Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T13:19:03.499Z Has data issue: false hasContentIssue false

12 - Cutting and splicing: junctions, inserts, and the replicating fork

Published online by Cambridge University Press:  16 September 2009

Earl Prohofsky
Affiliation:
Purdue University, Indiana
Get access

Summary

Dealing with large macromolecules

Many problems of biological interest have to do with large macromolecules binding to other large macromolecules, giving rise to even larger systems. It would be an advantage if previous solutions of the dynamics of the separate macromolecules could be used in finding the dynamics of the combined macromolecules, rather than having to start each solution from scratch. This chapter discusses ways to use Green functions to determine the dynamics of a system that is made up of parts. Each of the parts can be analyzed separately and its spectrum compared to infrared and Raman observations allowing a refinement of the smaller problem. The dynamics of large macromolecules can then be constructed by combining dynamics of smaller molecules in much the same way as the actual molecules could be formed by chemically joining separate parts.

The scheme can also work for infinite systems whose separate parts have a symmetry that the combined system doesn't have. An example is the fork calculation introduced in the last chapter. The fork is the place where a section of double helical DNA is split into two single strands. Symmetry is broken by the fact that one half is double helical and the other half is single strands; the problem can't be reduced to block diagonalized finite secular matrices. Each separate part, extended in both directions, does have the proper symmetry.

Type
Chapter
Information
Statistical Mechanics and Stability of Macromolecules
Application to Bond Disruption, Base Pair Separation, Melting, and Drug Dissociation of the DNA Double Helix
, pp. 159 - 172
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×