Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-10T15:23:08.256Z Has data issue: false hasContentIssue false

1 - Crystal field splitting mechanisms

Published online by Cambridge University Press:  10 December 2009

D. J. Newman
Affiliation:
University of Southampton
Betty Ng
Affiliation:
Environment Agency
D. J. Newman
Affiliation:
University of Southampton
Betty Ng
Affiliation:
Environment Agency, Wales
Get access

Summary

In order to interpret the information obtained from magnetic ion spectra using parametrized crystal field models it is necessary to have a qualitative understanding of the physical mechanisms through which the crystalline environment induces energy level splittings. The discussion of mechanisms given in this chapter should be seen in this light. It is not intended to provide a practical basis for quantitative ab initio calculations of crystal field splittings. Instead, it provides a conceptual description of the various mechanisms that contribute to crystal field splittings.

The first three sections give a qualitative description of the most important mechanisms which contribute to crystal field splittings. These comprise the electrostatic, charge penetration, screening, exchange, overlap and covalency contributions. Sections 1.4 and 1.5 express these contributions in terms of a simple algebraic formalism related to the ‘tight-binding’ model in solid state physics. Several other formal approaches to crystal field theory, including the phenomenological approach, are described in the subsequent sections. Numerical results for a particular system, based on the formalism developed in Sections 1.4 and 1.5, are given in Section 1.9. The significance of these results to the phenomenological methods used in this book is summarized in Section 1.10.

The crystal field as a perturbation of free-ion open-shell states

Crystals can be regarded as assemblies of free ions, bound together in several possible ways.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×