Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-09T21:30:33.649Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  16 September 2009

Sam Boggs
Affiliation:
University of Oregon
David Krinsley
Affiliation:
University of Oregon
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, A. E. and MacKenzie, W. S., 1998. A Color Atlas of Carbonate Sediments and Rocks Under the Microscope, New York, NY, John Wiley & Sons, Inc.Google Scholar
Akridge, D. G. and Benoit, P. H., 2001. Luminescence properties of chert and some archaeological applications. Journal of Archaeological Science, 28, 143–51.CrossRefGoogle Scholar
Anderson, A. T. Jr., Davis, A. M., and Lu, F., 2000. Evolution of Bishop Tuff rhyolitic magma based on melt and magnetite inclusions, and zoned phenocrysts. Journal of Petrology, 41, 449–73.CrossRefGoogle Scholar
Arlinghaus, H. F., 2002. Static secondary ion mass spectrometry (SSIMS). In Bubert, H. and Jenett, H. (eds.), Surface and Thin Film Analysis, Weinheim, Wiley-VCH Verlag GmbH, pp. 86–106.CrossRefGoogle Scholar
Barbarand, J. and Pagel, M., 2001. Cathodoluminescence study of apatite crystals. American Mineralogist, 86, 473–84.CrossRefGoogle Scholar
Barbin, V., 1995. Cathodoluminescence of carbonates: new applications in geology and archaeology. In Redmond, G.Balk, L., and Marshall, D. J. (eds.), Luminescence: Scanning Microscopy Supplement 9, Chicago, Scanning Microscopy International, pp. 113–23.Google Scholar
Barbin, V., 2000. Cathodoluminescence of carbonate shells: biochemical vs. diagenetic process. In Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D. (eds.), Cathodoluminescence in Geosciences, Berlin, Springer-Verlag, pp. 303–29.CrossRefGoogle Scholar
Barbin, V., Ramseyer, K., Decrouez, D., et al., 1992. Cathodoluminescence of white marbles: an overview. Archaeometry, 34, 175–83.CrossRefGoogle Scholar
Barker, C. E. and T. Wood, 1986. A review of the Technosyn and Nuclide cathodoluminescence stages and their application to sedimentary geology. In Hagni, R. D. (ed), Process Mineralogy, VI, Warrendale, PA, The Metallurgical Society, Inc., pp. 137–158.Google Scholar
Barker, C. E., D. K. Higley, and M. C. Dalziel, 1991. Using cathodoluminescence to map regionally zoned carbonate cements occurring in diagenetic aureoles above oil reservoir: initial results from the Velma oil field, Oklahoma. In Barker, C. E. and O. C. Kopp (eds.), Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications, SEPM Short Course 25, pp. 155–60.
Behr, H. J., 1989. Die geologische Aktivität von Krustenfluiden. In Gesteinsfluide – Ihre Herkunft und Bedeutung für Geologische Prozesse, Hannover, Niedersächsische Akademie der Geowissenschaffer, pp. 7–42.
Benninghoven, A., Rüdenauer, F. G., and Werner, H. W., 1987. Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends, New York, NY, John Wiley & Sons.Google Scholar
Bernet, M. and Bassett, K., 2005. Provenance analysis by single-quartz grain SEM–CL/optical microscopy. Journal of Sedimentary Research, 75, 492–500.CrossRefGoogle Scholar
Best, M. G. and Christiansen, E. H., 1997. Origin of broken phenocrysts in ash-flow tuffs. Geological Society of America Bulletin, 109, 63–73.2.3.CO;2>CrossRefGoogle Scholar
Boggs, S. Jr., 1992. Petrology of Sedimentary Rocks, New York, Macmillan Publishing Co.Google Scholar
Boggs, S. Jr., 2001. Principles of Sedimentology and Stratigraphy, 3rd edn., Upper Saddle River, NJ, Prentice Hall.Google Scholar
Boggs, S. Jr., Krinsley, D. H., Goles, G. G., Seyedolali, A., and Dypvik, H., 2001. Identification of shocked quartz by scanning cathodoluminescence imaging. Meteoritics & Planetary Sciences, 36, 783–91.CrossRefGoogle Scholar
Boggs, S. Jr., Kwon, Y. -I., Goles, G. G., et al., 2002. Is quartz cathodoluminescence color a reliable provenance tool? A quantitative examination. Journal of Sedimentary Research, 72, 408–15.CrossRefGoogle Scholar
Bourque, P. -A., Savard, M. M., Chi, G., and Dansereau, P., 2001. Diagenesis and porosity evolution of the Upper Silurian-lowermost Devonian West Point reef limestone, eastern Gaspé Belt, Québec Appalachians. Bulletin of Canadian Petroleum Geology, 49, 299–326.CrossRefGoogle Scholar
Breton, P. J., 1999. From microns to nanometres: early landmarks in the science of scanning electron microscope imaging. Scanning Microscopy, 13, 1–6.Google Scholar
Bruckschen, P., Neuser, R. D., and Richter, D. K., 1992. Cement stratigraphy in Triassic and Jurassic limestones of the Weserbergland (northwestern Germany). Sedimentary Geology, 81, 195–214.CrossRefGoogle Scholar
Budd, D. A., Hammes, U., and Ward, W. B., 2000, Cathodoluminescence in calcite cements: new insights on Pb and Zn sensitizing, Mn activation, and Fe quenching at low trace-element concentrations. Journal of Sedimentary Research, 70, 217–26.CrossRefGoogle Scholar
Burley, S. D. and Worden, R. H., 2003. Sandstone Diagenesis: Recent and Ancient, Reprint Series Volume 4 of the International Association of Sedimentologists, Oxford, Blackwell Publishing Ltd.CrossRefGoogle Scholar
Campbell, J. L. and Czamanske, G. K., 1998. Micro-PIXE in earth science. In Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Reviews in Economic Geology, 7, pp. 169–85.Google Scholar
Carlson, R. C., Goldstein, R. H., and Enos, P., 2003. Effects of subaerial exposure on porosity evolution in the Carboniferous Lisburne Group, northeastern Brooks Range, Alaska, USA. In Permo-Carboniferous Carbonate Platforms and Reefs, SEPM Special Publication 78 and AAPG Memoir 83, pp. 269–90.Google Scholar
Cawood, P. A., Nemchin, A. A., Leverenz, A., Saeed, A.. and Ballance, P. F., 1999. U / Pb dating of detrital zircons: implications for the provenance record of Gondwana margin terranes. Geological Society of America Bulletin, 111, 1107–19.2.3.CO;2>CrossRefGoogle Scholar
Coniglio, M., 1989. Neomorphism and cementation in ancient deep-water limestones, Cow Head Group (Cambro-Ordovician), western Newfoundland, Canada. Sedimentary Geology, 65, 15–33.CrossRefGoogle Scholar
Dapples, E. C., 1979, Diagenesis in sandstones. In Larsen, G., and Chilingar, G. V. (eds.), Diagenesis in Sediments and Sedimentary Rocks, Developments in Sedimentology 25A, Amsterdam, Elsevier Scientific Publishing Company, pp. 31–97.Google Scholar
Dickinson, W. W. and Milliken, K. L., 1995. The diagenetic role of brittle deformation in compaction and pressure solution, Etjo Sandstone, Nambia. Journal of Geology, 103, 339–47.CrossRefGoogle Scholar
D'Lemos, R. S., Kearsley, A. T., Pemboke, J. W., Watt, G. R., and Wright, P., 1997. Complex quartz growth histories in granite revealed by scanning cathodoluminescence techniques. Geological Magazine, 134, 549–52.CrossRefGoogle Scholar
Dorobek, S. L., 1987. Petrography, geochemistry, and origin of burial diagenetic facies, Siluro-Devonian Helderberg Group (carbonate rocks), central Appalachians. American Association of Petroleum Geologists Bulletin, 71, 492–514.Google Scholar
Dromgoole, E. L. and Walter, L. M., 1990. Iron and manganese incorporation into calcite: effects of growth kinetics, temperature and solution chemistry. Chemical Geology, 81, p. 311–36.CrossRefGoogle Scholar
Durocher, S. and Al-Aasm, I. S., 1997. Dolomitization and neomorphism of Mississippian (Visean) Upper Debolt Formation, Blueberry Field, northeastern British Columbia: geologic, petrologic, and chemical evidence. American Association of Petroleum Geologists Bulletin, 81, 954–77.Google Scholar
Ebers, M. L. and Kopp, O. C., 1979. Cathodoluminescent microstratigraphy in gangue dolomite, the Mascot-Jefferson City District, Tennessee. Economic Geology, 74, 908–18.CrossRefGoogle Scholar
El Ali, A., Barbin, V., Calas, G., Cervelle, B., Ramseyer, K., and Bouroulec, J., 1993. Mn2 +-activated luminescence in dolomite, calcite and magnesite: quantitative determination of manganese and site distribution by EPR and CL spectroscopy. Chemical Geology, 104, 189–202.CrossRefGoogle Scholar
Emery, D. and Marshall, J. D., 1989. Zone calcite cements: has analysis outpaced interpretation?Sedimentary Geology, 65, 205–10.CrossRefGoogle Scholar
Evamy, B. D., 1969. The precipitational environment and correlation of some calcite cements deduced from artificial staining. Journal of Sedimentary Petrology, 39, 787–821.CrossRefGoogle Scholar
Evans, J., Hogg, A. J. C., Hopkins, M. S., and Howarth, R. J., 1994. Quantification of quartz cements by using combined SEM, CL, and image analysis. Journal of Sedimentary Research, A64, 334–8.Google Scholar
Fairchild, I. J., Knoll, A. H., and Swett, K., 1991. Coastal lithofacies and biofacies associated with syndepositional dolomitization and silicification (Draken Formation, Upper Riphean, Svalbard). Precambrian Research, 53, 165–97.CrossRefGoogle Scholar
Finch, A. A. and Klein, J., 1999. The causes and petrological significance of cathodoluminescence emissions from alkali feldspars. Contributions to Mineralogy and Petrology, 135, 234–43.CrossRefGoogle Scholar
Flem, B., Larsen, R. B., Grimstvedt, A., and Mansfeld, J., 2002. In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chemical Geology, 182, 237–47.CrossRefGoogle Scholar
Folk, R. L., 1965. Some aspects of recrystallization in ancient limestones. In Dolomitization and Limestone Diagenesis, Society of Economic Paleontologists and Mineralogists Special Publication, 13, pp. 14–48.Google Scholar
Fournier, R. O., 1999. Hydrothermal processes related to movement of fluid from plastic to brittle rock in the magmatic–epithermal environment. Economic Geology, 94, 1193–212.CrossRefGoogle Scholar
Fraser, D. G., 1995. The nuclear microprobe – PIXE, PIGE, RBS, NRA and ERDA. In Potts, P. J., Bowles, J. F. W., Reed, S. J. B., and Cave, M. R. (eds.), Microprobe Techniques in the Earth Sciences, London, Chapman & Hall, pp. 140–62.CrossRefGoogle Scholar
Gaft, M., Reisfeld, R., Panczer, G., et al. 1997. Accommodation of rare-earth and manganese by apatite. Optical Materials, 8, 149–56.CrossRefGoogle Scholar
Ghazban, F., Schwarcz, H. P., and Ford, D. C., 1992. Multistage dolomitization of the Society Cliffs Formation, northern Baffin Island, Northwest Territories, Canada. Canadian Journal of Earth Science, 29, 1459–73.CrossRefGoogle Scholar
Gilhaus, A. and Richter, D. K., 2001. Polyphase Dolomitgenese in oberpermischen und obertrissischen Sabkha-Kleinzyklen von Hydra (Griechenland). Neues Jahrbuch für Geologie und Palaeontologie, Monatshefte, 2001, 399–422.Google Scholar
Goldstein, J. I., Newbury, D. E., Echlin, P.et al., 2003. Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edn., New York, NY, Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Goldstein, R. H., 1988. Cement stratigraphy of Pennsylvanian Holder Formation, Sacramento Mountains, New Mexico. American Association of Petroleum Geologists Bulletin, 72, 425–38.Google Scholar
Goldstein, R. H., 1991. Practical aspects of cement stratigraphy with illustrations from Pennsylvanian limestone and sandstone, New Mexico and Kansas. In Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications, SEPM Short Course 25, pp. 123–131.
Goldstein, R. H. and Rossi, C., 2002. Recrystallization in quartz overgrowths. Journal of Sedimentary Research, 72, 432–40.CrossRefGoogle Scholar
Gorobets, B. S. and G. Walker, 1995. Origins and luminescence in minerals: A summary of fundamental studies and applications. In Marfunmin, A. S. (ed.), Advanced Mineralogy 2, Methods and Instrumentations: Results and Recent Developments, Berlin, Springer-Verlag, pp. 138–46.CrossRefGoogle Scholar
Götte, Th., R. D. Neuser, and D. K. Richter, 2001. New parameters of quartz in sandstone-petrography: cathodoluminescence (CL)-investigation of mature sands and sandstones of north-western Germany. Abstracts of CL 2001 in Freiberg/Sachen, Germany, pp. 38–9.
Götze, J., 2002. Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials. Analytical and Bioanalytical Chemistry, 374, 703–8.Google ScholarPubMed
Götze, J. and Magnus, M., 1997. Quantitative determination of mineral abundance in geological samples using combined cathodoluminescence microscopy and image analysis. European Journal of Mineralogy, 9, 1207–15.CrossRefGoogle Scholar
Götze, J. and Zimmerle, W., 2000. Quartz and silica as guide to provenance in sediments and sedimentary rocks. Contributions to Sedimentary Geology, 21, pp. 1–91.Google Scholar
Götze, J., M. R. Krbetscek, D. Habermann, and D. Wolf, 2000. High-resolution cathodoluminescence studies of feldspar minerals. In Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D. (eds.), Cathodoluminescence in Geosciences, Berlin, Springer-Verlag, pp. 245–70.CrossRefGoogle Scholar
Götze, J., Plötze, M., and Habermann, D., 2001. Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz – a review. Mineralogy and Petrology, 71, 225–50.Google Scholar
Götze, J., Plötze, M., Götte, Th., Neuser, R. D., and Richter, D. K., 2002. Cathodoluminescence (CL) and electron paramagnetic resonance (EPR) studies of clay minerals. Mineralogy and Petrology, 76, 195–212.CrossRefGoogle Scholar
Graton, L. C. and Fraser, , 1935. Systematic packing of spheres with particular relation to porosity and permeability. Journal of Geology, 43, 785–909.CrossRefGoogle Scholar
Gratz, A., Fisler, D. K., and Bohor, B. F., 1996. Distinguishing shocked from tectonically deformed quartz by use of the SEM and chemical etching. Earth and Planetary Science Letters, 142, 513–21.CrossRefGoogle Scholar
Grover, G. Jr. and Read, J. F., 1983. Paleoaquifer and deep burial related cements defined by regional cathodoluminescence patterns, Middle Ordovician carbonates, Virginia. American Association of Petroleum Geologists Bulletin, 67, 1275–303.Google Scholar
Habermann, D., Neuser, R. D., and Richter, D. R., 1996. REE-activated cathodoluminescence of calcite and dolomite: high-resolution spectrometric analysis of CL-emission (HRS–CL). Sedimentary Geology, 101, 1–7.CrossRefGoogle Scholar
Habermann, D., Neuser, R. D., and Richter, D. K., 1998. Lower limit of Mn2 +-activated cathodoluminescence of calcite: state of the art. Sedimentary Geology, 116, 13–24.CrossRefGoogle Scholar
Habermann, D., R. D. Neuser, and D. K. Richter, 2000a. Quantitative high resolution analysis of Mn2 + in sedimentary calcite. In Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D. (eds.), Cathodoluminescence in Geosciences, Berlin, Springer Verlag, pp. 331–58.CrossRefGoogle Scholar
Habermann, D., Götte, T., Meijer, J.et al., 2000b. High resolution rare-earth elements analyses of natural apatite and its application in geo-sciences: combined micro-PIXE, quantitative CL spectroscopy and electron spin resonance analyses. Nuclear Instruments and Methods in Physics Research B, 161–163, 846–51.CrossRefGoogle Scholar
Hagni, R. D., 1986. Importance of cathodoluminescence microscopy in study of sedimentary ironstones. American Association of Petroleum Geologists Bulletin, 70, 598.Google Scholar
Hartmann, B. H., Juhász-Bodnár, K., Ramseyer, K., and Matter, A., 2000. Polyphased quartz cementation and its sources: a case study from the Upper Palaeozoic Haushi Group sandstones, Sultanate of Oman. In Quartz Cementation in Sandstones, International Association of Sedimentologists, Special Publication, 29, pp. 253–70.Google Scholar
Heaney, P. J., 1994. Structure and chemistry of the low-pressure polymorphs. In Silica: Physical Behavior, Geochemistry and Material Applications, Mineralogical Society of America Reviews in Mineralogy, 29, pp. 1–40.Google Scholar
Herzog, L. F., D. J. Marshall, and R. R. Babione, 1970. The Luminoscope – a new instrument for studying the electron-stimulated luminescence of terrestrial, extra-terrestrial and synthetic materials under the microscope. In Weber, J. N. and White, E. (eds.), Space Science Applications of Solid State Luminescence Phenomena, Materials Research Laboratory Special Publication, 70–101, pp. 79–98.Google Scholar
Hinton, R. W., 1995. Ion microprobe analysis in geology. In Potts, P. J., Bowles, J. F. W., Reed, S. J. B., and Cave, M. R. (eds.), Microprobe Techniques in the Earth Sciences: London, Chapman & Hall, pp. 237–89.CrossRefGoogle Scholar
Hogg, A. J. C., Sellier, E., and Jourdan, A. J., 1992. Cathodoluminescence of quartz cements in Brent Group sandstones, Alwyn South, UK North Sea. In Geology of the Brent Group, Geological Society Special Publication No. 61, pp. 421–40.Google Scholar
Hoholick, J. D., 1984. Regional variations of porosity and cement: St. Peter and Mount Simon sandstones in Illinois Basin. American Association of Petroleum Geologists Bulletin, 68, 753–64.Google Scholar
Houseknecht, D. W., 1987. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones. American Association of Petroleum Geologists Bulletin, 71, 633–42.Google Scholar
Houseknecht, D. W., 1991. Use of cathodoluminescence petrography for understanding compaction, quartz cementation, and porosity in sandstones. In Luminescence Microscopy and Spectroscopy: Quantitative and Qualitative Applications, SEPM Short Course 25, pp. 59–66.
Hutter, H., 2002. Dynamic secondary ion mass spectrometry. In Bubert, H. and Jenett, H. (eds.), Surface and Thin Film Analysis, Weinheim, Wiley-VCH Verlag GmbH, pp. 106–21.CrossRefGoogle Scholar
Jackson, S. E., Longerich, H. P., Dunning, G. R., and Fryer, B. J., 1992. The application of laser-ablation microprobe–inductively coupled plasma–mass spectrometry (LAM–ICP-MS) to in situ trace-element determinations in minerals. Canadian Mineralogist, 30, 1049–64.Google Scholar
Jarvis, K. E., Gray, A. L., and Houk, R. S., 1992. Handbook of Inductively Coupled Plasma Mass Spectrometry, Glasgow, Blackie & Sons Ltd.CrossRefGoogle Scholar
Johnson, S. A. E., Campbell, J. L., Malmqvist, K. G. (eds.), 1995. Particle-Induced X-Ray Emission Spectrometry (PIXE), New York, NY, Wiley Interscience.Google Scholar
Julig, P. J., Long, D. G. F., and Hancock, R. G. V., 1998. Cathodoluminescence and petrographic techniques for positive identification of quartz-rich lithic artifacts from late Paleo-Indian sites in the Great Lakes region. The Wisconsin Archeologist, 79, 68–88.Google Scholar
Kaufman, J., Cander, H. S., Daniels, L. D., and Meyers, W. J., 1988. Calcite cement stratigraphy and cementation history of the Burlington–Keokuk Formation (Mississippian), Illinois and Missouri. Journal of Sedimentary Petrology, 58, 312–26.Google Scholar
Keller, T. J., Gregg, J. M., and Shelton, K. L., 2000. Fluid migration and associated diagenesis in the greater Reelfoot Rift region, Midcontinent, United States. Geological Society of America Bulletin, 112, 1680–93.2.0.CO;2>CrossRefGoogle Scholar
Kempe, U. and Götze, J., 2002. Cathodoluminescence (CL) behavior and crystal chemistry of apatite from rare-metal deposits. Mineralogical Magazine, 66, 151–72.CrossRefGoogle Scholar
Kempe, U., T. Grunder, L. Nasdala, and D. Wolf, 2000. Relevance of cathodoluminescence for the interpretation of U–Pb zircon ages, with an example of an application to a study of zircons from the Saxonian Granulite Complex, Germany. In Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D. (eds.), Cathodoluminescence in Geosciences, Berlin, Springer-Verlag, pp. 415–55.CrossRefGoogle Scholar
Kopp O. C., 1991. Studies of ore deposits and trace elements in minerals. In Luminescence Microscopy and Spectroscopy, Qualitative and Quantitative Applications, SEPM Short Course 25, pp. 117–22.
Kopp, O. C., M. L. Ebers, L. B. Cobb, et al., 1986. Application of cathodoluminescence microscopy to the study of gangue carbonates in Mississippi Valley-type deposits in Tennessee: the search for a “Tennessee Trend.” In Hagni, R. D. (ed.), Process Mineralogy, VI, Warrendale, PA, The Metallurgical Society Inc., pp. 53–67.Google Scholar
Kopp, O. C., E. L. Fuller, Jr., and M. R. Owen, 1995. Interpretation of cathodoluminescence spectra obtained from dolomite and calcite gangue minerals, and dolostone breccias in the Central Tennessee Zinc District (USA). In Luminescence, Scanning Microscopy Supplement 9, pp. 211–23.
Krinsley, D. H. and Hyde, P. W., 1971. Cathodoluminescence studies of sediments. Scanning Electron Microscopy/1971 Part I, Proceedings of the Fourth Annual Scanning Electron Microscopy Symposium, Chicago, IL, IIT Research Institute, pp. 409–16.Google Scholar
Krinsley, D. and Tovey, N. K., 1978. Cathodoluminescence in Quartz Sand Grains. Scanning Electron Microscopy, 1, pp. 887–94.Google Scholar
Krinsley, D. H., Pye, K., Boggs, S. Jr., and Tovey, N. K., 1998, Backscattered Electron Microscopy and Image Analysis of Sediments and Sedimentary Rocks, Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Kupecz, J. A. and L. S. Land, 1994. Progressive recrystallization and stabilization of early-stage dolomite: Lower Ordovician Ellenburger Group, west Texas. In Dolomites: A Volume in Honour of Delomieu, International Association of Sedimentologists, Special Publication, No. 21, pp. 255–79.
Kwon, Y -N. and Boggs, S. Jr., 2002. Provenance interpretation of Tertiary sandstones from the Cheju Basin (NE East China Sea): a comparison of conventional petrographic and scanning cathodoluminescence techniques. Sedimentary Geology, 152, 29–43.CrossRefGoogle Scholar
Lapuente, M. P., Turi, B., and Blanc, P., 2000. Marbles from Roman Hispania: stable isotope and cathodoluminescence characterization. Applied Geochemistry, 15, 1469–93.CrossRefGoogle Scholar
Laubach, S. E., 1997. A method to detect natural fracture strike in sandstones. American Association of Petroleum Geologists Bulletin, 81, 604–23.Google Scholar
Lee, M. R., 2000. Imaging of calcite by optical and SEM cathodoluminescence. Microscopy and Analysis, 70, 15–16.Google Scholar
Lee, M. R. and Harwood, G. M., 1989. Dolomite calcitization and cement zonation related to uplift of the Raisby Formation (Zechstein carbonate), northeast England. Sedimentary Geology, 65, 285–305.CrossRefGoogle Scholar
Lee, M. R., Martin, R. W., Trager-Cowan, C., and Edwards, P. R., 2005. Imaging of cathodoluminescence zoning in calcite by scanning electron microscopy and hyperspectral mapping. Journal of Sedimentary Research, 75, 313–22.CrossRefGoogle Scholar
Lev, S. M., McLennan, S. M., Meyers, W. J., and Hanson, G. N., 1998. A petrographic approach for evaluating trace-element mobility in a black shale. Journal of Sedimentary Research, 68, 970–80.CrossRefGoogle Scholar
Leverenz, H. W., 1968. An Introduction to Luminescence of Solids, New York, NY, Dover Publications.Google Scholar
Lohmann, K. C. and Walker, J. C. G., 1989. The δ18O record of Phanerozoic abiotic marine calcite cements. Geophysical Research Letters, 16, 319–22.CrossRefGoogle Scholar
Long, J. V. P., 1963. Recent advances in electron-probe analysis. In Mueller, W. M. and Fay, M. (eds.), Advances in X-Ray Analysis: Proceedings of the 11th Annual Conference on Applications of X-ray Analysis, August 1962, New York, NY, Plenum Press, vol. 6, pp. 276–90.Google Scholar
Long, J. V. P. and Agrell, S. O., 1965. The cathodo-luminescence of minerals in thin section. Mineralogical Magazine, 34, 318–26.Google Scholar
Lowenstam, H. A. and Weiner, S., 1989. On Biomineralization, Oxford, Oxford University Press.Google Scholar
Lyon, I. C., Burley, S. D., McKeever, P. J., Saxton, J. M., and Macaulay, C., 2000. Oxygen isotope analysis of authigenic quartz in sandstones: a comparison of ion microprobe and conventional analytical techniques. In Quartz Cementation in Sandstones, International Association of Sedimentologists Special Publication, 29, pp. 299–316.Google Scholar
Machel, H. G., 1985. Cathodoluminescence in calcite and dolomite and its chemical interpretation. Geoscience Canada, 12, 139–47.Google Scholar
Machel, H. G., 2000. Application of cathodoluminescence to carbonate diagenesis. In Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D. (eds.); Cathodoluminescence in Geosciences, Berlin, Springer-Verlag, pp. 271–301.CrossRefGoogle Scholar
Machel, H. G. and E. A. Burton, 1991. Factors governing cathodoluminescence in calcite and dolomite, and their implications for studies of carbonate diagenesis. In Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications, SEPM Short Course 25, pp. 37–57.
Machel, H. G., R. A. Mason, A. N. Mariano, and A. Mucci, 1991. Causes and emission of luminescence in calcite and dolomite. In Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications, SEPM Short Course 25, pp. 9–25.
MacRae, N. D., 1995. Secondary-ion mass spectrometry and geology. The Canadian Mineralogist, 33, 219–36.Google Scholar
Major, R. P., 1991. Cathodoluminescence in Post-Miocene carbonates, In Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications, SEPM Short Course 25, pp. 149–53.
Makowitz, A. and Milliken, K. L., 2003. Quantification of brittle deformation in burial compaction, Frio and Mount Simon Formation sandstones. Journal of Sedimentary Research, 73, 1007–21.CrossRefGoogle Scholar
Maliva, R. G., 1989. Displacive syntaxial overgrowths in open marine limestones. Journal of Sedimentary Petrology, 59, 397–403.Google Scholar
Mariano, A. N., 1988. Some further geological applications of cathodoluminescence. In Marshall, D. J., Cathodoluminescence of Geological Materials, Boston, MA, Unwin Hyman, pp. 94–123.Google Scholar
Marshall, D. J., 1988. Cathodoluminescence of Geological Materials, Boston, Unwin Hyman.Google Scholar
Marshall, D. J., 1991. Combined cathodoluminescence and energy dispersive spectroscopy. In Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications, SEPM Short Course 25, pp. 27–35.
Marshall, D. J., 1993. The present status of cathodoluminescence attachments for optical microscopes. Scanning Microscopy, 7, 861–74.Google Scholar
Marshall, D. J., J. H. Giles, and A. Marino, 1988. Combined instrumentation for EDS elemental analysis and cathodoluminescence studies of geological materials. In Hagni, R. D. (ed.), Process Mineralogy VI, Warrendale, PA, The Metallurgical Society Inc., pp. 117–35.Google Scholar
Matter, A. and K. Ramseyer, 1985. Cathodoluminescence microscopy as a tool for provenance studies of sandstones. In Zuffa, G. G. (ed.), Provenance of Arenites, Dordrecht, D. Reidel Publishing Co., pp. 191–211.CrossRefGoogle Scholar
McLimans, R. K., 1991. Studies of reservoir diagenesis, burial history, and petroleum migration using luminescence micrography. In Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications, SEPM Short Course 25, pp. 97–106.
Meyers, W. J., 1991. Calcite cement stratigraphy: an overview. In Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications, SEPM Short Course 25, pp. 133–48.
Meyers, W. J., 1974. Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian), Scaramento Mountains, New Mexico. Journal of Sedimentary Petrology, 44, 837–61.Google Scholar
Meyers, W. J., 1978. Carbonate cements: their regional distribution and interpretation in Mississippian limestones of southwestern New Mexico. Sedimentology, 25, 371–400.CrossRefGoogle Scholar
Miller, J., 1988. Cathodoluminescence microscopy. In Tucker, M. (ed.), Techniques in Sedimentology, Oxford, Blackwell Scientific Publications, pp. 174–90.Google Scholar
Milliken, K. L., 1994. Cathodoluminescence textures and the origin of quartz silt in Oligocene mudrocks, south Texas. Journal of Sedimentary Research, A64, 567–71.CrossRefGoogle Scholar
Milliken, K. L. and S. E. Laubach, 2000. Brittle deformation in sandstone diagenesis revealed by scanned cathodoluminescence imaging with application to characterization of fractured reservoirs. In Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D. (eds.), Cathodoluminescence in Geosciences, Berlin, Springer Verlag, pp. 225–43.CrossRefGoogle Scholar
Mitchell, R. H., Xiong, J., Mariano, A. N., and Fleet, M. E., 1997. Rare-earth-element-activated cathodoluminescence in apatite. The Canadian Mineralogist, 35, 979–98.Google Scholar
Montañez, I. P., 1997. Application of cathodoluminescencent cement stratigraphy for delineating regional diagenetic and fluid migration events associated with Mississippi Valley-type mineralization in the southern Appalachians. Special Publication, Society of Economic Geologists, 4, 432–47.Google Scholar
Muir, M. D. and P. R. Grant, 1974. Cathodoluminescence. In Holt, D. B. and Muir, M. D., Quantitative Scanning Electron Microscopy, London, Academic Press, pp. 287–334.Google Scholar
Müller, A., 2000. Cathodoluminescence and characterisation of defect structures in quartz with applications to the study of granitic rocks. Doctoral dissertation, Georg-August-Universität zu Göttingen.
Müller, A., Seltmann, R., and Behr, H. -J., 2000. Application of cathodoluminescence to magmatic quartz in a tin granite – case study from the Schellerhau Granite complex, eastern Erzgebirge, Germany. Mineralium deposita, 35, 169–89.Google Scholar
Müller, A., Wiedenbeck, M., Kerkhof, A. M., Kronz, A., and Simon, K., 2003. Trace elements in quartz – a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP–MS, and cathodoluminescence study. European Journal of Mineralogy, 15, 747–63.CrossRefGoogle Scholar
Neuser, R. D., Richter, D. K., and Vollbrecht, A., 1989. Natural quartz with brown/violet cathodoluminescence – genetic aspects evident from spectral analysis. Zentralblatt für Geologie und Palaeontologie, Teil I: Allgemeine, Angewandte, Regionale und Historische Geologie, 1988 (7–8), 919–30.Google Scholar
Nielsen, P., Swennen, R., and Keppens, E., 1994. Multiple-step recrystallization within massive ancient dolomite units; an example from the Dinantian of Belgium: Sedimentology, 41, 567–84CrossRefGoogle Scholar
Oatley, C. W., 1972. The Scanning Electron Microscope, Cambridge, Cambridge University Press.Google Scholar
Oatley, C. W., 1982. The early history of the scanning electron microscope. Journal of Applied Physics, 53, R1–13.CrossRefGoogle Scholar
Onasch, C. M. and Vennemann, T. W., 1995. Disequilibrium partitioning of oxygen isotopes associated with sector zoning in quartz. Geology, 23, 1103–6.2.3.CO;2>CrossRefGoogle Scholar
Owen, M. R., 1991. Application of cathodoluminescence to sandstone provenance. In Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications, SEPM Short Course 25, pp. 67–75.
Owen, M. R. and Carozzi, A. V., 1986. Southern provenance of upper Jackfork Sandstone, southern Ouachita Mountains: cathodoluminescence petrology. Geological Society of America, Bulletin, 97, 110–15.2.0.CO;2>CrossRefGoogle Scholar
Padovani, E. R., Shirley, S. B., and Simmons, G., 1982. Characteristics of microcracks in amphibolite and granulite facies grade rocks from southeastern Pennsylvania. Journal of Geophysical Research, 87, 8605–30.CrossRefGoogle Scholar
Pagel, M., V. Barbin, P. Blanc, and D. Ohnenstetter, 2000a. Cathodoluminescence in geosciences: an introduction. In Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D. (eds.), Cathodoluminescence in Geosciences, Berlin, Springer-Verlag, pp. 1–21.CrossRefGoogle Scholar
Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D. (eds.), 2000b. Cathodoluminescence in Geosciences, Berlin, Springer-Verlag.CrossRefGoogle Scholar
Passchier, C. W. and Trouw, R. A. J., 1996. Microtectonics, Berlin, Springer-Verlag.Google Scholar
Paxton, S. T., Szabo, J. O., Ajdukiewicz, J. M., and Klimentidis, R. E., 2002. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs. American Association of Petroleum Geologists Bulletin, 86, 2047–67.Google Scholar
Penniston-Dorland, S. C., 2001. Illumination of vein quartz textures in a porphyry copper ore deposit using scanned cathodoluminescence: Grasberg Igneous Complex, Irian Jaya, Indonesia. American Mineralogist, 86, 652–66.CrossRefGoogle Scholar
Pennock, G. M., 1995. Scanning electron microscopy and image formation. In Marfunin, A. S. (ed.), Advanced Minerlogy: Methods and Instrumentation. Results and Recent Developments, Berlin, Springer Verlag, vol. 2, pp. 273–9.CrossRefGoogle Scholar
Peppard, B. T., Steele, I. M., Davis, A. M., Wallace, P. J., and Anderson, A. T., 2001. Zoned quartz phenocrysts from the rhyolitic Bishop Tuff. American Mineralogist, 86, 1034–52.CrossRefGoogle Scholar
Perkins, W. T. and N. J. G. Pearce, 1995. Mineral microanalysis by microprobe inductively coupled plasma mass spectrometry. In Potts, P. J., Bowles, J. F. W., Reed, S. J. B., and Cave, M. R. (eds.), Microprobe Techniques in the Earth Sciences, London, Chapman & Hall, pp. 291–325.CrossRefGoogle Scholar
Perny, B., Eberhardt, P., Ramseyer, K., Mullis, J., and Pankrath, R., 1992. Microdistribution of Al, Li, and Na in α-quartz: possible causes and correlation with short lived cathodoluminescence. American Mineralogist, 77, 534–44.Google Scholar
Pettijohn, F. J., Potter, P. E., and Siever, R., 1973. Sand and Sandstone, New York, NY, Springer-Verlag.CrossRefGoogle Scholar
Picouet, P., 1997. Application de la cathodoluminescence á l'étude des céramiques modernes et archéologiques. Ph.D. Thesis, University of Fribourg, Switzerland.Google Scholar
Picouet, P., Maggetti, M., Piponnier, D., and Schvoerer, M., 1999. Cathodoluminescence spectroscopy of quartz grains as a tool for ceramic provenance. Journal of Archaeological Science, 26, 943–9.CrossRefGoogle Scholar
Poller, U., 2000. A combination of single zircon dating by TIMS and cathodoluminescence investigations of the same grain: the CLC method – U–Pb geochronology for metamorphic rocks. In Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D. (eds.), Cathodoluminescence in Geosciences, Berlin, Springer-Verlag, pp. 401–14.CrossRefGoogle Scholar
Popp, B. N., Anderson, T. F., and Sandberg, P. A., 1986. Brachiopods as indicators of original isotopic composition in some Paleozoic limestones. Geological Society of America Bulletin, 97, 1262–9.2.0.CO;2>CrossRefGoogle Scholar
Ramsey, J. G., 1980. The crack–seal mechanism of rock deformation. Nature, 284, 135–9.CrossRefGoogle Scholar
Ramseyer, K., Baumann, J., Matter, A., and Mullis, J., 1988. Cathodoluminescence colours of α-quartz. Mineralogical Magazine, 52, 669–77.CrossRefGoogle Scholar
Ramseyer, K., Fischer, J., Matter, A., Eberhardt, P., and Geiss, J., 1989. A cathodoluminescence microscope for low intensity luminescence. Journal of Sedimentary Petrology, 59, 619–22.CrossRefGoogle Scholar
Redmond, G., S. Kimoto, and H. Okuzumi, 1970. Use of the SEM in cathodoluminescence observations on natural samples. In Johari, O. (ed.), Scanning Electron Microscopy, Proceedings of the Third Annual Scanning Electron Microscope Symposium, Chicago, ILIIT Research Institute, pp. 33–40.Google Scholar
Redmond, G., Cesbron, F., Chapoulie, R., et al., 1992. Cathodoluminescence applied to the microcharacterization of mineral materials: a present status in experimentation and interpretation. Scanning Microscopy, 6, 23–68.Google Scholar
Redmond, G., M. R. Phillips, and C. Roques-Carmes, 2000. Importance of instrumental and experimental factors on the interpretation of cathodoluminescence data from wide band gap materials. In Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D. (eds.), Cathodoluminescence in Geosciences, Berlin, Springer-Verlag, pp. 60–126.CrossRefGoogle Scholar
Reed, R. M. and Milliken, K. L., 2003. How to overcome imaging problems associated with carbonate minerals on SEM-based cathodoluminescence systems. Journal of Sedimentary Research, 73, 328–32.CrossRefGoogle Scholar
Reed, S. J. B., 1995. Electron probe microanalysis. In Potts, P. J., Bowles, J. F. W., Reed, S. J. B., and Cave, M. R. (eds.), Microprobe Techniques in the Earth Sciences, London, Chapman & Hall, pp. 49–89.CrossRefGoogle Scholar
Reed, S. J. B. and Romanenko, I. M., 1995. Electron probe microanalysis. In Advanced mineralogy. Methods and Instrumentations: Results and Recent Developments, Berlin, Springer-Verlag, vol. 2, pp. 240–6.Google Scholar
Reeder, R. J., 1991. An overview of zoning in carbonate minerals. In Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications, SEPM Short Course 25, pp. 77–82.
Reinhold, C., 1998. Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany. Sedimentary Geology, 121, p. 71–95.CrossRefGoogle Scholar
Richter, D. K., Götte, Th., and Habermann, D., 2002. Cathodoluminescence of authigenic albite. Sedimentary Geology, 150, p. 367–74.CrossRefGoogle Scholar
Richter, D. K., Götte, Th., Götze, J., and Neuser, R. D., 2003. Progress in application of cathodoluminescence (CL) in sedimentary petrology. Mineralogy and Petrology, 79, 127–66.CrossRefGoogle Scholar
Richter, D. K. and Zinkernagel, U., 1981. Zur Anwendung der Kathodolumineszenz in der Karbonatpetrographie. Geologische Rundschau, 70, 1276–302.CrossRefGoogle Scholar
Ridley, W. I. and F. E. Lichte, 1998. Major, trace, and ultratrace element analysis by laser ablation ICP-MS. In Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Reviews in Economic Geology, 7, pp. 199–215.
Roedder, E., 1984. Fluid Inclusions: an Introduction to Studies of all Types of Fluid Inclusions, gas, liquid, or Melt Trapped in Materials from Earth and Space, and their Application to the Understanding of Geologic Processes. Mineralogical Society of America Reviews in Mineralogy, 12.
Ross, G. M., Villeneuve, M. E., and Theriault, R. J., 2001. Isotopic provenance of the lower Muskwa assemblage (Mesoproterozoic, Rocky Mountains, British Columbia): new clues to correlation and source areas. Precambrian Research, 111, 57–77.CrossRefGoogle Scholar
Rowan, E. L., 1986. Cathodoluminescence zoning in hydrothermal dolomite cements: relationship to Mississippi Valley-type Pb–Zn mineralization in southern Missouri and northern Arkansas. In Hagni, R. D. (ed.), Process Mineralogy VI, Warrendale, PA, The Metallurgical Society Inc., pp. 69–87.Google Scholar
Rubatto, D. and D. Gebauer, 2000. Use of cathodoluminescence for U–Pb zircon dating by ion microprobe: some examples from the western Alps. In Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D. (eds.), Cathodoluminescence in Geosciences, Berlin, Springer-Verlag, pp. 373–400.CrossRefGoogle Scholar
Rusk, B. and Reed, M., 2002. Scanning electron microscope–cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology, 30, 727–30.2.0.CO;2>CrossRefGoogle Scholar
Russ, J. C., 1984. Fundamentals of Energy Dispersive X-Ray Analysis, London, Butterworths, ch. 1.Google Scholar
Ryan, C. G., Clayton, E. J., Griffin, W. L., et al., 1988. SNIP, a statistics–sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nuclear Instruments, and Methods in Physics Research B, 34, 396–402.CrossRefGoogle Scholar
Sandberg, P. A., 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305, 19–22.CrossRefGoogle Scholar
Schieber, J., Krinsley, D., and Riciputi, L., 2000. Diagenetic origin of quartz silt in mudstones and implications for silica cycling. Nature, 406, 981–5.CrossRefGoogle ScholarPubMed
Scholle, P. A. and D. A. Ulmer-Scholle, 2003. A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis, AAPG Memoir 77.
Schvoerer, M., Guibert, P., Piponnier, D., and Bechtel, F., 1986. Cathodoluminescence des matériaux archéologiques. PACT (Journal of the European Study Group on Physical, Chemical, Biological and Mathematical Techniques Applied to Archaeology), 15, 93–110.Google Scholar
Schweiger, A. and Jeschke, G., 2001. Principles of Pulse Electron Paramagnetic Resonance. Oxford, Oxford University Press.Google Scholar
Searl, A., 1988. The limitations of “cement stratigraphy” as revealed in some Lower Carboniferous oolites from south Wales. Sedimentary Geology, 57, 171–83.CrossRefGoogle Scholar
Sedat, B., 1992. Petrographie und Diagenese von Sandsteinen im Nordwestdeutshen Oberkarbon. Hamburg, DGMK-Forschungsbericht 384–7.Google Scholar
Seyedolali, A., Krinsley, D. H., Boggs, S. Jr., et al., 1997a. Provenance interpretation of quartz by scanning electron microscope–cathodoluminescence fabric analysis. Geology, 25, 787–90.2.3.CO;2>CrossRefGoogle Scholar
Seyedolali, A., Boggs, S. Jr., Goles, G. G., and Krinsley, D. H., 1997b. Cathodoluminescence of quartz from contact-metamorphosed rocks of Skaergaard Intrusion and mechanically sheared metamorphosed rocks of Prescott, Arizona. Abstracts with Programs, Geological Society of America, 29(6), 40l.Google Scholar
Sippel, R. F., 1965. Simple device for luminescence petrography. Review of Scientific Instruments, 36, 1556–8.CrossRefGoogle Scholar
Sippel, R. F., 1968. Sandstone petrology, evidence from luminescence petrography. Journal of Sedimentary Petrology, 38, 530–54.CrossRefGoogle Scholar
Smith, J. V. and Stenstrom, R. C., 1965. Electron-excited luminescence as a petrologic tool. Journal Of Geology, 73, 627–35.CrossRefGoogle Scholar
Smith, K. C. A., 1956. The scanning electron microscope and its field of application. Ph.D. Dissertation, University of Cambridge.
Sprunt, E. S. and Nur, A., 1979. Microcracking and healing in granites: new evidence from cathodoluminescence. Science, 205, 495–7.CrossRefGoogle ScholarPubMed
Stanley, S. M. and Hardie, L. A., 1999. Hypercalcification: paleontology links plate tectonics and geochemistry in sedimentology. GSA Today, 9, 1–7.Google Scholar
Steffens, P., Niehuis, E., Friese, T., Greifendorf, D., and Benninghoven, A., 1985. A time-of-flight mass spectrometer for static SIMS applications. Journal of Vacuum Science Technology A, 3(3), 1322–5.CrossRefGoogle Scholar
Stenstrom, R. C. and J. V. Smith, 1964. Electron-excited luminescence as a petrologic tool. Geological Society of America Special Paper 76, p. 158.
Kalceff, Stevens M. A. and Phillips, M. R., 1995. Cathodoluminescence microcharacterization of the defect structure of quartz. Physical Review B, 52, 3122–34.CrossRefGoogle ScholarPubMed
Stevens Kalceff, M. A., M. R. Phillips, A. R. Moon, and W. Kalceff, 2000. Cathodoluminescence microcharacterization of silicon dioxide polymorphs. In Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D. (eds.), Cathodoluminescence in Geosciences, Berlin, SpringerVerlag, pp. 193–224.CrossRefGoogle Scholar
Stöffler, D. and Langenhorst, F., 1994. Shock metamorphism of quartz in nature and experiment: 1. Basic observations and theory. Meteoritics, 29, 155–81.CrossRefGoogle Scholar
Stone, W. N. and Siever, R., 1996. Quantifying compaction, pressure solution and quartz cementation in moderately- and deeply-buried quartzose sandstones from the greater Green River Basin, Wyoming. In Siliciclastic Diagenesis and Fluid Flow, Society for Sedimentary Geology Special Publication 55, pp. 129–50.Google Scholar
Stow, D. A. V. and J. Miller, 1984. Mineralogy, petrology and diagenesis of sediments at Site 530, southeast Angola basin. In Hay, W. W., Sibuet, J. C.et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington, DC., US Government Printing Office, vol. LXXV, pp. 857–73.CrossRefGoogle Scholar
Stünitz, H., 1998. Syndeformational recrystallization – dynamic or compositionally induced?Contributions to Mineralogy and Petrology, 131, 219–36.Google Scholar
Sylvester, P. (ed.), 2001. Laser-Ablation–ICPMS in the Earth Sciences: Principles and Applications. Ottawa, Mineralogical Association of Canada.Google Scholar
Tarashchan, A. N. and G. Waychunas, 1995. Interpretation of luminescence spectra in terms of band theory and crystal field theory. Sensitization and quenching, photoluminescence, radioluminescence, and cathodoluminescence. In Marfunmin, A. S. (ed.), Advanced Mineralogy 2, Methods and Instrumentations: Results and Recent Developments, Berlin, Springer-Verlag, pp. 124–35.CrossRefGoogle Scholar
Taylor, J. M., 1950. Pore-space reduction in sandstones. American Association of Petroleum Geologists Bulletin, 34, 701–16.Google Scholar
Thornton, P. R., 1968. Scanning Electron Microscopy, London, Chapman and Hall.Google Scholar
Tobin, K. J., Walker, K. R., Steinhauff, D. M., and Mora, C. I., 1996. Fibrous calcite from the Ordovician of Tennessee: preservation of marine oxygen isotopic composition and its implications. Sedimentology, 43, 235–51.CrossRefGoogle Scholar
Trewin, N., 1988, Use of the scanning electron microscope in sedimentology. In Tucker, M. (ed.), Techniques in Sedimentology, Oxford, Blackwell Scientific Publications, pp. 229–73.Google Scholar
Kerkhof, A. M. and Hein, U. F., 2001. Fluid inclusion petrography: Lithos, 55, 27–47.CrossRefGoogle Scholar
van den Kerkhof, A. M., A. Kronz, and K. Simon, 2001. Trace element redistribution in metamorphic quartz and fluid inclusion modification: observations by cathodoluminescence. In Noronha, F., Dória, A., and Guedes, A. (eds.), XVI ECROFI European Current Research on Fluid Inclusions, Porto 2001, Abstracts, Amsterdam, Elsevier, pp. 447–50.Google Scholar
Vortisch, W., Harding, D., and Morgan, J., 2003. Petrographic analysis using cathodoluminescence microscopy with simultaneous energy-dispersive X-ray spectroscopy. Mineralogy and Petrology, 79, 193–202.CrossRefGoogle Scholar
Walderhaug, O. and Rykkje, J., 2000. Some examples of crystallographic orientation on the cathodoluminescence colors of quartz. Journal of Sedimentary Research, 70, 545–8.CrossRefGoogle Scholar
Walkden, G. M. and Berry, J. R., 1984. Syntaxial overgrowths in muddy crinoidal limestones; cathodoluminescence sheds new light on an old problem. Sedimentology, 31, 251–67.CrossRefGoogle Scholar
Walker, G., 2000. Physical parameters for the identification of luminescence centres in minerals. In Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D. (eds.) Cathodoluminescence in Geosciences, Berlin, Springer Verlag, pp. 23–39.CrossRefGoogle Scholar
Walker, G. and S. Burley, 1991. Luminescence petrography and spectroscopic studies of diagenetic minerals. In Luminescence Microscopy and Spectroscopy: Quantitative and Qualitative Applications, SEPM Short Course 25, pp. 83–96.
Wallace, M. W., Kerans, C., Playford, P. W., and McManus, D., 1991. Burial diagenesis in the Upper Devonian reef complexes of the Geikie Gorge region, Canning Basin, Western Australia. American Association of Petroleum Geologists Bulletin, 75, 1018–38.Google Scholar
Watt, G. R., Wright, P., Galloway, S., and McLean, C., 1997. Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts. Geochimica et cosmochimica acta, 61, 4337–48.CrossRefGoogle Scholar
Waychunas, G. A., 2002. Apatite luminescence. In Kohn, M. J., Rakovan, J., and Hughes, J. M. (eds.), Reviews in Mineralogy and Geochemistry, Washington, DC, Mineralogical Society of America, vol. 48, 701–42.Google Scholar
Weil, J. A., 1984. A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Physics and Chemistry of Minerals, 10, 149–65.CrossRefGoogle Scholar
Weil, J. A., 1993. A review of the EPR spectroscopy of the point defects in α-quartz: the decade 1982–1992. In Helms, C. R. and Deal, B. E. (eds.), The Physics and Chemistry of SiO2and the Si-SiO2Interface 2, New York, NY, Plenum Press, pp. 131–44.Google Scholar
Weil, J. A., Bolton, J. R., and Wertz, J. E., 1994. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, New York, NY, John Wiley & Sons, Inc.Google Scholar
Weil, J. A., Y. Dusausoy, and S. L. Votyakov, 1995. Electron paramagnetic resonance (EPR), 1995. In Marfunin, A. S., (ed.), Advanced Mineralogy, Methods and Instrumentations: Results and Recent Developments, Berlin, Springer-Verlag, vol. 2, pp. 197–209.CrossRefGoogle Scholar
Williams, P. M. and Yoffe, A. D., 1968. Scanning electron microscope studies of cathodoluminescence in ZnSe single crystals. Philosophical Magazine, 18, 555–60.CrossRefGoogle Scholar
Wilson, R. G., Stevie, F. A., and Magee, C. W., 1990. Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, New York, NY, John Wiley & Sons.Google Scholar
Wolfe, J. P., 1998. Imaging Phonons: Acoustic Wave Propagation in Solids, New York, NY, Cambridge University Press.CrossRefGoogle Scholar
Worden, R. H. and S. D. Burley, 2003. Sandstone diagenesis: the evolution of sand to stone. In Burley, S. D. and Worden, R. H. (eds.), Sandstone Diagenesis: Recent and Ancient, Malder, MA, Blackwell Publishing, pp. 3–44.CrossRefGoogle Scholar
Wordon, R. H. and S. Morad, 2000. Quartz Cementation in Sandstones, International Association of Sedimentologists Special Publication, 29.
Yoo, C. M., Gregg, J. M., and Shelton, K. L., 2000. Dolomitization and dolomite neomorphism; Trenton and Black River limestones (Middle Ordovician) northern Indiana, USA. Journal of Sedimentary Research, 70, 265–74.CrossRefGoogle Scholar
Young, S. W., 1976. Petrographic textures of detrital polycrystalline quartz as an aid to interpreting crystalline source rocks. Journal of Sedimentary Petrology, 46, 595–603.Google Scholar
Zinkernagel, U., 1978. Cathodoluminescence of quartz and its application to sandstone petrology. Contributions to Sedimentology, 8, 1–69.Google Scholar
Zuffa, G. G. (ed.), 1985. Provenance of Arenites, Dordrecht, D. Reidel Publishing.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Sam Boggs, University of Oregon, David Krinsley, University of Oregon
  • Book: Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks
  • Online publication: 16 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535475.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Sam Boggs, University of Oregon, David Krinsley, University of Oregon
  • Book: Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks
  • Online publication: 16 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535475.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Sam Boggs, University of Oregon, David Krinsley, University of Oregon
  • Book: Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks
  • Online publication: 16 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535475.011
Available formats
×