Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T07:06:03.013Z Has data issue: false hasContentIssue false

Computations of bubble growth during the cosmological quark-hadron transition

Published online by Cambridge University Press:  15 December 2009

J. C. Miller
Affiliation:
Trieste Astronomical Observatory, Trieste, Italy
O. Pantano
Affiliation:
Physics Department, University of Padua, Padua, Italy
Ray d'Inverno
Affiliation:
University of Southampton
Get access

Summary

Abstract. An outline is given of a scheme being used for making computations of the growth of single hadronic bubbles during the cosmological quark-hadron transition. The code uses a standard Lagrangian finite-difference scheme for flow within the bulk of each phase together with continuous tracking of the phase interface across the grid by means of a characteristic method with iterative solution of junction conditions.

INTRODUCTION

In view of the subject of this meeting, our emphasis here will be on the computational aspects of our study of the cosmological quark-hadron transition (Miller & Pantano 1989, 1990; Pantano 1989). However, as a preliminary, it is good to recall some fundamental points of the physics lying behind the calculations.

According to present ideas, hadrons are composed of quarks which move freely within a hadron but are strongly constrained from leaving. A phenomenological description of this is provided by the MIT bag model (Chodos et al 1974) where the region occupied by the quarks is associated with a false vacuum state characterized by a uniform vacuum energy density B and an associated negative pressure – B. If normal hadronic matter were compressed to high enough density, the individual hadrons would overlap and the quarks would become free to move within the entire interior region, giving rise to a quark-gluon plasma. Heavy-ion collision experiments at CERN and Brookhaven are aiming to create transient plasma in the course of collisions and to look for signatures of its decay.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×