American Mathematical Society Colloquium Publications, 41. Providence, RI: American Mathematical Society, 1987.CrossRefGoogle Scholar
See also Givant and Tarski and Szmielew and Tarski.
Taylor, R. Gregory. “Mathematical Definability and the Paradoxes.” Dissertation, Columbia University, 1983.
Taylor, R. Gregory. “Zermelo, Reductionism, and the Philosophy of Mathematics.” Notre Dame Journal of Formal Logic 34 (1993), 539–563.CrossRefGoogle Scholar
Thomason, Richmond H. “Modal Logic and Metaphysics.” In Lambert, Karel (ed.), The Logical Way of Doing Things, pp. 119–146. New Haven: Yale University Press, 1969.Google Scholar
Tieszen, Richard L.Mathematical Intuition: Phenomenology and Mathematical Knowledge. Dordrecht: Kluwer, 1989.CrossRefGoogle Scholar
See also Sher and Tieszen.
Troelstra, A. S., and Dalen, Dirk. Constructivism in Mathematics: An Introduction. 2 vols. Amsterdam: North-Holland, 1988.Google Scholar
James, Aken. “Axioms for the Set-Theoretic Hierarchy.” The Journal of Symbolic Logic 51 (1986), 992–1004.Google Scholar
van Dalen, Dirk. See Troelstra and van Dalen and also Brouwer.
D[avid], Dantzig. “Is 101010 a Finite Number?Dialectica 9 (1955–56), 272–277.Google Scholar
Jean, Heijenoort, ed. From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Cambridge, MA: Harvard University Press, 1967.Google Scholar
See also Gödel.
Velleman, Daniel J. See George and Velleman.
Johann, Neumann. “Eine Axiomatisierung der Mengenlehre.” Journal für die reine und angewandte Mathematik 154 (1925), 219–240. Berichtigung, ibid. 155, 128. Translation in van Heijenoort, pp. 393–413.Google Scholar
Wang, Hao. “Between Number Theory and Set Theory.” Mathematische Annalen 126 (1953), 385–409. Reprinted as chapter XIX of A Survey.CrossRefGoogle Scholar
Wang, Hao. A Logical Journey: From Gödel to Philosophy. Cambridge, MA: MIT Press, 1996.Google Scholar
Wang, Hao. From Mathematics to Philosophy. London: Routledge and Kegan Paul, 1974.Google Scholar
Wang, Hao. “Ordinal Numbers and Predicative Set Theory.” Zeitschrift für mathematische Logik und Grundlagen der Mathematik 5 (1959), 216–239. Reprinted as Chapter XXV of Survey.CrossRefGoogle Scholar
Wang, Hao. A Survey of Mathematical Logic. Peking: Science Press, and Amsterdam: North-Holland, 1962. Reprinted as Logic, Computers, and Sets. New York: Chelsea, 1970.Google Scholar
Wang, Hao. “What is an Individual?Philosophical Review 62 (1953), 413–420. Reprinted as Appendix 5 to From Mathematics to Philosophy.CrossRefGoogle Scholar
Wetzel, Linda. “Expressions vs. Numbers.” Philosophical Topics 17 (1989), 173–196.CrossRefGoogle Scholar
Weyl, Hermann. Das Kontinuum. Leipzig: Veit, 1918.Google Scholar
Weyl, Hermann. “Der circulus vitiosus in der heutigen Begründung der Analysis.” Jahresbericht der deutschen Mathematiker-Vereinigung 28 (1919), 85–92.Google Scholar
Whitehead, A. N., and Russell, Bertrand. Principia Mathematica. 3 vols. Cambridge University Press, 1910–13. 2nd ed., 1925–27.Google Scholar
Williamson, Timothy. “Everything.” In Hawthorne, John and Zimmerman, Dean (eds.), Philosophical Perspectives 17: Language and Philosophical Linguistics, pp. 415–465. Oxford: Blackwell, 2003.Google Scholar
Wollheim, Richard. Art and its Objects. New York: Harper and Row, 1968. 2nd ed. with six suppelementary essays. Cambridge University Press, 1980.Google Scholar
Woodin, W. Hugh. “The Continuum Hypothesis, part I.” Notices of the American Mathematical Society 48 (2001), 567–576.Google Scholar
Woodin, W. Hugh. “The Continuum Hypothesis, part II.” Ibid., 681–690.
Woodin, W. Hugh. “The Continuum Hypothesis.” In Cori, René, Razborov, Alexander, Todorcevic, Stevo, and Wood, Carol (eds.), Logic Colloquium 2000, pp. 143–197. Lecture Notes in Logic, 19. Urbana, IL: Association for Symbolic Logic, and Wellesley, MA: A. K. Peters, 2005.Google Scholar
Woodin, W. Hugh. “Set Theory after Russell: The Journey Back to Eden.” In Link, Godehard (ed.), One Hundred Years of Russell's Paradox: Mathematics, Logic, Philosophy, pp. 29–47. Berlin: de Gruyter, 2004.CrossRefGoogle Scholar
Wright, Crispin. Frege's Conception of Numbers as Objects. Aberdeen University Press, 1983.Google Scholar
See also Hale and Wright.
Yi, Byeong-Uk. “Is Two a Property?”The Journal of Philosophy 96 (1999), 163–190.CrossRefGoogle Scholar
Yi, Byeong-Uk. “The Logic and Meaning of Plurals. Part I.” Journal of Philosophical Logic 34 (2005), 459–506.CrossRefGoogle Scholar
Yi, Byeong-Uk. “The Logic and Meaning of Plurals. Part II.” Journal of Philosophical Logic 35 (2006), 239–288.CrossRefGoogle Scholar
Zach, Richard. “The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert's Program.” Synthese 137 (2003), 211–259.CrossRefGoogle Scholar
Zermelo, Ernst. “Sur les ensembles finis et le principe de l'induction complète,” Acta Mathematica 32 (1909), 183–193.CrossRefGoogle Scholar
Zermelo, Ernst. “Über den Begriff der Definitheit in der Axiomatik.” Fundamenta Mathematicae 14 (1929), 339–344.CrossRefGoogle Scholar
Zermelo, Ernst. “Über Grenzzahlen und Mengenbereiche.” Ibid. 16 (1930), 29–47. Translation in Ewald, II, 1219–1233.Google Scholar
Zermelo, Ernst. “Untersuchungen über die Grundlagen der Mengenlehre I.” Mathematische Annalen 65 (1908), 261–281. Translation in van Heijenoort, pp. 199–215.CrossRefGoogle Scholar
See also Cantor.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Charles Parsons, Harvard University, Massachusetts
  • Book: Mathematical Thought and its Objects
  • Online publication: 24 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511498534.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Charles Parsons, Harvard University, Massachusetts
  • Book: Mathematical Thought and its Objects
  • Online publication: 24 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511498534.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Charles Parsons, Harvard University, Massachusetts
  • Book: Mathematical Thought and its Objects
  • Online publication: 24 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511498534.011
Available formats
×